Pro JPA 2 In
Java EE 8

An In-Depth Guide to Java Persistence APIs
Third Edition

Mike Keith
Merrick Schincariol
Massimo Nardone

Apress’

Pro JPA 2 in Java EE 8

An In-Depth Guide to Java
Persistence APIs

Third Edition

Mike Keith
Merrick Schincariol
Massimo Nardone

Apress’

Pro JPA 2 in Java EE 8: An In-Depth Guide to Java Persistence APIs

Mike Keith Merrick Schincariol
Ottawa, Ontario, Canada Almonte, Ontario, Canada

Massimo Nardone
Helsinki, Finland

ISBN-13 (pbk): 978-1-4842- 3419-8 ISBN-13 (electronic): 978-1-4842- 3420-4
https://doi.org/10.1007/978-1-4842-3420-4

Library of Congress Control Number: 2018932342

Copyright © 2018 by Mike Keith, Merrick Schincariol, Massimo Nardone

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Mario Faliero
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484234198. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3420-4

To my wife Darleen, the perfect mother, and to Cierra, Ariana,
Jeremy, and Emma, who brighten my life and make me
strive to be a better person.

—Mike

To Anthony, whose boundless creativity continues to inspire me.

To Evan, whose boisterous enthusiasm motivates me to take on

new challenges. To Kate, who proves that size is no object when
you have the right attitude. I love you all.

—Merrick

Twould like to dedicate this book to the memory of my beloved
late mother Maria Augusta Ciniglio. Thanks mom for all the
great things you taught me, for making me a good person, for
making me study to become a computing scientist, and for the
great memories you left me. You will be loved and missed forever.
I love you mom. RIP.

—Massimo

Table of Contents

About the AUtROrS......cccusemmssnnmmssnnmssssnmssssnssssnnssssansessansesssnsesssnnesssnnesssnnssssnnssssnnssss xvii
About the Technical REVIEWETcccuseesrsssnsssssnsssssnsssssnsssssnssssssnsssssnssssnnsssssnssssnnssssas Xix
AckNOWIEdgmMENTSccuuiiiismnnmmmsssnnnmmsssssnnsesssssnnsessssnnssesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns XXi
Chapter 1: Introduction..........ccccmiiissmmnmmnsssssnmmsssssnmmmssssmsssssssnmssssnsessssssessssnnnnenns 1
Relational Databases.........cccccveerreresensesessssessssese s sse s sss e sse e ssesr s sss s sassns e snannnens 2
Object-Relational Mapping.......cccccoceererereneresesessesse e e ssessessesssssssssssssssssssssssssssssssssnes 3
The Impedance MISMALCH ..o sa e e e e a e e e e e e e sa e e e saesaennens 4
Java Support for PErsiStENCEccocvcercrcerser s 11
Proprietary SOIULIONS ..ot nenr s 1

DB c.u.cveeevueeesuses st ssasesss s ssses s s e s bR R s R R RSB AR R SRR R R 13
ENtErpriSe JAVABRANScovurueecririeesererie et e et e e nn e p s 13

JAVA DAL ODJECTS......cvveccireeccir e p s 15

Why Another STandard?............ccocvvrvnieninrrsrsererser s sassa s snesaenens 16
The Java PersiSteNCe APlccocrcereercersirsersere s sn s s sn s n s sn s sn s nnennsnnns 17
History of the SPecifiCation ... e 17
OVBIVIBW....eueetecereses et ae e se e s a e e e b e e ae e s s e e e e A e e R e e e Re A e Re e A e Re e R e e e Re e e RenEeReea e e e RenenRenenannenanes 21
BT TSRS 24
Chapter 2: Getting Started..........cccuccmmnemmmsssnmmmssnmmssssnmssssmsssssmssssmsssnsssasssssssssnns 25
ENtitY OVEIVIBW ..ottt e s 25
=Y €553 2]) R 26

10121 1) 26

L LT (o (0 0= P 27

6T 1011) OO 27

TABLE OF CONTENTS

Entity Metadatac.ccocvvrcrcrrrrr e 28
LT 72110 TP 28
XIVIL. .. tetceess et R ARt 30
Configuration DY EXCEPLION........ccceceerueeeererteeses st ne s 30

Creating an Entity ... 31

oL o T S 34
Obtaining an Entity MANAGETcccceerieiicreiresire s se e n e s s se s r e n e se s e s nnnnens 36
Persisting an ENTity........ccovceeiiiesircsie e e r s r e n e e e nn s 37
FINAING @N ENTIEY...c.coveciccecc e r e p s n e n e e nn s nn s 38
RemMOVING @N ENTiLY.....cccccoieeccccccesr e n et p e n e e nn s 39
Updating @n ENtitYcccoeeeecece e e e 40
TrANSACTIONS ... 41
00T 42

Putting It Al TOGELNETceeeerererer et n s 44

(a2 T = Vo 1 T 1 AL oSS 47
PErsiStenCe UNit.........vvcicrimniniisiiiss s 47
PersiStenCe ArChIVE ... —————— 48

SUMMEAIY ...ttt s a e s e e s R e e e R e e Re e s Re e e e nne e naeas 49

Chapter 3: Enterprise Applications......c.ccceurensssmnnmmsssssssssssssnsssssssssssssssssnsssssssssnssenss 51

Application Component MOdEIS...........cceeeeeeerereie e snesne e 54

SESSION BEANS.....ccureiririsiiiisi s s 56
Stateless SESSION BEANS ... —————— 57
Stateful SESSION BEANS.........ccuiiiiriiis 61
SiNGIEton SESSION BEANSccccevereereeereerirerererarerss s sesessesessesas e saesessesessesassesassesaesessesessesassesssnessensnaen 65

SEIVIEES ..ot —————————— 67

Dependency Management and CDI ... 69
DEPENABNCY LOOKUPcuvveeeririeecresie e esss e se s sa s s s e se e e e se s e e s se s s nensannnes 70
Dependency INJECHON ..o n s 72
Declaring DEPENUENCIES.covueeeererreerereree s s s s se s s e s e e sesse e nense e e e nrenn s 74

