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Introduction

This book is the result of a selection of papers accepted at the North Ameri-
can Productivity Workshop (NAPW), which is a major biennial conference of
researchers and practitioners on productivity and efficiency issues that is held every
two years. NAPW IX was being held between June 15 and June 18, 2015, in
Quebec City, and the theme of the conference was productivity and inequality.
The 2016 conference included several keynote speeches by leading international
productivity experts and presentations of specialized productivity-related research
such as Susanto Basu, Professor of Economics (Boston College); Allan Collard-
Wexler, Associate Professor of Economics (Duke University); Russell Davidson,
Professor of Economics (McGill University); Erwin Diewert, Professor in the
Vancouver School of Economics (University of British Columbia); Jonathan David
Ostry, Deputy Director of the Research Department (IMF); Ariel Pakes, Thomas
Professor of Economics (Harvard University); and Robin C. Sickles, Reginald
Henry Hargrove Professor of Economics, Professor of Statistics (Rice University).

Each plenary session allowed for the presentation of recent and ongoing research
in the areas of productivity, inequality, efficiency, data envelopment analysis, and
index number theory. The plenary sessions were organized to cover a broad
range of productivity, inequality, and efficiency topics. Basu looked at the general
topic of productivity and the welfare of nations; Collard-Wexler showed how to
estimate production functions with measurement error in inputs; Diewert presented
a decomposition of US business sector TFP growth into technical progress and
inefficiency components; Davidson presented the challenges of making statistical
inference with income distributions; Ostry discussed redistribution, inequality, and
growth; Pakes looked at new entries and new markets; and Sickles discussed the
sources of income inequality by exploring the role of productivity growth.

The conference included many other researchers (150) from around the world (28
countries: Australia, Austria, Belgium, Brazil, Canada, China, Denmark, France,
Germany, Greece, Hungary, Italy, Japan, Luxembourg, Macedonia, the Netherlands,
Norway, Poland, Portugal, Romania, Russia, Spain, Sweden, Switzerland, Taiwan,
Tunisia, the United Kingdom, and the United States), and the exposure of their
research was a real gain for the Canadian community that works on issues of
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vi Introduction

productivity and inequality. The conference was hosted by the Department of
Economics of Carleton University and organized in collaboration with Industry
Canada, Network to Study Productivity in Canada from a Firm-Level Perspective,
the Centre for Monetary and Financial Economics, and Bank of Canada.

The quality of the research papers presented at this conference attracted also
representatives from Industry Canada, Bank of Canada, and Statistics Canada. Their
participation was very important as the research ideas presented at the conference
are very helpful for policy makers and can be used to formulate policies that can
improve productivity performance of Canadian companies and, at the same time,
can reduce inequality among Canadians.
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Estimating Efficiency in the Presence
of Extreme Outliers: A Logistic-Half
Normal Stochastic Frontier Model
with Application to Highway
Maintenance Costs in England

Alexander D. Stead, Phill Wheat, and William H. Greene

Abstract In Stochastic Frontier Analysis the presence of outliers in the data, which
can often be safely ignored in other forms of linear modelling, has potentially
serious consequences in that it may lead to implausibly large variation in efficiency
predictions when based on the conditional mean. This motivates the development
of alternative stochastic frontier specifications which are appropriate when the
two-sided error has heavy tails. Several existing proposals to this effect have
proceeded by specifying thick tailed distributions for both error components in
order to arrive at a closed form log-likelihood. In contrast, we use simulation-
based methods to pair the canonical inefficiency distributions (in this example
half-normal) with a logistically distributed noise term. We apply this model to
estimate cost frontiers for highways authorities in England, and compare results
obtained from the conventional normal-half normal stochastic frontier model. We
show that the conditional mean yields less extreme inefficiency predictions for large
residuals relative to the use of the normal distribution for noise.

Keywords Stochastic frontier · Normal · Logistic · Outliers · Maximum simul-
ated likelhood
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2 A.D. Stead et al.

1 Introduction

The aim of frontier analysis is to estimate a frontier function based on efficient,
or at least best-practice in sample, production and cost relationships against which
the efficiency of firms and other decision making units (DMU) can be measured.
A challenge for such analyses is dealing with the existence of noise, resulting from
random shocks and measurement error in the dependent variable — in the data.
In particular, in the presence of outliers, there can be a disproportionate impact
on the estimated frontier and on all predictions of efficiency relative to it. The Data
Envelopment Analysis (DEA) model (Charnes et al. 1978) and related mathematical
programming approaches are deterministic, in that any noise present is attributed
wholly to variation in efficiency, and are therefore particularly sensitive. This is also
the case with some of the cruder econometric methods, such as Corrected Ordinary
Least Squares (COLS). Here we focus instead on Stochastic Frontier Analysis (SFA)
which should be more robust to noise given this is considered explicitly alongside
inefficiency in the model formulation.

The specific motivation for this paper comes from an issue arising from the
authors’ work studying cost efficiency in a number of datasets. The example
used in this paper is cost analysis of highways maintenance operations of local
government authorities in England, which utilises bespoke data on operating and
capital expenditure provided by each authority. When we compute the standard
Jondrow et al. (1982) predictor, an implausibly wide range of efficiency scores
is found. This issue is caused by large estimated error variances; in particular,
a large VAR(u) will lead to a large spread of efficiency scores, while a large
VAR(v) will lead to a greater degree of shrinkage of efficiency predictions toward
the unconditional mean (Wang and Schmidt 2009). Large error variances are in
our dataset caused by the presence of a relatively large number of outliers in the
data, due to a combination of under- or over-reporting, unobserved investment cycle
effects, and extreme weather events.

