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CHAPTER 1

Introduction

Enterprise applications are defined by their need to collect, process, transform, and
report on vast amounts of information. And, of course, that information has to be kept
somewhere. Storing and retrieving data is a multibillion dollar business, evidenced in part
by the growth of the database market as well as the emergence of cloud-based storage
services. Despite all the available technologies for data management, application designers
still spend much of their time trying to efficiently move their data to and from storage.

Despite the success the Java platform has had in working with database systems, for
a long time it suffered from the same problem that has plagued other object-oriented
programming languages. Moving data back and forth between a database system and the
object model of a Java application was a lot harder than it needed to be. Java developers
either wrote lots of code to convert row and column data into objects, or found themselves
tied to proprietary frameworks that tried to hide the database from them. Fortunately,
a standard solution, the Java Persistence API (JPA), was introduced into the platform to
bridge the gap between object-oriented domain models and relational database systems.

This book introduces version 2.2 of the Java Persistence API as part of the Java EE 8
and explores everything that it has to offer developers.

Maintenance release of JPA 2.2 started during 2017 under JSR 338 and was finally
approved on June 19, 2017.

Here is the official Java Persistence 2.2 Maintenance release statement:

“The Java Persistence 2.2 specification enhances the Java Persistence API with
support for repeating annotations; injection into attribute converters; support
for mapping of the java.time.LocalDate, java.time.LocalTime, java.time.
LocalDateTime, java.time.OffsetTime, and java.time.OffsetDateTime types; and
methods to retrieve the results of Query and TypedQuery as streams.”

!Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-1-4842-3420-4_1) contains supplementary material, which is
available to authorized users.

© Mike Keith, Merrick Schincariol, Massimo Nardone 2018
M. Keith et al., Pro JPA 2 in Java EE 8, https://doi.org/10.1007/978-1-4842-3420-4_1
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One of its strengths is that it can be slotted into whichever layer, tier, or framework
an application needs it to be in. Whether you are building client-server applications to
collect form data in a Swing application or building a website using the latest application
framework, JPA can help you provide persistence more effectively.

To set the stage for JPA, this chapter first takes a step back to show where we’ve been
and what problems we are trying to solve. From there, we will look at the history of the
specification and give you a high-level view of what it has to offer.

Relational Databases

Many ways of persisting data have come and gone over the years, and no concept has more
staying power than the relational database. Even in the age of the cloud, when “Big Data”
and “NoSQL’ regularly steal the headlines, relational database services are in consistent
demand to enable today's enterprise applications running in the cloud. While key-value
and document-oriented NoSQL stores have their place, relational stores remain the most
popular general-purpose databases in existence, and they are where the vast majority of the
world’s corporate data is stored. They are the starting point for every enterprise application
and often have a lifespan that continues long after the application has faded away.
Understanding relational data is key to successful enterprise development.
Developing applications to work well with database systems is a commonly acknowledged
hurdle of software development. A good deal of Java’s success can be attributed to its
widespread adoption for building enterprise database systems. From consumer websites
to automated gateways, Java applications are at the heart of enterprise application
development. Figure 1-1 shows an example of a relational database of user to car.

Relational DB Example:

User to Car

b Jcartype |
o one __iomen:

Massimo Nardonem ————— :
1 Fiat 500
2  Antti Jalonen —_—
R Toyota
3 Mari Fali s T
A0 aliero T2 FiatPunto
3 Renault

Figure 1-1. User to car relational database
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Object-Relational Mapping

“The domain model has a class. The database has a table. They look pretty similar. It
should be simple to convert one to the other automatically.” This is a thought we've
probably all had at one point or another while writing yet another Data Access Object
(DAO) to convert Java Database Connectivity (JDBC) result sets into something object-
oriented. The domain model looks similar enough to the relational model of the
database that it seems to cry out for a way to make the two models talk to each other.

The technique of bridging the gap between the object model and the relational
model is known as object-relational mapping, often referred to as O-R mapping or
simply ORM. The term comes from the idea that we are in some way mapping the
concepts from one model onto another, with the goal of introducing a mediator to
manage the automatic transformation of one to the other.

Before going into the specifics of object-relational mapping, let’s define a brief
manifesto of what the ideal solution should be.

o Objects, not tables: Applications should be written in terms of
the domain model, not bound to the relational model. It must be
possible to operate on and query against the domain model without
having to express it in the relational language of tables, columns, and
foreign keys.

o Convenience, not ignorance: Mapping tools should be used only
by someone familiar with relational technology. O-R mapping
is not meant to save developers from understanding mapping
problems or to hide them altogether. It is meant for those who have
an understanding of the issues and know what they need, but who
don’t want to have to write thousands of lines of code to deal with a
problem that has already been solved.