TABLE OF CONTENTS

CDI and Contextual INJECTIONcceeeeeeerece e sn e n e 78
I 78
INjEction and RESOIULIONcovveeeereecr et 79
SCOPES ANU CONTEXLScueeeeeeeririereesiressee s e e e s se e se e s e e ne e s se e e e s se e e e nsenn s 80
LT 11T I 1T o PR 81
Producer Methods and Fields............coornnnncnncncnesneeesee s 82
Using Producer Methods With JPA RESOUICES........ccceurveueeerererreerirenseesesesseeseses s seses s sesessssssesessssenes 83

Transaction Management..........cccucvvrrerinnensin s sn s sa e sa s saesnesnns 85
TranSaACHION REVIBWccvuiiriinriiniisssniissss s 85
Enterprise TranSaCtions iN JAVA..........cccvecerrerererererereressessesessesessesessessssessesesssssssessssessssessesesssnssassansens 86

Putting It All TOGELNETceceeeeererer e 95
Defining the COMPONENT ... e 96
Defining the USer INTErface.........ccoveeererric st e s 97
PACKAGING T UD..crieeieerer et r e s e e n e n e e ne e s nnnnnan s 98

1111 4P SRS 99

Chapter 4: Object-Relational Mapping.......ccccuuseemnmsssssnnsmsssssnnsssssssnnsssssssnnsssssssnnnss 101

Persistence ANNOLAtioNS..........cu v ——— 102

Accessing Entity State...........ccoovvieciinnnncrr s 103
FIBIA ACCESS.....cuiiiiiiisiisiiss s 104
PrOPEITY ACCESS ... c.eiveeieeriresie e s s e e r e b e b e s e Re e e R e e R e e R e e e Re e e aenn e e R e e ns 105
MIXEA ACCESS...ucuerisisiiisisisisise e 106

Mapping 10 @ TADIEcoceecerererer e sn e n e nn 108

Mapping SIMPIE TYPES ...cocvrverrerrirererser sttt se s se e se e sn s sn s sn e sn e sassa e sn e saenens 110
COIUMN MAPPINGS .. eeveereererereeereerersererseressersssersssersssessssessessssessssessesessessssessssessssessesessenssssssssessssersenees 111
IR 4T 211 (] 1111 o O 113
I T 1= T 00T 114
ENUMEIALEU TYPES ..vveceereciererere et r e sa e b a e a e b e b e e e b e e e b e e e e e nn e nnennens 115
TEMPOTAL TYPES ..eveeeteiterie e see e s a e s e e s e e b e e e e e e e e e e e b e e e e e e e b e b e b e e e e e e e b e e e e e e e s e nsnnnan 118
TranSient StAte........ccvii i —————————— 119

vii

TABLE OF CONTENTS

Mapping the Primary KeY........cccvcrcrrririersirsesses s ses s e e e ses s e s s s ssssnssssnenns 120
Overriding the Primary KeY COIUMNcccoumiceereee e 120
PriMAry KEY TYPESveeieirerir ettt s a e e e bt ne e p e 121
Identifier GENEration..........c.ovvrnnnn i —————————— 121

RelationSNiPS......ccccveririrririr s n e nen 129
RelationShip CONCEPLSc.cociereieecirireecri e 129
MaPPINGS OVEIVIBW ...ttt et b e e se s bbb e R e e ne e e e e 132
Single-Valued ASSOCIALIONSccieirerirecrerire e 133
Collection-Valued ASSOCIAtIONS........c.cvereresesisismsisissssssssssse s 140
Lazy RelationSNiPS.......ccceureeriierreneressse e ss s s s n e r e sn e nn s nns e nnasens 148

Embedded ODJECES ... ————— 149

1T RSN 154

Chapter 5: Collection Mappingcccccsrusssnnmmssssssnnssssssnsnssssssnsnssssssnnssssssnnnssssssnnnnss 157

Relationships and Element COIIECLIONScccuceererenrnserensesesesse e snse s 157

Using Different ColleCtion TYPES......cceverererrrrreererseseesee s ssssaessssssssssassassasssssssssssssssnns 161
SELS OF COIIECLIONS.evreiissr s 162
] 162
1= 1 3 167
DUPICALES ...ttt e s r e e R e e AR R e e R e n e 185
NUITVEIUES ... 187

BESt PractiCescocovrvenrnenrcnrcscs s 188

SUMIMANY ...t cee e e s s s e sn s r s n s s e r e sn e s s e s er s nnesnennesnesnennennennennennenrnnnannnnnan 189

Chapter 6: Entity Manager.......ccccuseemmmmssssnsnmmsssssssmsssssssssssssssnsssssssnsssssssssnssssssnnnnss 191

Persistence CONEXIS........cccrierriirinsi e 191

ENtity MANAGEISccoeiiceeriresiresrs e 192
Container-Managed Entity MANAGEISccoeoeeerirreeneririneseseses e sesseenens 192
Application-Managed Entity Man@gErS..........ccovurueerererreesesessnsssesessssssesesessssesessssssssesessssssssssssssssssssens 198

Transaction Management..........cccovvvrvrrnrnsn s e sa e 201
JTA Transaction Man@gemENnt............ccoeeeeeereceeersssesnessessessessssessessesssssssessessessesssssssssssssessessssssssssssnes 202
Resource-LoCal TraNSACTIONS. ... 218
Transaction Rollback and Entity STateccccovreienrncics s 221

viil

TABLE OF CONTENTS

Choosing an Entity MAnAgerccceeererenesenesss e see e e ssssssssssssssssssssssssssssssssssssnsnns 224
Entity Manager Operations.........c.ccucvvvverrersersensensesses s s s sessessessessessessssssssssssssssssssnnns 225
Persisting an ENTitY.......cccoveereeiereires et see s se e sa s e sae e s e sae e s e s e s e e e sesae e saesae e naenees 225