In this paper we consider methods to better deal with noise data in the stochastic
frontier setting. We consider alternative methods which are better suited to handling
outliers in the data, i.e. heavier tails in the error. After consideration of possible
existing approaches, this leads us to propose a new stochastic frontier model with a
logistic distribution for the noise error. This model is easy to estimate and has been
programmed into a bespoke version of LIMDEP.

The structure of this paper is as follows: Section 2 reviews the received methods
available to handle a large number of outliers in frontier analysis, and reviews the
relevant literature and Sect. 3 introduces a logistic-half normal stochastic frontier
(SF) models for dealing with heavy-tailed noise. Section 4 applies these models to
our data on highways maintenance costs in England and compares the results to
those obtained from the standard normal-half normal SF model, and Sect. 5 gives
our summary and conclusions.
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2 Literature Review: Potential Approaches to Dealing
with Outliers

2.1 Adopting Alternative Predictors for Inefficiency

Before considering amendments to the standard stochastic frontier model, it is
natural to ask whether there are alternative efficiency predictors which yield more
intuitive distributions of predictions. Given that in cross sectional models, point
predictors are known to be inconsistent for the quantity of interest; namely the firm
specific realisation of a random variable (Wheat et al. 2014), then several point and
interval predictors could be candidates.

One candidate is the conditional mode predictor (Jondrow et al. 1982) which,
for the normal-half normal model, treats all observations with positive (negative)
residuals in the production (cost) frontier case as fully efficient; likewise in the
normal-exponential model, all residuals past a certain threshold—i.e. the inverse of
the product of the squared rate parameter from the exponential component and the
standard deviation of the normal component—are predicted to be fully efficient. The
conditional mode predictor therefore yields more intuitive efficiency predictions at
the top relative to the conditional mean. This is because the conditional mean for all
firms will always be less than one (for VAR(u) > 0) and, in the case of large VAR(v)
i.e. data with many outliers, this difference is likely to be non-trivial even for the best
performing DMU (due to substantial shrinkage to the unconditional mean (Wang
and Schmidt 2009)). Furthermore, for all other observations the conditional mode
predictor yields a predicted efficiency score higher than that from the conditional
mean predictor; the latter difference, however, tends to be small in magnitude at
the bottom, and its usefulness in remedying implausibly low efficiency scores is
therefore limited.

Another approach is to calculate prediction intervals, which show the range of
plausible efficiency predictions for a given observation. Since in the normal-half
normal case the conditional distribution of u is that of a truncated normal random
variable (Jondrow et al. 1982), Horrace and Schmidt (1996) propose simply using
the quantile function for this distribution to compute the upper bound of a prediction
interval, which is also derived by Bera and Sharma (1999). However, Wheat et al.
(2014) note that this method does not necessarily yield a minimum width interval,
and derive minimum width intervals for the normal-half normal case, and discuss
various methods of accounting for parameter uncertainty in computing prediction
intervals. The use of prediction intervals in cases where predicted efficiency values
are at the extremes could be useful in that they allow us to qualify our point
predictions of efficiency by explicitly recognising that there are in fact a range of
probable values which efficiency can take; however, this is not a solution to the
underlying problem and of course, the range of probable values will include values
even more implausible than the point predictor.

Overall, while alternative predictors are useful in SFA in general, the mass of
the conditional distribution for the most efficient firm in our sample is still far from
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zero (even if the peak of the distribution—i.e. the mode—is zero. Thus the question
remains as to whether an alternative formulation of the stochastic frontier model
could yield a more intuitive distribution of efficiency predictions. In particular a
formulation which puts more weight on outlying observations being the result of
noise rather than inefficiency seems to be appropriate. We now consider possible
means to achieve this.

2.2 Heteroskedastic Stochastic Frontier Models

The basic SFA model assumes that both error components are homoskedastic,
i.e. that they have a constant variance. Outliers in the data could result from
heteroskedasticity in one or both error components, so that certain observations
have a higher error variance than others. Discussion of heteroskedastic SF models
have tended to focus on heteroskedasticity in the one-sided error; Reifschneider
and Stevenson (1991) propose a normal-half normal model in which �ui D g(Ui),
g(Ui) 2 (0, 1), Caudill and Ford (1993) propose a normal-half normal model in
which �ui D �u(Ui� )ı , and Caudill et al. (1995) propose a normal-half normal in
which �ui D exp(Ui� ), where in each case Ui is a vector of explanatory variables
including an intercept. Wang (2002) combined the Battese and Coelli (1995)
specification of the pre-truncation mean of a truncated normal one-sided error in
which �i D Ziˇ, where Zi is again a vector of explanatory variables, with a slight
variation in the Caudill et al. (1995) specification of the one-sided error variance
so that �2ui D exp .Ui�/ into a single model, which has the additional advantage
of allowing for non-monotonic relationships between inefficiency and explanatory
variables.