o Unobtrusive, not transparent: It is unreasonable to expect that
persistence be transparent because an application always needs to
have control of the objects that it is persisting and be aware of the
entity lifecycle. The persistence solution should not intrude on the
domain model, however, and domain classes must not be required to

extend classes or implement interfaces in order to be persistable.
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o Legacy data, new objects: It is far more likely that an application will
target an existing relational database schema than create a new one.
Support for legacy schemas is one of the most relevant use cases
that will arise, and it is quite possible that such databases will outlive
every one of us.

e Enough, but not too much: Enterprise developers have problems to
solve, and they need features sufficient to solve those problems. What
they don'’t like is being forced to eat a heavyweight persistence model
that introduces large overhead because it is solving problems that
many do not even agree are problems.

e Local, but mobile: A persistent representation of data does not
need to be modeled as a full-fledged remote object. Distribution
is something that exists as part of the application, not part of the
persistence layer. The entities that contain the persistent state,
however, must be able to travel to whichever layer needs them so that
if an application is distributed, then the entities will support and not
inhibit a particular architecture.

o Standard API, with pluggable implementations: Large companies
with sizable applications don’t want to risk being coupled to product-
specific libraries and interfaces. By depending only on defined
standard interfaces, the application is decoupled from proprietary APIs
and can switch implementations if another becomes more suitable.

This would appear to be a somewhat demanding set of requirements, but it is
one born of both practical experience and necessity. Enterprise applications have
very specific persistence needs, and this shopping list of items is a fairly specific
representation of the experience of the enterprise community.

The Impedance Mismatch

Advocates of object-relational mapping often describe the difference between the object
model and the relational model as the impedance mismatch between the two. This is

an apt description because the challenge of mapping one to the other lies not in the
similarities between the two, but in the concepts in each for which there is no logical
equivalent in the other.

4
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In the following sections, we present some basic object-oriented domain models
and a variety of relational models to persist the same set of data. As you will see, the
challenge in object-relational mapping is not so much the complexity of a single
mapping but that there are so many possible mappings. The goal is not to explain how to
get from one point to the other, but to understand the roads that may have to be taken to
arrive at an intended destination.

Class Representation

Let’s begin this discussion with a simple class. Figure 1-2 shows an Employee class with
four attributes: employee ID, employee name, start date, and current salary.

Employee
id: int
name: String

startDate: Date
salary: long

Figure 1-2. The Employee class

Now consider the relational model shown in Figure 1-3. The ideal representation
of this class in the database corresponds to scenario (A). Each field in the class maps
directly to a column in the table. The employee ID becomes the primary key. With the
exception of some slight naming differences, this is a straightforward mapping.

(R) (B) (€
EMP EMP EMP
PK | ID PK | ID PK | ID
NAME NAME NAME
START_DATE START_DAY START_DATE
SALARY START_MONTH
START_YEAR
SALARY
EMP_SAL
PKFK1 | ID
SALARY

Figure 1-3. Three scenarios for storing employee data
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In scenario (B), we see that the start date of the employee is actually stored as
three separate columns, one each for the day, month, and year. Recall that the class
used a Date object to represent this value. Because database schemas are much harder
to change, should the class be forced to adopt the same storage strategy in order to
remain consistent with the relational model? Also consider the inverse of the problem,
in which the class had used three fields, and the table used a single date column. Even
a single field becomes complex to map when the database and object model differ in
representation.

Salary information is considered commercially sensitive, so it may be unwise to
place the salary value directly in the EMP table, which may be used for a number of
purposes. In scenario (C), the EMP table has been split so that the salary information is
stored in a separate EMP_SAL table. This allows the database administrator to restrict
SELECT access on salary information to those users who genuinely require it. With such
a mapping, even a single store operation for the Employee class now requires inserts or
updates to two different tables.

Clearly, even storing the data from a single class in a database can be a challenging
exercise. We concern ourselves with these scenarios because real database schemas
in production systems were never designed with object models in mind. The rule of
thumb in enterprise applications is that the needs of the database trump the wants of
the application. In fact, there are usually many applications, some object-oriented and
some based on Structured Query Language (SQL), that retrieve from and store data
into a single database. The dependency of multiple applications on the same database
means that changing the database would affect every one of the applications, clearly
an undesirable and potentially expensive option. It’s up to the object model to adapt
and find ways to work with the database schema without letting the physical design
overpower the logical application model.

Relationships

Objects rarely exist in isolation. Just like relationships in a database, domain classes
depend on and associate themselves with other domain classes. Consider the Employee
class introduced in Figure 1-2. There are many domain concepts that could be associated
with an employee, but for now let’s introduce the Address domain class, for which an
Employee may have at most one instance. We say in this case that Employee has a one-
to-one relationship with Address, represented in the Unified Modeling Language (UML)
model by the 0. . 1 notation. Figure 1-4 demonstrates this relationship.

6
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Employee Address
id: int street: String
name: String »{ city: String
startDate: Date 0..1 | state: String
salary: long zip: String

Figure 1-4. The Employee and Address relationship

INTRODUCTION

We discussed different scenarios for representing the Employee state in the previous
section, and likewise there are several approaches to representing a relationship in a
database schema. Figure 1-5 demonstrates three different scenarios for a one-to-one

relationship between an employee and an address.