LT T0 0T T T 227
REMOVING AN ENTILY....ceoeeeeeeecc ettt se e se s e s e e a e e sae e s e e e e ae e ae e sae e e e e e es 228
CasCading OPEratiONS.......cccvecereerereerererereres e rse e ree s raesesseres e s s e e saesessesesaesasaesas e saesesaesesaesanaesanserannenes 229
Clearing the PersiStence CONTEXLccovceveerererere st ree e ree e se e sse e s sae e saesesae e aesasaesassesaenenes 234
Synchronization with the Database............ccccvieeninrrrccrn s 234
Detachment and MEerging........c.ccucverrrrersessessesses s ses s e se s e ses e s e s e e s snssnssssnnnns 238
DEtaChMENT ... —————————————— 238
Merging Detached ENTILIEScccceerrrueiererireiescririee e 241
Working with Detached ENtities.........ccevrevererniernsire s se e 246
1111 1P 7SS 267
Chapter 7: USing QUEKIeS ...ccuvcerrrssssnnnsssssssnsssssssssnsssssssnnssssssssnssssssnnnssssssnnsssssssnnnsss 209
Java Persistence QUery LangUagecooecceererernrneressssessesessessssessesessessssessessssesssnsnsens 270
GEHING STAMEM ... ————————————— 270
FIltering RESUILS......ccveeeeeeeceeie e s e s e n e n e e s nn e en e p s 271
ProjeCting RESUILS.........cccoierireiecresi e n e p e e s sn e sn e r s 272
Joins Between ENtItIES ... 272
AQUregate QUETIESccoeeeeeerererreerre e se s s s e e se s s b e s e e s e e e e R e e e R e e Re e e ae e e e e re e e ne e nnis 273
QUETY PArameLersS.......ccceeeierircriecrse s a e s et r e se s e b e e a e e p e e ne e e nn e r e e 273
Defining QUEKIES.......cccvcererir et se s sr s sn e sr s sn e n e sn e n e nn e nnnnen 274
Dynamic QUErY DEfiNItiON........c.cecceeereeercrireese e 275
Named QUEry DEfiNItiON........cccoueeeeeerreerr e 278
Dynamic Named QUEIESoueueeererrrreeririrseese s ses e s se s se s s e sassannnnens 280
Parameter TYPES......coceiiereerier s s e s n e s ne s 282
EXECULING QUEKIEScoveerieircricsire s se s s nn s en s 285
Working With QUEry RESUIScccouicererertresnr s as e sn s sn s n e 287
Stream QUETY RESUIES.......cciiiriicrcrer et et 288

01 TeT T o Vo 3o SRS 293

ix

TABLE OF CONTENTS

Queries and Uncommitted CRANGESceceveererrerereerererereresersssessesessesessessssessssessesessesssssssssessssesssnenes 296
0= T T 1T T 299
Bulk Update and Delete..........ccocveereerirseriersircirses s se s sn s s s s snnnns 300
Using Bulk Update and DEIBLE ..o 301
Bulk Delete and RelationShiPS........coeeeieriiineninenene e saesse s s s sae s ssesaesaesaessesassaesassassanses 304
(0TTTCT T 5] PR 305
QUETY BESE PraCliCeScouvvrurueuecereriririris e se s se s se e as e 307
LT 0T 307
REPOI QUETIES.....veeeeeereertrereeereesereesessesesseras e s as e ssesesassassesassesaesesae e sae e saesesaesaesesaesesaeenaeansesansensenenes 308
VENAOr HINTS ..o s 308
SHALEIESS BRANS.....ccictiicr i ——————— 309
Bulk Update and DEIELeccceverereierinere e sa s sa e s ss e sa e st s r e a e nn e e nn s 309
Provider DIfferENCESovvrrnissisiniisiisii s ——————— 310

BT 111 12 SRS 310
Chapter 8: Query Languagecomummmmmimmsmmsmsmssmssms s sssss s 313
INtrodUCING JP QL. sae e sa e sn s sa e sn e sn e sa e sn e sa e na e nn e nn e nnenn 313
TEIMUNOIOQY . vveueereeeeeresree e se e se e se e e ss e e s e e e s e e e e s s e Re e s s Re e e A e R e e e s e r e e e e s s e e e e e ans 314
Example Data MOGEL..........occoeeeeeceeere e r s 315
EXamPIe APPHCALIONc.coveeeeeereeicciriee e s s sn s e s ne e nanssnnnens 316
SEIECE QUENIES ...t 319
3] = 0 T 321
L0 T 325
WHERE ClAUSEcovriiissssnisissssss s 336
Inheritance and POlYMOIPRISM........coiiiiicirere e e s 344
SCAlAr EXPIrESSIONS ...uveverveereerereereresasessesessesessessssesassessesessesssssssssessssessesessesssssssssessssesssessensssensssessnsens 347
ORDER BY ClAUSE ...cveucursiisssssssisss s s s s s s 353
AQOregate QUEKIES.......ccceeeeerrerrersersessessessessessessesssssessessesssssessessesssssessesssssessssssssssssssnnes 354
AQQregate FUNCLIONS. ..ot 356
GROUP BY ClAUSEoovuerissisissesssssssssssssssesssssssssss s s bbb s 357
L U 358
UPAAte QUEKIES....ccueeeereereereerreree e rsessessessessessessessessessesaessssaesassaesaesassaesaenaesaesassnssnensnnnnns 359

TABLE OF CONTENTS

DElete QUEKIES.....cccruieerrieirersee s s 360
E3 1111 P2 7SS 361
Chapter 9: Criteria APl..........cccccnnnmmeemsnnnnsssssss s 303
OVEIVIBW 1.ttt 363
LT T Yo 364
Parameterized TYPEScovverrecrecrcsire e r e e p s p e e e nn e r s 365
DYNAMIC QUETIES ...eeveereecirerie ettt b e e e e b e R e e a e e ae e e e e e e r e e 366
Building Criteria APl QUEKIESccvverierierierieriessessessessesssnsens 370
Creating @ QUEry Definition.........cccovureerrrrsere s sa s e sasae e 370
BASIC STMUCTUIE ... 372
Criteria Objects and MUaDlitycoocceerreieserreese e 373
Query Roots and Path EXPreSSIONS.........covuruererererreeseseresseesessseesesessssssesessssssssssssssssssssssssssssssssssssens 374
THE SELECT ClAUSE.......ceeeeeriiseisesisisese s 377
THE FROM CIAUSEcoceereeiesiesisisisisesese s 382
THE WHERE CIAUSEc.ceeeiiriisisisesisesese s nsnees 384
BUIIAING EXPrESSIONScuveveecerieeeesesisseesesesssese s s e ses s e e s s s sesse s e s ssssssssssssssssssssssssnsssssansasnens 385
THE ORDER BY CIAUSE........cocrurerueererersesesessssesssessssssessssssssssesesssesssssssans 401
The GROUP BY @nd HAVING ClAUSESceurueuerererreereressesesesessssssesessssssssesssssssssssssssssssssssssssssssssssssssens 402
Bulk Update and Delete..........cccvverrcerrveeriemrrersessseesssesssessssesssessssesssesssesssnessnssssssssnssans 403
Strongly Typed Query Definitionsccccveeririennienrrrerr e 405
The Metamodel APLL..........ovrininiiiiii s 405
Strongly TYPed API QVEIVIBWc.ccueerrerrecrresese e e se e e sse e e s sse s e sse e sesnssesss e sss e ssssssnssessessnsens 407
The Canonical Metamodelcvureinririnensrnirs s 409
Choosing the Right TYpe Of QUETY........cceeierierecre e sn e sn s 412
1111 112 SRS 413
Chapter 10: Advanced Object-Relational Mappingcccccuseemnmsssssnnnssssssnnssssssnnnnss 415
Table and Column NaMES.........cuocernmnirmm s 416
Converting Entity State.........cccovirerniernsecrr s 418
Creating @ CONVEITET........cccceecrrecrres e a e r e e p e bR e n e e ne e nn e e r e e 418
Declarative Attribute CONVEISION ..o ———— 420