In terms of handling outliers where these are assumed to reflect an unusually
high variance in noise, it is more useful to allow for heteroskedasticity in the
two-sided error, however; Wang and Schmidt (2009) show for the normal-half
normal model that E(uij "i) is a shrinkage of ui towards E(ui), and that because
of this, as � vi ! 0, E(uij "i) ! ui, while as � vi ! 1 , E(uij "i) ! E(ui). Allowing
for heteroskedasticity in v therefore allows for varying levels of shrinkage. Hadri
(1999) introduces a doubly heteroskedastic SF model in which the variances of
both error components are a function of vectors of explanatory variables Ui and Vi

—which need not be the same—such that �ui D exp(Ui� ), � vi D exp(Vi� ). Finally,
Kumbhakar and Sun (2013) introduce a normal-truncated normal model which
combines the Battese and Coelli (1995) and Hadri (1999) specifications into a model
in which the pre-truncation mean of the one-sided error, as well as the variances of
both error components are functions of vectors of explanatory variables, so that
�i D Ziˇ, �ui D exp(Ui� ), � vi D exp(Vi� ).

Allowing for greater levels of variance in outlying observations is effectively
another method of allowing for a heavy tailed distribution. The problem with adopt-
ing this approach using existing heteroskedastic SF models is that an appropriate
variable is needed for inclusion in the variance function. A dummy variable identi-
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fying outlying observations could be used, for example, however the identification
of such outlying observations would either have to be done on an ex-post basis,
or with reference to some arbitrary partial metric, and of course there is an added
degree of arbitrariness in defining the cut-off point beyond which an observation is
deemed to be outlying.

2.3 Thick Frontier Analysis

Berger and Humphrey (1991, 1992) introduced Thick Frontier Analysis (TFA),
which is motivated by the observation of heavy-tailed errors in cost studies—
specifically, in the banking sector—but in contrast to the present study assumes that
this reflects a wide spread of efficiencies, rather than outliers in the data. In TFA,
DMUs are sorted into quantiles based on some partial measure, e.g. unit cost, and
separate regressions are run for the top and bottom quantiles. DMUs in the lowest
and highest unit cost quantiles are implicitly judged to be equally efficient, with
their residuals reflecting only error and luck. The difference in predicted unit costs
for different size classes is then decomposed into exogenous market factors, i.e. that
explained by differences in output mix, input prices, etc., and the remainder, which
is regarded as inefficiency.

TFA has a number of disadvantages, such as the implicit assumption of equal
efficiency among DMUs in the same quantile, and the implicit need for rather large
sample sizes so that samples can be sensibly divided in this way. Also problematic
is the arbitrariness of both the partial measure according to which DMUs are placed
into quantiles, and the number of quantiles specified; Wagenvoort and Schure (1999)
provide a solution to the latter problem, using a recursive algorithm by which,
starting with OLS on the full sample of observations, the sample is divided into
successively larger numbers of quantiles until the Lagrange multiplier test proposed
by Breusch and Pagan (1980) fails to reject normality of the error term. However, the
successive increases in the number of quantiles will require larger and larger sample
sizes, and will tend to increase the distortionary effect of outlying observations on
the estimated quantile regression lines, and hence on efficiency predictions.

The impact of outliers on efficiency scores in TFA is somewhat ambiguous.
On one hand, the impact of outliers on efficiency scores will tend to be muted
by the attribution of the residuals from the quantile regressions to noise, and by
construction the DMUs in the top quantile will be judged fully efficient, while
on the other hand the quantile regressions themselves will be more sensitive to
outliers, which could lead to an exaggerated gap between the quartile regression
lines, and hence an exaggerated range of inefficiency scores. This in fact reflects
the different motivations and assumptions behind TFA, since as stated above, the
underlying assumption behind TFA is that heavy tailed errors reflect a wide spread
of inefficiency, i.e. a heavy tailed distribution of inefficiency, rather than a heavy
tailed distribution of noise, making TFA inappropriate for the purpose of the current
study; we therefore do not pursue TFA any further.
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2.4 Non-Gaussian Stochastic Frontier Models

Another possible method of dealing with the impact of outliers in the data on
efficiency scores is to directly alter the distributional assumptions of the basic SF
model such that the noise component of the composed error, rather than being
normally distributed, follows an alternative symmetric distribution with heavier
tails.

One candidate for this is the Student’s t distribution, a heavy-tailed distribution
which approximates normality for finite sample sizes. Tancredi (2002) proposes a
model in which the two-sided error is t distributed and the one-sided error follows
a half t distribution—thus generalising the original normal-half normal of Aigner
et al. (1977) to allow for heavier tails in both components of the composed error—
and shows that as the residual approaches infinity, the conditional distribution of
the one-sided error (conditional on the composed error realisation) is concentrated
around zero in the normal-half normal model, and is completely flat in the t-half
t model; thus in the former case, an observation with a large positive residual is
judged to be close to the frontier with high probability, while in the latter case it
is judged to be basically uninformative, making the model better at handling such
outliers. Applying both models to the Christensen and Greene (1976) dataset on US
electric utilities, the author shows that the t-half t performs better than the normal-
half normal, and that allowing for heavy tails in this way increases the evidence for
inefficiency in the model and overturns the Ritter and Simar (1994) finding that the
basic SF model does not fit the data significantly better than OLS.