(R)
EMP ADDRESS
PK | 1D PK | ID
NAME HO--------- OH STREET
START_DATE ciTy
SALARY STATE
FK1 | ADDRESS_ID zp
(B)
ADDRESS
EMP PK | 1D
Al STREET
NAME FO--=------ OH ciry
START_DATE STATE
SALARY zp
FK1 | EMP_ID
©
ADDRESS
EMP EMP_ADDRESS
PK | ID PRID
= PK,FK1 | ADDRESS ID
NAVE H——OH pkek2 | EmP D HO—H (S:;I'TRYEET
START_DATE STATE
SALARY 2P

Figure 1-5. Three scenarios for relating employee and address data
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The building block for relationships in the database is the foreign key. Each scenario
involves foreign key relationships between the various tables, but in order for there to
be a foreign key relationship, the target table must have a primary key. And so before we
even get to associate employees and addresses with each other we have a problem. The
domain class Address does not have an identifier, yet the table that it would be stored in
must have one if it is to be part of relationships. We could construct a primary key out of all
of the columns in the ADDRESS table, but this is considered bad practice. Therefore, the ID
column is introduced, and the object relational mapping will have to adapt in some way.

Scenario (A) of Figure 1-5 shows the ideal mapping of this relationship. The EMP table
has a foreign key to the ADDRESS table stored in the ADDRESS ID column. If the Employee
class holds onto an instance of the Address class, the primary key value for the address
can be set during store operations when an EMPLOYEE row gets written.

And yet consider scenario (B), which is only slightly different yet suddenly much
more complex. In the domain model, an Address instance did not hold onto the
Employee instance that owned it, and yet the employee primary key must be stored in
the ADDRESS table. The object-relational mapping must either account for this mismatch
between domain class and table or a reference back to the employee will have to be
added for every address.

To make matters worse, scenario (C) introduces a join table to relate the EMP and
ADDRESS tables. Instead of storing the foreign keys directly in one of the domain tables,
the join table holds onto the pair of keys. Every database operation involving the two
tables must now traverse the join table and keep it consistent. We could introduce an
EmployeeAddress association class into the domain model to compensate, but that
defeats the logical representation we are trying to achieve.

Relationships present a challenge in any object-relational mapping solution. This
introduction covered only one-to-one relationships, and yet we have been faced with the
need for primary keys not in the object model and the possibility of having to introduce
extra relationships into the model or even associate classes to compensate for the
database schema.
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Inheritance

A defining element of an object-oriented domain model is the opportunity to introduce
generalized relationships between like classes. Inheritance is the natural way to express
these relationships and allows for polymorphism in the application. Let’s revisit the
Employee class shown in Figure 1-2 and imagine a company that needs to distinguish
between full-time and part-time employees. Part-time employees work for an hourly
rate, while full-time employees are assigned a salary. This is a good opportunity for
inheritance, moving wage information to the PartTimeEmployee and FullTimeEmployee
subclasses. Figure 1-6 shows this arrangement.

Employee
id: int
name: String
startDate: Date

T

PartTimeEmployee FullTimeEmployee

hourlyRate: float salary: long

Figure 1-6. Inheritance relationships between full-time and part-time
employees

Inheritance presents a genuine problem for object-relational mapping. We are no
longer dealing with a situation in which there is a natural mapping from a class to a
table. Consider the relational models shown in Figure 1-7. Once again, three different
strategies for persisting the same set of data are demonstrated.
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(A)

FULL_TIME_EMP PART_TIME_EMP

PK | ID PK | ID

NAME NAME

START_DATE START_DATE

SALARY RATE
(B)
EMP

PK | ID
NAME
START_DATE
SALARY
RATE
TYPE
©)
EMP
FULL_TIME_EMP Pk | D PART_TIME_EMP
PK,FK1 | ID HO——H ;‘ME HH——OH PK,FK1 | ID
SALARY START_DATE RATE

TYPE

Figure 1-7. Inheritance strategies in a relational model

Arguably the easiest solution for someone mapping an inheritance structure to a
database would be to put all of the data necessary for each class (including parent classes)
into separate tables. This strategy is demonstrated by scenario (A) in Figure 1-7. Note that
there is no relationship between the tables (i.e., each table is independent of the others).
This means that queries against these tables are now much more complicated if the user
needs to operate on both full-time and part-time employees in a single step.

An efficient but denormalized alternative is to place all the data required for every
class in the model in a single table. That makes it very easy to query, but note the
structure of the table shown in scenario (B) of Figure 1-7. There is a new column, TYPE,
which does not exist in any part of the domain model. The TYPE column indicates
whether the employee is part-time or full-time. This information must now be
interpreted by an object-relational mapping solution to know what kind of domain class
to instantiate for any given row in the table.
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