xi

TABLE OF CONTENTS

AUTOMALIC CONVEISION.....cvuiriiiisesisrisiss bbb 423
Converters and QUETTES ... 424
Complex Embedded ODJECTS.........cceeeeereresererrecre s e see e sssssesreseesnesnssnesnssnssnesnesnanans 425
Advanced Embedded Mappingscccccrermernienienene s ssssesssses s ssssessssessssessenesnes 425
Overriding Embedded RelationShips..........ccoverenrinnsnncsners s ses s sss s 427
Compound PrMAry KEYS........ceuererriieressessessssssssssssessssessessssssssssssssssssssssssssssssssssssssens 429
I 430
EMDEAUEU ID CIASS......cceeeeeeeeseeeseseseseesese e 432
DL AT o I L0 (=T) () 434
Basic Rules for Derived Identifiers ... 435
Shared PrIMArY KBYcoecerererererererersesessesessesessesassessesessessssessssessssessssessessssessssessssessssesssnsssensssesassens 436
Multiple Mapped ARFDULEScoeoeiere e 439
USiNg EMDEAAEUIU.........coueeeeece e a e e b e a e e r e a e n e n e e nn e 440
Advanced Mapping EIEments........cccocevrirnirnnin e 443
Read-0nly MapPINgScccoceerurererererseeresesssesesessss e e s s e e s s sss e sesssse e st s sse s e s sas e e sassanssnns 444
001 1T0] 1 = 1TSS 445
Advanced RelationShipsccccoeeerererere e ses e sss s ssesss s s s ssssassasnns 446
USING JOIN TADIES ...t p s p e nnpe e e 446
AVOIdING JOIN TADIES ...cuvveveecrererseesesesseesesssse e sesss e sesss e e e sss s sssssss e e ssss e e ssssesssessssesessssssessnssnsans 447
Compound JOIN COIUMNScoouiveererrrreesesesrsese e sssss e s e e e s sss s e e ssss e snssssssesesssssssnssssssssnsens 449
Orphan REMOVALccceveeeeeererinreesesssssesesessss e sesss s e e s s e e s s e e s sss s e sssssssssssssssassssssssssssssssensnsnsns 451
Mapping Relationship STate.........cccovieierrnnicnr e 453
MUIEIPIE TADIES ..o s s n e s 456
INNEIIEANCE ...t ————— 461
Class HIBrarChies.........cococuiiicinisinissi bbb bbb bbb 461
INNEMTANCE MOGEIS ... ——————————— 466
MiXed INNEMTANCEcviiiiirrii e —————————————— 477
1111 1= 2SSOSR 480

xii

TABLE OF CONTENTS

Chapter 11: Advanced QUEIIeS ...cuurueerrrssssnnsrsssssnnsssssssnssssssssnnsssssssnnssssssnnnssssssnnnnss 483
SOL QUETIS....ucuererererernesseeesesesssss s se e s et se s 483
Native QUErIES VS. JDBC ..o 484
Defining and Executing SQL QUETIEScvcevurerreierrreressesir s srs s se s s se s e sas e sss s 487
SQL ReSult Set MAPPINGcovieiirirerirereerre e se s s s be e se e e s b e e re e ne e aenanaens 491
Parameter BiNAING..........occoeeeriieceriseecresise e ne e 500
STOrEd PrOCEUUIES ..ottt s 500
ENitY GraphS......ccocvicirrccr s 505
Entity Graph ANNOTALIONScocveieeerrieecri e 507
ENLitY Graph APl ...t sa s a s b e e s s e s s e nanne e e e 516
Managing ENtity GrapRScoeeeerrieenerissese s sssss s e e sssssssssssssssssssssssssssssssssnsens 519
USING ENTIY GFAPNS ..cuevececceerrcices et ss s e s s s e s nansassnnens 522

E3 U111 7S 525
Chapter 12: Other Advanced TOPICS.....cuussesrrsssssnsssssssnnssssssssnnsssssssnnssssssnnnssssssnnnnss 527
LifeCyCle CallDACKS.......cceeueererrerrerrersessessessessessessesssssesnessesssssesssssesssssssssssssssssssssssssssnsans 527
LIfECYCIE EVENES......ceeeeeee e e e e n e p e 528
Callback MEthods ...t 529
ENEIY LISTBNEIS ...ttt neen s 531
Inheritance and LifeCyCle EVENTS..........coc i 536

LY 10 L0 542
USING CONSTFAINTSceereeeecscririeses s e s r s ne s s e s s e nnnpe e nens 543
INVOKING ValiAALION.......coveveeeceerieiccirree e s e e ne e nanse s nneas 545
ValidALION GIOUPS......cceeerrereesersssesesesssssesesesseesesssss e e e ss e e e sssss e e s ssss e e ssss e snsansesesensssesensnsssessnssnsns 546
Creating NEew CONSTIIAINTS.......coveicrerrrreesiressese s se s e e se s s e e ssssssnssnsssassnnnens 548
ValIdAON N JPA.......eeeeee e 551
EN@bling Validationcccoceeeereeieninrseeseressese e sse s se s sessssssssssssssssssssssssssnnens 552
Setting Lifecycle Validation GrOUPScccceceerrererensnrssesessssesssesssssessssssssesessssssssssssssssssssssssssssssssssaes 553

xiii

TABLE OF CONTENTS

CONCUITEINCYveeeeereerseseessessessessessessessessessessessessessessesasssesaessssssssesssssesassnessessssnssnsensans 555
ENtity OPEIAtiONScoeeereeeecrerirtcc e s e p s e e 555
ENTIY ACCESS ...ueeereeeeeerieseeses e a st s e e b e e s e se e e s e ae e se s ne e e e e sannn e 555