Nguyen (2010) introduces three additional non-Gaussian SF models, having two-
sided and one-sided errors that respectively follow Laplace and exponential, Cauchy
and half Cauchy, and Cauchy and truncated Cauchy distributions. These models
are considered in a cross-section context, with application to the Christensen and
Greene (1976) dataset, and Cauchy-half Cauchy balanced and unbalanced panel
data models with time invariant inefficiency are also introduced, with application to
the US banking dataset and to the WHO health sector dataset used in Greene (2004).
The usefulness of some of the aforementioned models is limited by the unjustifiable
assumptions made in order to simplify their derivation: the Laplace-exponential
model assumes the variances of the two error components to be the same, as does
the Cauchy-half Cauchy model for balanced panel data with respect to the variance
of the two-sided error and the (pre-truncation) variance of the one-sided error; the
latter model further assumes only two time periods. Nevertheless, both the cross-
section and unbalanced panel Cauchy-half Cauchy models appear acceptable, and
results from the latter are presented by Gupta and Nguyen (2010).

Horrace and Parmeter (forthcoming) discuss SFA with a Laplace-distributed
two-sided error generally, and introduce a Laplace-truncated Laplace model; this
is shown to reduce to a Laplace-exponential model when the pre-truncation mean
of the one-sided error is less than zero, and to a Least Absolute Deviations (LAD)
regression when the variance of the inefficiency term is zero. It is also shown that
the conditional distribution of inefficiency is constant when the residual is zero,
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so that all observations with positive residuals are given an identical efficiency
score; as with the t-half t, the model therefore treats outlying observations as
less informative. Results from Monte Carlo simulations suggest that the Laplace-
exponential model performs better than the normal-exponential model when the
error is miss-specified, and that it is more likely to produce non-zero estimates of the
variance in inefficiency when OLS residuals display the wrong skew. The Laplace-
truncated Laplace model is applied to estimate a cost frontier using the US airline
data used in Greene (2012).

An analogous Bayesian approach to non-Gaussian SFA exists; Tchumtchoua and
Dey (2007), estimate a t-half t Bayesian SF model, and Griffin and Steel (2007)
briefly discuss how to estimate t-half normal, t-exponential, and t-gamma Bayesian
SFA models using the WinBUGS software package.

To summarize, the non-Gaussian SF models are a potential way of dealing with
the impact of outliers on the spread of efficiency predictions in SFA, given the
different way the models treat outliers; they also have the advantage of being less
arbitrary than simply excluding observations, or than the other methods discussed.
A drawback of the existing models, however, is that in order to arrive at closed
form expressions for their log-likelihoods, they also adopted alternative—i.e. thick
tailed—distributions for u, which limits both the effectiveness of the models
in reducing the impact of outliers on the range of efficiency predictions, and
comparability with conventional SF models; we therefore prefer a model in which
only v is drawn from a thick tailed distribution.

3 The Logistic-Half Normal Stochastic Frontier Model

3.1 Formulation and Estimation

In this paper, our motivation is to amend the conventional stochastic frontier model
to accommodate data with large reporting errors. The work on non-Gaussian SF
models discussed above motivates us to propose a further model which departs from
the previous literature in that it amends the noise error term only and retains all of the
conventional SF assumptions on the inefficiency error and the relationship between
error components and regressors. This allows us to understand the extent to which
alternative assumptions on the noise error term influence the efficiency predictions
all other things equal.

In SFA, we have a composed error " consisting of a symmetric noise component
v and an inefficiency component u which is drawn from some one-sided distribution,
such that

" D v � su (1)
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Where s takes on a value of one for a production frontier and minus one for a
cost frontier. In our case, we assume that v is drawn from a logistic distribution, and
that v is from a half-normal distribution, such that

f .v/ D
exp

�
v
�v

�

�v

h
1C exp

�
v
�v

�i2 (2)

f .u/ D

(
2
�u
�
�

u
�u

�
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0; su � 0
(3)

Where � v and �u are scale parameters. The joint density of " and u is given by
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And the marginal density of " is given by the convolution
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Which is an integral with no closed form. It is therefore not possible to give an
analytic expression for the log-likelihood function, and to proceed with maximum
likelihood estimation. In such a case, maximum simulated likelihood techniques—
see Train (2003) for an introduction to simulation-based methods—allow us to
overcome this obstacle and estimate our model. The method followed here was first
outlined in the context of the normal-gamma SF model by Greene (2003). We begin
by noting that the integral in (5) is simply the expectation of f (v) given that u is
drawn from a half normal distribution

h.u/ D E Œ f .v/j u � 0� ; u � N Œ�; �u� (6)

And thus we can form a simulated probability density function for " by averaging
over Q draws from a half normal distribution. The usual method of taking draws
from a non-uniform distribution is to note that the cumulative density function
of a random variable follows a uniform distribution, and thus by inverting the
cumulative density function we can have the value of the random variable in terms
of a uniformly distributed random variable; this inverse cumulative density function
can therefore be used to transform draws from a uniform distribution into draws
from any given distribution. Thus to generate draw number q from the half normal
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distribution of our inefficiency term u we have

uq D �uˆ
�1

�
1

2
C

Fq

2

�
(7)

Where Fq is draw number q from a uniform distribution. This leads us to the
simulated probability density function for "

Qf ."/ D
1

Q

QX
qD1

exp
�
"Csuq

�v

�

�v

h
1C exp

�
"Csuq

�v

�i2 (8)

And, introducing subscripts for observation i, the simulated log-likelihood func-
tion is

ln SL D �N ln Q � N ln �v C

NX
iD1

ln
QX

qD1

exp
�
"iCsuqi

�v

�

h
1C exp

�
"iCsuqi

�v

�i2 (9)

Which may be maximised like any conventional log-likelihood function, pro-
vided we have our draws from the uniform distribution forming the uqis.