Refreshing Entity State.........cccvovvririninirsrn e 555

0T 4 T SRS 559
OPtiMISTIC LOCKINGccvieeererreersecssesssse e s e s se s e s e sess s s sss e s e sn s s e s s s e nssnssssnsnessanenns 560
PeSSIMISTIC LOCKINGcceieierircrrcicrresir e sn e r e s n e a e e nn e n e p e 574

(072 T 1] T [OOSR 580
Sorting TArOUG the LAYEKScccoveueeerericecsirise e 580
SHAEA CACKE ... 582

ULITITY ClASSES...ccueruereerrereereersersersessersesaessessessessesssssessesasssesassassasssessssassassassassassssssssssnsnns 589
PerSiSteNCEULIL.......ccvririirrrrins i —————————— 589
PersistenCeUNItULIL ... ————— 590

SUMMAIY ...ttt a e b e ae e e e a e e e e n e e ae e e e ne e nnens 591

Chapter 13: XML Mapping Fil€S.....ccccurrsssnnmrsssssnsssssssnssssssssnsssssssssnssssssssnssssssnnnnss 593

The Metadata PUZZIE ... 595

The MapPINg File.....c.cvcririrsrerr sttt sn s s 596
LT 1o 410 AT T o) L0 598
Persistence Unit DEfaUILS ... 601
T o 0T T 0= TR 606
QuEries and GENEIALOIS ... 609
Managed Classes and MapPiNgS.......cccoererrererrerrerereerersererersssersssersesessesessessssessssessesessessssssessessssersenees 617
00Ty 652

SUMMAIY ...ttt a e b e ae e e e a e e e e n e e ae e e e ne e nnens 654

Chapter 14: Packaging and Deployment.........c..ccccusmmmnsmmmssnsmsssssmssssssssssssssssnssnas 655

Configuring PersiStence UNItS.........ccccoeeeeerenenecese e sss s sssses s e snssnssss s snsssnnnns 656
Persistence UNit NAME ... 656
TraANSACHION TYPEveecerteecririe e e e s s d b e bR e e e s e e n e npans 657
PErSiSIENCE PrOVIAETcceccicccceeee e 658
DA SOUICE ... 659

Xiv

TABLE OF CONTENTS

1 1o o1 T o TS SSSSS 662
MANAGEU CIASSES ...ccveeeeererereeereesersesersesessessssersssessssesssssssessssessesessessssessssessssessssesseessenssssssssessssessenees 663
Shared Cache MO ... 667
Validation MOUEcovvirinininsiisii i —————— 668

D (o T T o (0] 0 TCT LSS 668
Building and Deployingccccuereerrersmssessesssssessesses s sessessessessessssssssssssssnssssssssssssssssnsans 669
Deployment Classpath.........c.ccornnner e e e 669
PaCKAGING OPLIONS......cocieieiicririciecri et b e e e b e e ne e 670
Persistence UNit SCOPE.......cvicrricrci et p s e e e p s 676
OULSIE the SEIVET......cccceeeerrrerrrer e n s n s 677
Configuring the PersiStence UNL..........cccovriienennrsiesesriseseseses s se s ssssssssssssssssnnens 678
Specifying Properties at RUNTIMEocecceiieicrre e sssees 680
SYSLEM ClASSPALN ...t r e e enr e ne s 681
Schema GEeNerationcocvvrrnnnin e ——— 682
The GENEration PrOCESS.......uiirririsisssssisisssss s 683
DeployMENT PrOPEITIESccvevveceerere s sr e s sa e s a e s b e e s p e b b e e b b a e a et e n e nn e s 684
RUNTIME PrOPEITIES ... et a e s b e e a e b e e e a e nn e s e e s 689
Mapping Annotations Used by Schema Generation...........c.cccvevererererereresseressessesessesessesessesessessesenes 689
UNIQUE CONSTIAINTScuveeereeereeereereseeseseseseres e sassessesessesessesassesss e ssesessesessssassesassessssesssssssesassessssessenenes 690
NUIT CONSTFAINTSeveiscsescsre i 691
INUBXES o ———————————————————— 692
Foreign Key CONSIFAINES.......cccccverererere e res e ses s e ses e ses e ssesessesessesassesassesaesesassessssassesassesssnenes 692
StriNG-Based COIUMNS......cceeereerererererteertesessesesseressessesessesessesessessssesassessesessessssessssesssnessensssensssesansens 694
Floating POiNt COIUMINS.......ccoeereereerere e resessesersesesaesessesassess e e saesessesesassassesassesassesassssssassesassessenenes 695
DefiNing the COIUMNcoueere et a e s a e e a e e sa e e s ae e e s e e e s ae e s ae e naenaenenaenees 696

BT 111 12 SRS 697
Chapter 15: TeSHNG...cuuueemmmmmsnnmmmmssssnnmmmsssssnnmsssssnsnmssssnnnnssssssnnnssssssnnssssssnnnnsssssnnnnss 699
Testing Enterprise Applications..........cccvvvvrrnsensnsinsir e 699
QLT 11T 4 0] (0] RSSO 700
Testing QULSIAR The SEIVET ... 702
JUNE et e a e e AR e AR e A Re e AR e e R e e e e R nnn s 703

TABLE OF CONTENTS

UNIE TESHING....ccueeeeeererere e r e sae s a e sn e s n e r e sn e sn e sn e snesnennsnnennennnnens 704
TESHNG ENLIES .ottt 704
Testing Entities in COMPONENTSccoeeeriieeririreesesere s 706
The Entity Manager in UNIt TESESceceriecrerireescsisie s 709

Integration TESHING.......ccceririrerrr e sa e sa e sa s sa e sn e na e 713
Using the Entity MANAGETcoecereeeerererererrerterereesereesesseses e ssesessesessesessesassessssessssessssesassassesassesssnenes 714
Components and PErSiSIENCE........cccccerererererere et rre s sa e s s ae e ae e ae e s e s a e e es 722
TESt FIAMEWOIKS ... s 736

BESt PractiCesSc.cvieirriiirrii s 738

1111 11 SRS 739

INA@X.ciieiiessiesssansssnssssn s s rsn s s ran s n s 741

About the Authors

Mike Keith was the co-specification lead for JPA 1.0 and a
member of the JPA 2.0 and JPA 2.1 expert groups. He sits on
a number of other Java Community Process expert groups
and the Enterprise Expert Group (EEG) in the OSGi Alliance.
He holds a Master’s degree in Computer Science from
Carleton University, and has over 20 years experience in
persistence and distributed systems research and practice.
He has written papers and articles on JPA and spoken at
numerous conferences around the world. He is employed as
an architect at Oracle in Ottawa, Canada, and is married with
four kids and two dogs.