3.2 Efficiency Predictions

The conditional density of u given ", is the ratio of the joint distribution of v and u
and the density of "

f .uj"/ D
f .v/f .u/

f ."/
(10)

Which, in the logistic-half normal case, gives

f .uj"/ D

8̂
<̂
ˆ̂:

exp
�
"Csu
�v

�
=
h
1Cexp

�
"Csu
�v

�i2
2
�u
�
�

u
�u

�
=.�v/

R1
0

exp. "Csu
�v /

�vŒ1Cexp. "Csu
�v /�

2
2
�u
�
�

u
�u

�
du

; su > 0

0; su � 0

(11)

The Jondrow et al. (1982) and Battese and Coelli (1988) point predictors for
efficiency are exp[–E(uj ")] and E[exp(–uj ")], respectively; these are derived by
solving the integrals
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E .uj"/ D

1Z

0

uf .uj"/ du (12)

E Œexp.�u/j "� D

1Z

0

exp.�u/f .uj"/ du (13)

Which, in the logistic-half normal case, gives

E .uj"/ D
1

f ."/

Z 1

0

u exp
�
"Csu
�v

�

�v

h
1C exp

�
"Csu
�v

�i2
2

�u
�

�
u

�u

�
du (14)

E Œexp.�u/j "� D
1

f ."/

Z 1

0

exp.�u/ exp
�
"Csu
�v

�

�v

h
1C exp

�
"Csu
�v

�i2
2

�u
�

�
u

�u

�
du (15)

Both of which, again, contain integrals with no closed form solutions. Simulation

is therefore required to generate these point predictions: we substitute
�

f ."/ for
f ("), and the remaining integrals are the expectation of u and exp(su) respectively
multiplied by the probability density function of v, given that u is drawn from a
half-normal distribution; this leads us to the simulated expectations

QE .uj"/ D
1

Qf ."/

1

R

RX
rD1

ur exp
�
"Csur
�v

�

�v

h
1C exp

�
"Csur
�v

�i2 (16)

QE Œexp.�u/j "� D
1

Qf ."/

1

R

RX
rD1

exp
h
"C.sC�v/ur

�v

i

�v

h
1C exp

�
"Csur
�v

�i2 (17)

Which we use to generate our point predictions of cost efficiency. Note that
draws from the uniform distribution are also therefore needed to generate efficiency
predictions following estimation of the model. In the notation above we distinguish
between draws to approximate f (") using q and the additional draws required to
compute the further integral in (16) and (17) using r. This is to minimise any
simulation bias.
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4 Application to Highways Maintenance Costs in England

In this section, we apply the logistic-half normal SF model to a unique dataset
on highway maintenance costs in England. Responsibility for maintaining roads
in England is divided between Highways England—until 2015 the Highways
Agency—a government-owned company responsible for maintenance of the trunk
road network, and the county councils and unitary authorities which are responsible
for maintenance of the non-trunk roads in their respective areas. In recent years,
local authorities have been under increasing pressure to demonstrate efficient
practice or efficiency improvements in areas such as highway maintenance, e.g. by
undertaking benchmarking exercises with peers. This study uses data from the CQC
Efficiency Network,1 which is used to analyse the cost efficiency of local authorities’
highway maintenance activities.

Previous econometric studies of road maintenance costs have tended to focus of
the question of marginal costs of usage, and what these imply for road pricing, rather
than on the relative cost efficiency of local authorities. Previous studies estimate
cost functions using data on renewals and maintenance costs for motorways and
canton roads in Switzerland (Schreyer et al. 2002), Austrian motorways (Sedlacek
and Herry 2002), national—i.e. trunk—roads in Poland (Bak et al. 2006; Bak and
Borkowski 2009), roads in Sweden (Haraldsson 2006; Jonsson and Haraldsson
2008), and German motorways (Link 2006, 2009) and federal roads (Link 2014).
Much of this work is summarized by Link (2014), who estimates two cost models:
one in which, as the author argues should be the case, the size of the road network
maintained is used as the scale variable, and a second in which passenger car
traffic and goods vehicle traffic are used as scale variables can be derived; the
author apparently does not consider using both network size and traffic as outputs
in a single model. The only study to look at efficiency in the context of highway
maintenance is that of Fallah-Fini et al. (2009), which uses applies DEA to data
for eight counties from the US state of Virginia, using road area and a set of quality
measures as outputs, and maintenance expenditure, traffic and equivalent single axle
loads as inputs, and a set of climate factors as non-discretionary variables.

We use an unbalanced panel consisting of data on the 70 local authorities from
England that were members of the CQC efficiency network during 2014–15 and
supplied cost data for at least one of the 5 years from 2009–10 to that year; this
gives us a total of 327 observations. Cost data were supplied to the network by
each authority individually according to definitions decided by a working group
of network members, relating to operating expenditure and capital expenditure—
both divided into direct and indirect categories—on carriageway maintenance only,
i.e. excluding related activities such as winter service and footway maintenance, on
the basis that they should be understandable and yield consistent submissions; we
use the sum of these, total expenditure, as our dependent variable. Nevertheless,

1See http://www.nhtnetwork.org/cqc-efficiency-network/home/

http://www.nhtnetwork.org/cqc-efficiency-network/home/
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preliminary analysis of the data reveals large differences in unit costs with a large
number of extreme outliers in both direction, which are clearly subject to some kind
of reporting error. As a result, standard SF models, as discussed in Sect. 1, yields
a wide range of efficiency predictions, motivating the development of the model
presented here.

In line with the previous literature, we use road length and traffic as output
variables; road lengths are included as our measure of scale, while traffic—in terms
of passenger kilometres—we divide by road length and include as a density variable.
Detailed breakdowns of overall network length into urban and rural roads and also
by classification, the different classifications being, in order of importance, A roads,
B roads, classified unnumbered roads, and unclassified roads; we refer to the latter
two as C and U roads, respectively. B, C and U roads are always maintained by local
authorities, while A roads can be either trunk, and therefore the responsibility of
Highways England, or non trunk, maintained by local authorities. The road length
data we use include B, C, U and non trunk A roads; motorways, denoted by the
letter M, and trunk A roads, are not included. Likewise, we use traffic data supplied
directly by the Department for Transport (DfT) which relate only to local-authority
maintained roads.

We separate overall network length into urban and rural road lengths, and
further include the lengths relating to each classification as proportions of the
overall network length. We also include road condition indicators for each road
classification—also from DfT sources—and as input prices we include a measure
of median hourly wages in civil engineering for each NUTS1 region from the
Annual Survey of Hours and Earnings (ASHE) published by the Office for National
Statistics (ONS) and a national index of materials prices in road construction from
the Department for Business, Innovation and Skills (BIS). We employ a modified
Cobb-Douglas functional form, in which we include second-order terms relating to
urban and rural road length. The cost frontier we estimate is

ln TOTEX D ˇ0 C ˇ1 ln URL C ˇ2 ln RRL C ˇ3 ln URL2 C ˇ4 ln RRL2

C ˇ5 ln URL ln RRL C ˇ6 ln TRAFFIC C ˇ7RDCA C ˇ8RDCBC C ˇ9RDCU
C ˇ10PROPUA C ˇ11PROPUB C ˇ12PROPUC C ˇ13PROPUU

C ˇ14PROPRA C ˇ15PROPRB C ˇ16PROPRC C ˇ17YEAR C ˇ18 ln WAGE
C ˇ19 ln ROCOSM C "

(18)

Where TOTEX is total expenditure on carriageway maintenance, URL and RRL
are the lengths of an authority’s urban and rural road networks, respectively,
TRAFFIC is a traffic density measure—i.e. traffic count divided by total road
network length—and RDCA, RDCBC and RDCU are the proportions of A roads,
B and C roads, and unclassified roads where maintenance should be considered,
weighted by the shares of their respective road classifications in the total road
network length. PROPUA through to PROPRC are urban A roads, urban B roads, etc.
as proportions of the total network length, with the proportion of rural unclassified
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Table 1 Outputs from the logistic-half normal and normal-half normal models

Logistic-Half Normal Normal-Half Normal
Estimate s.e. Sig Estimate s.e. Sig

ˇ0 16.0631 0.0956 *** 16.0350 0.14502 ***
ˇ1 (ln URL) 0.13443 0.11162 0.12738 0.17112
ˇ2 (ln RRL) 0.90841 0.11836 *** 0.91675 0.17943 ***
ˇ3 (ln URL2) 0.23534 0.04447 *** 0.24091 0.06291 ***
ˇ4 (ln RRL2) 0.08315 0.01057 *** 0.08503 0.01586 ***
ˇ5 (ln URL ln RRL) �0.07189 0.02944 ** �0.08083 0.04421 *
ˇ6 (ln TRAFFIC) 0.37956 0.10259 *** 0.41532 0.15442 ***
ˇ7 (RDCA) 0.44014 0.09675 *** 0.46356 0.14373 ***
ˇ8 (RDCBC) �0.07142 0.02682 *** �0.07057 0.03909 *
ˇ9 (RDCU) �0.00397 0.00324 �0.00519 0.00529
ˇ10 (PROPUA) 8.28742 1.9879 *** 7.80954 3.24067 **
ˇ11 (PROPUB) 1.982 2.27009 0.66161 3.86852
ˇ12 (PROPUC) 0.62504 1.21835 0.44784 2.05441
ˇ13 (PROPUU) 1.10074 0.56802 * 1.09028 0.83493
ˇ14 (PROPRA) 2.57286 1.08575 ** 2.1196 1.57145
ˇ15 (PROPRB) 2.40330 1.10305 ** 2.67772 1.5444 *
ˇ16 (PROPRC) 1.11517 0.67064 * 0.98277 0.98812
ˇ17 (YEAR) 0.04055 0.01105 *** 0.04457 0.01661 ***
ˇ18 (ln WAGE) 0.82267 0.23264 *** 0.89086 0.34002 ***
(1 �ˇ18) (ln ROCOSM)1 0.17733 – – 0.10914 – –
�u 0.54321 0.02541 *** 0.56798 0.01482 –
� v 0.16005 0.00745 *** 0.27642 0.03015 –
Log Likelihood �188.52 �189.14

Statistical significance at the: * 10% level, ** 5% level, *** 1% level
Notes: (1) Parameter is equivalent to 1 �ˇ18 due to the imposition of linear homogeneity in input
prices

roads omitted to avoid perfect multicollinearity. Finally, we include a time trend,
YEAR, and two input prices: WAGE, a measure of regional gross hourly wages
in civil engineering, and ROCOSM, a national index of materials prices for road
construction. All variables are mean-centred, and linear homogeneity in input prices
is imposed by dividing our cost and wage variables by our materials price index,
which drops out of the model.