Merrick Schincariol is a consulting engineer at Oracle,
specializing in middleware technologies. He has a Bachelor
of Science degree in Computer Science from Lakehead
University, and has more than a decade of experience

in enterprise software development. He spent some

time consulting in the pre-Java enterprise and business
intelligence fields before moving on to write Java and J2EE
applications. His experience with large-scale systems and
data warehouse design gave him a mature and practiced

perspective on enterprise software, which later propelled
him into doing Java EE container implementation work.

xvii

ABOUT THE AUTHORS

Massimo Nardone has more than 24 years of experience
in Security, Web/mobile development, cloud, and IT
architecture. His true IT passions are security and Android.
He has been programming and teaching others how to
program with Android, Perl, PHP, Java, VB, Python, C/C++,
and MySQL for more than 20 years.
He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy. He has worked
as a Project Manager, Software Engineer, Research Engineer,

Chief Security Architect, Information Security Manager,
PCI/SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA Architect for
many years.

His technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol,
Perl, Web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.

He worked as a visiting lecturer and supervisor at the Networking Laboratory of the
Helsinki University of Technology (Aalto University). He also holds four international
patents (in the PKI, SIP, SAML, and Proxy areas).

He currently works as Chief Information Security Office (CISO) for Cargotec Oyj and
is a member of the ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and is the
coauthor of Pro Android Games (Apress, 2015).

xviii

About the Technical Reviewer

Mario Faliero is a telecommunications engineer and
entrepreneur. He has more than ten years of experience with
radio frequency hardware engineering. Mario has extensive
experience in numerical coding, using scripting languages
(MATLAB and Python) and compiled languages (C/C++

and Java). He has been responsible for the development of
electromagnetic assessment tools for space and commercial

applications. Mario received his Master’s degree from the
University of Siena.

Acknowledgments

Many thanks go to my wonderful family—my wife Pia, and my children Luna, Leo, and
Neve—for supporting me when working on this book. You are the most beautiful aspect
of my life.

I want to thank my beloved late mother Maria Augusta Ciniglio who always
supported and loved me so much. I will love and miss you forever, my dearest mom.

I also need to thank my beloved father Giuseppe and my brothers Mario and Roberto
for your endless love and for being the best dad and brothers in the world.

This book is also dedicated to Doctor Antonio Catapano, for being such a great
person with a big heart and taking care of me and my mother. To my sister in law
Susanna Cennamo, to my dear cousins Rosaria Scudieri, Pina and Elisa Franzese, and
Francesco Ciniglio, for loving and supporting me and my mother like no other. To Pertti
and Marianna Kantola, for teaching me how to be a good programmer, taking care of
me, and treating me like their son. To Antti, Piia, and Daniela Jalonen for being great
and supportive friends, as well as to Anton Jalonen, who will become a great software
engineer. Anton, may this book be an inspiration to your great IT future.

I also want to thank Steve Anglin and Matthew Moodie for giving me the opportunity
to write this book. A special thanks goes, as usual, to Mark Powers for doing such a great
job and supporting me during the editorial process.

Finally I want to thank Mario Faliero, a good friend and the technical reviewer of this
book, for helping me make a better book.

xxi

CHAPTER 1

Introduction

Enterprise applications are defined by their need to collect, process, transform, and
report on vast amounts of information. And, of course, that information has to be kept
somewhere. Storing and retrieving data is a multibillion dollar business, evidenced in part
by the growth of the database market as well as the emergence of cloud-based storage
services. Despite all the available technologies for data management, application designers
still spend much of their time trying to efficiently move their data to and from storage.

Despite the success the Java platform has had in working with database systems, for
a long time it suffered from the same problem that has plagued other object-oriented
programming languages. Moving data back and forth between a database system and the
object model of a Java application was a lot harder than it needed to be. Java developers
either wrote lots of code to convert row and column data into objects, or found themselves
tied to proprietary frameworks that tried to hide the database from them. Fortunately,
a standard solution, the Java Persistence API (JPA), was introduced into the platform to
bridge the gap between object-oriented domain models and relational database systems.

This book introduces version 2.2 of the Java Persistence API as part of the Java EE 8
and explores everything that it has to offer developers.

Maintenance release of JPA 2.2 started during 2017 under JSR 338 and was finally
approved on June 19, 2017.

Here is the official Java Persistence 2.2 Maintenance release statement:

“The Java Persistence 2.2 specification enhances the Java Persistence API with
support for repeating annotations; injection into attribute converters; support
for mapping of the java.time.LocalDate, java.time.LocalTime, java.time.
LocalDateTime, java.time.OffsetTime, and java.time.OffsetDateTime types; and
methods to retrieve the results of Query and TypedQuery as streams.”

!Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-1-4842-3420-4_1) contains supplementary material, which is
available to authorized users.

© Mike Keith, Merrick Schincariol, Massimo Nardone 2018
M. Keith et al., Pro JPA 2 in Java EE 8, https://doi.org/10.1007/978-1-4842-3420-4_1

CHAPTER 1 INTRODUCTION

One of its strengths is that it can be slotted into whichever layer, tier, or framework
an application needs it to be in. Whether you are building client-server applications to
collect form data in a Swing application or building a website using the latest application
framework, JPA can help you provide persistence more effectively.

To set the stage for JPA, this chapter first takes a step back to show where we’ve been
and what problems we are trying to solve. From there, we will look at the history of the
specification and give you a high-level view of what it has to offer.