Table 1 shows the parameter estimates and associated standard errors and
significance levels from the logistic-half normal model, and for comparison, the
normal-half normal model, both estimated in LIMDEP. Following Greene (2003),
we use Halton draws rather than pseudorandom number generator to obtain our
draws from the uniform distribution; we use 1000 draws, and find that further
increases or small reductions in the number of draws do not significantly affect
our results.



14 A.D. Stead et al.

We can see that both models yield similar estimates for each parameter, and
that most of our variables are found to be statistically significant at the 10%,
5%, or 1% levels. To underline the similarities between the two models, we note
that the correlation between the predicted residuals from each model is 0.9994
(rank correlation 0.9993). The log likelihood for the logistic-half normal model is
higher than the corresponding value for the normal-half normal model indicating a
superior fit.

The parameter estimates indicate constant to decreasing returns to scale at the
sample average (the p-value for the null hypothesis of constant returns is 0.2396,
so we fail to reject it), with increasing returns to scale for smaller authorities,
and increasing returns to traffic density. It is also noticeable that the significance
associated with each of the frontier parameters increases using the logistic-half
normal model relative to the normal-half normal model. This is unsurprising, since
the use of a thick-tailed noise distribution increases the robustness of our parameter
estimates to outliers.

Also of interest here are the estimated error variances, and how these differ
between the two models. The variance of u is given in both cases by

VAR.u/ D
� � 2

�
�2u (19)

While the variances of v in the logistic-half normal and normal-half normal
models, respectively, are given by

VAR.v/ D
�2

3
�2v (20)

VAR.v/ D �2v (21)

Table 2 shows VAR(u) and VAR(v) for both the logistic-half normal and normal-
half normal models, along with total error variance, VAR("). We can see that
neither the overall error variance, nor its individual components, differ substantially
between the two models.

In spite of their similar error variances, however, we expect that the logistic-
half normal model will result in a significantly narrower distribution of predicted
efficiency scores, given the very different way that the two models handle outliers,
as discussed in Sect. 3.2. Cost efficiency predictions from both models are generated
using the Jondrow et al. (1982) conditional mean predictor, which is shown in (16)
for the logistic-half normal case.

Table 2 Estimated error
variances

Logistic-Half Normal Normal-half normal

VAR(u) 0.107225 0.117227
VAR(v) 0.084279 0.07641
VAR(") 0.191504 0.193637
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Table 3 Summary of
efficiency scores

Logistic-Half Normal Normal-half normal

Minimum 0.408882 0.225086
Mean 0.708911 0.659549
Median 0.724585 0.682412
Maximum 0.879474 0.918035
Range 0.470592 0.692949

Table 3 shows some summary statistics relating to the resulting efficiency
predictions from both models. The correlation between the two sets of efficiency
predictions is high, at 0.997. However, comparing the ranges of the two sets of
predictions, we can see that, as expected, the logistic-half normal model results in
a far narrower distribution of efficiency predictions. This is due mostly to a very
marked difference in the minimum predicted efficiency score, which is far higher in
the logistic-normal model, from which the mean and the median predictions are also
higher, though the difference is progressively smaller in each case. The maximum
prediction, however, is smaller in the logistic-half normal model than in the normal-
half normal model due to the way the model handles outliers in either direction,
though as discussed in Sect. 2.1, the maximum prediction from both models would
have been one if we had used the conditional mode predictor.

Figure 1 gives a more detailed comparison, showing kernel density estimates for
both sets of efficiency scores. In this, we can see a greater number of observations
with low predicted efficiency scores from the normal-half normal model generally,
and higher efficiency predictions generally more common in the logistic-half normal
model; the latter being in spite of the fact that, due to the model’s handling of
outlying observations, the highest several efficiency scores are somewhat lower than
those from the normal-half normal model. Our model therefore seems to result in
an overall more intuitive distribution of efficiency predictions, with far fewer at the
bottom of the range with only a relatively small impact on predictions at the top.