Relational Databases

Many ways of persisting data have come and gone over the years, and no concept has more
staying power than the relational database. Even in the age of the cloud, when “Big Data”
and “NoSQL’ regularly steal the headlines, relational database services are in consistent
demand to enable today's enterprise applications running in the cloud. While key-value
and document-oriented NoSQL stores have their place, relational stores remain the most
popular general-purpose databases in existence, and they are where the vast majority of the
world’s corporate data is stored. They are the starting point for every enterprise application
and often have a lifespan that continues long after the application has faded away.
Understanding relational data is key to successful enterprise development.
Developing applications to work well with database systems is a commonly acknowledged
hurdle of software development. A good deal of Java’s success can be attributed to its
widespread adoption for building enterprise database systems. From consumer websites
to automated gateways, Java applications are at the heart of enterprise application
development. Figure 1-1 shows an example of a relational database of user to car.

Relational DB Example:

User to Car

b Jcartype |
o one __iomen:

Massimo Nardonem ————— :
1 Fiat 500
2 Antti Jalonen —_—
R Toyota
3 Mari Fali s T
A0 aliero T2 FiatPunto
3 Renault

Figure 1-1. User to car relational database

2

CHAPTER 1 INTRODUCTION

Object-Relational Mapping

“The domain model has a class. The database has a table. They look pretty similar. It
should be simple to convert one to the other automatically.” This is a thought we've
probably all had at one point or another while writing yet another Data Access Object
(DAO) to convert Java Database Connectivity (JDBC) result sets into something object-
oriented. The domain model looks similar enough to the relational model of the
database that it seems to cry out for a way to make the two models talk to each other.

The technique of bridging the gap between the object model and the relational
model is known as object-relational mapping, often referred to as O-R mapping or
simply ORM. The term comes from the idea that we are in some way mapping the
concepts from one model onto another, with the goal of introducing a mediator to
manage the automatic transformation of one to the other.

Before going into the specifics of object-relational mapping, let’s define a brief
manifesto of what the ideal solution should be.

o Objects, not tables: Applications should be written in terms of
the domain model, not bound to the relational model. It must be
possible to operate on and query against the domain model without
having to express it in the relational language of tables, columns, and
foreign keys.

o Convenience, not ignorance: Mapping tools should be used only
by someone familiar with relational technology. O-R mapping
is not meant to save developers from understanding mapping
problems or to hide them altogether. It is meant for those who have
an understanding of the issues and know what they need, but who
don’t want to have to write thousands of lines of code to deal with a
problem that has already been solved.

o Unobtrusive, not transparent: It is unreasonable to expect that
persistence be transparent because an application always needs to
have control of the objects that it is persisting and be aware of the
entity lifecycle. The persistence solution should not intrude on the
domain model, however, and domain classes must not be required to

extend classes or implement interfaces in order to be persistable.

CHAPTER 1 INTRODUCTION

o Legacy data, new objects: It is far more likely that an application will
target an existing relational database schema than create a new one.
Support for legacy schemas is one of the most relevant use cases
that will arise, and it is quite possible that such databases will outlive
every one of us.

e Enough, but not too much: Enterprise developers have problems to
solve, and they need features sufficient to solve those problems. What
they don'’t like is being forced to eat a heavyweight persistence model
that introduces large overhead because it is solving problems that
many do not even agree are problems.

e Local, but mobile: A persistent representation of data does not
need to be modeled as a full-fledged remote object. Distribution
is something that exists as part of the application, not part of the
persistence layer. The entities that contain the persistent state,
however, must be able to travel to whichever layer needs them so that
if an application is distributed, then the entities will support and not
inhibit a particular architecture.

o Standard API, with pluggable implementations: Large companies
with sizable applications don’t want to risk being coupled to product-
specific libraries and interfaces. By depending only on defined
standard interfaces, the application is decoupled from proprietary APIs
and can switch implementations if another becomes more suitable.

This would appear to be a somewhat demanding set of requirements, but it is
one born of both practical experience and necessity. Enterprise applications have
very specific persistence needs, and this shopping list of items is a fairly specific
representation of the experience of the enterprise community.

The Impedance Mismatch

Advocates of object-relational mapping often describe the difference between the object
model and the relational model as the impedance mismatch between the two. This is

an apt description because the challenge of mapping one to the other lies not in the
similarities between the two, but in the concepts in each for which there is no logical
equivalent in the other.

4

CHAPTER 1 INTRODUCTION

In the following sections, we present some basic object-oriented domain models
and a variety of relational models to persist the same set of data. As you will see, the
challenge in object-relational mapping is not so much the complexity of a single
mapping but that there are so many possible mappings. The goal is not to explain how to
get from one point to the other, but to understand the roads that may have to be taken to
arrive at an intended destination.

Class Representation

Let’s begin this discussion with a simple class. Figure 1-2 shows an Employee class with
four attributes: employee ID, employee name, start date, and current salary.

Employee
id: int
name: String

startDate: Date
salary: long

Figure 1-2. The Employee class

Now consider the relational model shown in Figure 1-3. The ideal representation
of this class in the database corresponds to scenario (A). Each field in the class maps
directly to a column in the table. The employee ID becomes the primary key. With the
exception of some slight naming differences, this is a straightforward mapping.

(R) (B) (€
EMP EMP EMP
PK | ID PK | ID PK | ID
NAME NAME NAME
START_DATE START_DAY START_DATE
SALARY START_MONTH
START_YEAR
SALARY
EMP_SAL
PKFK1 | ID
SALARY

Figure 1-3. Three scenarios for storing employee data

CHAPTER 1 INTRODUCTION

In scenario (B), we see that the start date of the employee is actually stored as
three separate columns, one each for the day, month, and year. Recall that the class
used a Date object to represent this value. Because database schemas are much harder
to change, should the class be forced to adopt the same storage strategy in order to
remain consistent with the relational model? Also consider the inverse of the problem,
in which the class had used three fields, and the table used a single date column. Even
a single field becomes complex to map when the database and object model differ in
representation.

Salary information is considered commercially sensitive, so it may be unwise to
place the salary value directly in the EMP table, which may be used for a number of
purposes. In scenario (C), the EMP table has been split so that the salary information is
stored in a separate EMP_SAL table. This allows the database administrator to restrict
SELECT access on salary information to those users who genuinely require it. With such
a mapping, even a single store operation for the Employee class now requires inserts or
updates to two different tables.