Figure 2 shows the relationship between efficiency predictions and corresponding
residuals in both models. Given the similarity of the estimated frontier parameters,
the ranges of the residuals across the two models are very similar, as are the
estimated error variances, but the relationship between the residuals and the
efficiency predictions are significantly different; in the normal-half normal model,
the slope of the function diminishes for large positive or negative residuals, but
in the logistic-half normal model, in addition to the slope being gentler overall,
this is much more pronounced, with the function becoming almost flat — i.e. there
being very little change in efficiency predictions — at either end of the range. This
suggests that, in line with our discussion of the way that the model treats outlying
observations, efficiency predictions do not approach zero or one for extreme values
of the residuals.
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5 Summary and Conclusions

This paper considers the issue of outliers and their impact on efficiency analyses.
After reviewing how these issues have been handled in the existing literature,
we have motivated and formulated a stochastic frontier (SF) model with a thick-
tailed noise component. In contrast to previous models, in which both the noise
and inefficiency terms have been drawn from a thick-tailed distribution, we use
maximum simulated likelihood to estimate a model which combines a thick-tailed
noise distribution—i.e. a logistic distribution—with a half normal inefficiency
distribution. This model is easy to estimate and has been programmed into a bespoke
version of LIMDEP. We show that the model handles outliers in both directions in
a way that can produce a much narrower—and in the presence of outliers, more
intuitive—range of efficiency predictions than standard SF models.

We apply our model to a unique dataset on highways maintenance costs in
England, and compare the results to those from the normal-half normal SF model.
The estimated frontier parameters and variances are found to be very similar to
those from the normal-half normal model, but the former with greater significance
due to the increased robustness of the model to outlying observations and we find,
as expected, that the model results in a narrower range of efficiency predictions. The
model is therefore effective in reducing the extent to which outlying observations
are treated as having extreme efficiency values.

Further development could consider alternative distributions for u, such as
truncated normal, exponential, or gamma, which would be easy to implement
using our estimation approach. The issue of testing between our model and the
standard SF model could also be explored. The authors are currently developing
an alternative model in which v follows a Student’s t distribution, which has the
normal distribution as a limiting case, meaning that the model nests the standard SF
model. A further advantage of the Student’s t is that the thickness of the tails can
be varied with its degrees of freedom parameter, making the model more general; a
Student’s t distribution with seven degrees of freedom is also a good approximation
of the logistic distribution used in this study.

Acknowledgements The authors acknowledge funding from the CQC Efficiency Network (see
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Alternative User Costs, Productivity
and Inequality in US Business Sectors

W. Erwin Diewert and Kevin J. Fox

Abstract Using the new Bureau of Economic Analysis (BEA) Integrated Macroe-
conomic Accounts as well as other BEA data, we construct productivity accounts
for two key sectors of the US economy: the Corporate Nonfinancial Sector (Sector
1) and the Noncorporate Nonfinancial Sector (Sector 2). Calculating user costs
of capital based on, alternatively, ex post and predicted asset price inflation rates,
we provide alternative estimates for capital services and Total Factor Productivity
growth for the two sectors. Rates of return on assets employed are also reported
for both sectors. In addition, we compare rates of return on assets employed and
TFP growth rates when the land and inventory components are withdrawn from the
asset base. Finally, implications for labour and capital shares from using alternative
income concepts are explored.
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1 Introduction

The US Bureau of Economic Analysis (BEA), in conjunction with the Bureau
of Labor Statistics (BLS) and the Board of Governors of the Federal Reserve,
have developed a new set of production accounts, the Integrated Macroeconomic
Accounts, for two major private sectors of the US economy: the Corporate Non-
financial Sector (which we will call Sector 1) and the Noncorporate Nonfinancial
Sector (which we will call Sector 2). For both sectors we work out the rate of return
on assets employed back to 1960 and compute estimates of Total Factor Productivity
(TFP) growth. In addition to comparing results across the sectors, we are particularly
interested in determining whether rates of return and TFP growth have declined in
recent years compared to the long run trends.

Another contribution is to document what can happen to user costs when ex
post asset inflation rates are used in the user cost formula. Dale Jorgenson and his
coworkers have advocated the use of ex post inflation rates in a user cost formula and
so we call the resulting user costs “Jorgensonian”. We show that for many assets,
Jorgensonian user costs can be quite volatile and even negative at times which means
that they cannot be used in many contexts. We advocate the use of predicted asset
inflation rates in the user cost formula and we suggest a very simple moving average
method for forming these predicted asset inflation rates, which we implement and
compare with their Jorgensonian counterparts. We use Jorgensonian and predicted
user costs to construct alternative measures of capital services and TFP growth for
our two sectors of the US economy and, somewhat surprisingly, we find that there
was little difference in the resulting trend measures of TFP growth, even though
there are very large differences in the two sets of user costs.

An additional contribution is the examination of what happens to ex post rates
of return on assets employed and on TFP growth as we withdraw assets from the
asset base. This research has relevance for existing estimates of rates of return and
TFP growth since many productivity studies exclude land and inventories from their
asset base. We find that excluding these assets leads to exaggerated estimated rates
of return on the remaining assets (as could be expected) but the effects on estimates
of TFP growth are more variable. For our Sector 1, we found that excluding land and
inventories had little effect on measured TFP growth but in Sector 2, the exclusion
of land dramatically lowered measured TFP growth.

Finally, we use our data set to provide evidence on the debate regarding growing
inequality due to a falling labour share in income. We find that moving from value
added shares to (Hayekian) income shares provides stronger evidence of falling
labour shares, indicative of growing inequality, for both our sectors.

Our accounting framework is laid out in the following section and the empirical
results for the above measurement exercises follow in the subsequent sections.1

1The Appendix in Diewert and Fox (2016) explains in detail how we used the Integrated
Macroeconomic Accounts to construct our data set for the two sectors of the US economy.