Clearly, even storing the data from a single class in a database can be a challenging
exercise. We concern ourselves with these scenarios because real database schemas
in production systems were never designed with object models in mind. The rule of
thumb in enterprise applications is that the needs of the database trump the wants of
the application. In fact, there are usually many applications, some object-oriented and
some based on Structured Query Language (SQL), that retrieve from and store data
into a single database. The dependency of multiple applications on the same database
means that changing the database would affect every one of the applications, clearly
an undesirable and potentially expensive option. It’s up to the object model to adapt
and find ways to work with the database schema without letting the physical design
overpower the logical application model.

Relationships

Objects rarely exist in isolation. Just like relationships in a database, domain classes
depend on and associate themselves with other domain classes. Consider the Employee
class introduced in Figure 1-2. There are many domain concepts that could be associated
with an employee, but for now let’s introduce the Address domain class, for which an
Employee may have at most one instance. We say in this case that Employee has a one-
to-one relationship with Address, represented in the Unified Modeling Language (UML)
model by the 0. . 1 notation. Figure 1-4 demonstrates this relationship.

6

CHAPTER 1

Employee Address
id: int street: String
name: String »{ city: String
startDate: Date 0..1 | state: String
salary: long zip: String

Figure 1-4. The Employee and Address relationship

INTRODUCTION

We discussed different scenarios for representing the Employee state in the previous
section, and likewise there are several approaches to representing a relationship in a
database schema. Figure 1-5 demonstrates three different scenarios for a one-to-one

relationship between an employee and an address.

(R)
EMP ADDRESS
PK | 1D PK | ID
NAME HO--------- OH STREET
START_DATE ciTy
SALARY STATE
FK1 | ADDRESS_ID zp
(B)
ADDRESS
EMP PK | 1D
Al STREET
NAME FO--=------ OH ciry
START_DATE STATE
SALARY zp
FK1 | EMP_ID
©
ADDRESS
EMP EMP_ADDRESS
PK | ID PRID
= PK,FK1 | ADDRESS ID
NAVE H——OH pkek2 | EmP D HO—H (S:;I'TRYEET
START_DATE STATE
SALARY 2P

Figure 1-5. Three scenarios for relating employee and address data

CHAPTER 1 INTRODUCTION

The building block for relationships in the database is the foreign key. Each scenario
involves foreign key relationships between the various tables, but in order for there to
be a foreign key relationship, the target table must have a primary key. And so before we
even get to associate employees and addresses with each other we have a problem. The
domain class Address does not have an identifier, yet the table that it would be stored in
must have one if it is to be part of relationships. We could construct a primary key out of all
of the columns in the ADDRESS table, but this is considered bad practice. Therefore, the ID
column is introduced, and the object relational mapping will have to adapt in some way.

Scenario (A) of Figure 1-5 shows the ideal mapping of this relationship. The EMP table
has a foreign key to the ADDRESS table stored in the ADDRESS ID column. If the Employee
class holds onto an instance of the Address class, the primary key value for the address
can be set during store operations when an EMPLOYEE row gets written.

And yet consider scenario (B), which is only slightly different yet suddenly much
more complex. In the domain model, an Address instance did not hold onto the
Employee instance that owned it, and yet the employee primary key must be stored in
the ADDRESS table. The object-relational mapping must either account for this mismatch
between domain class and table or a reference back to the employee will have to be
added for every address.

To make matters worse, scenario (C) introduces a join table to relate the EMP and
ADDRESS tables. Instead of storing the foreign keys directly in one of the domain tables,
the join table holds onto the pair of keys. Every database operation involving the two
tables must now traverse the join table and keep it consistent. We could introduce an
EmployeeAddress association class into the domain model to compensate, but that
defeats the logical representation we are trying to achieve.

Relationships present a challenge in any object-relational mapping solution. This
introduction covered only one-to-one relationships, and yet we have been faced with the
need for primary keys not in the object model and the possibility of having to introduce
extra relationships into the model or even associate classes to compensate for the
database schema.

CHAPTER 1 INTRODUCTION

Inheritance

A defining element of an object-oriented domain model is the opportunity to introduce
generalized relationships between like classes. Inheritance is the natural way to express
these relationships and allows for polymorphism in the application. Let’s revisit the
Employee class shown in Figure 1-2 and imagine a company that needs to distinguish
between full-time and part-time employees. Part-time employees work for an hourly
rate, while full-time employees are assigned a salary. This is a good opportunity for
inheritance, moving wage information to the PartTimeEmployee and FullTimeEmployee
subclasses. Figure 1-6 shows this arrangement.

Employee
id: int
name: String
startDate: Date

T

PartTimeEmployee FullTimeEmployee

hourlyRate: float salary: long

Figure 1-6. Inheritance relationships between full-time and part-time
employees

Inheritance presents a genuine problem for object-relational mapping. We are no
longer dealing with a situation in which there is a natural mapping from a class to a
table. Consider the relational models shown in Figure 1-7. Once again, three different
strategies for persisting the same set of data are demonstrated.

CHAPTER 1 INTRODUCTION

(A)

FULL_TIME_EMP PART_TIME_EMP

PK | ID PK | ID

NAME NAME

START_DATE START_DATE

SALARY RATE
(B)
EMP

PK | ID
NAME
START_DATE
SALARY
RATE
TYPE
©)
EMP
FULL_TIME_EMP Pk | D PART_TIME_EMP
PK,FK1 | ID HO——H ;‘ME HH——OH PK,FK1 | ID
SALARY START_DATE RATE

TYPE

Figure 1-7. Inheritance strategies in a relational model

Arguably the easiest solution for someone mapping an inheritance structure to a
database would be to put all of the data necessary for each class (including parent classes)
into separate tables. This strategy is demonstrated by scenario (A) in Figure 1-7. Note that
there is no relationship between the tables (i.e., each table is independent of the others).
This means that queries against these tables are now much more complicated if the user
needs to operate on both full-time and part-time employees in a single step.

An efficient but denormalized alternative is to place all the data required for every
class in the model in a single table. That makes it very easy to query, but note the
structure of the table shown in scenario (B) of Figure 1-7. There is a new column, TYPE,
which does not exist in any part of the domain model. The TYPE column indicates
whether the employee is part-time or full-time. This information must now be
interpreted by an object-relational mapping solution to know what kind of domain class
to instantiate for any given row in the table.

10

