Naveen Prakash
Deepika Prakash

Data
Warehouse
Requirements
Engineering

A Decision Based Approach

2 Springer

Data Warehouse Requirements Engineering

Naveen Prakash - Deepika Prakash

Data Warehouse
Requirements Engineering

A Decision Based Approach

@ Springer

Naveen Prakash Deepika Prakash

ICLC Ltd. Central University of Rajasthan
New Delhi Kishangarh

India India

ISBN 978-981-10-7018-1 ISBN 978-981-10-7019-8 (eBook)

https://doi.org/10.1007/978-981-10-7019-8
Library of Congress Control Number: 2017961755

© Springer Nature Singapore Pte Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. part

of Springer Nature.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

To
Our Family

Preface

That requirements engineering is part of the systems development life cycle and is
about the first activity to be carried out when building systems is today considered
as basic knowledge in computer science/information technology. Requirements
engineering produces requirements specifications that are carried through to system
design and implementation. It is assumed that systems automate specific activities
that are carried out in the real world. These activities are transactions, for example
reservations, cancellations, buying, selling, and the like. Thus requirements engi-
neering produces requirements specifications of transactional systems.

So long as systems were not very complex, the preparation of a requirements
specification was feasible and did not compromise on system delivery times.
However, as systems became more and more complex, iterative and incremental
development came to the fore. Producing a requirements specification is now
frowned upon and we need to produce, in the language of Scrum, user stories for
small parts of the system.

About the time requirements engineering was developing, data warehousing also
became important. Data warehouse development faced the same challenges as
transactional systems do, namely determination of the requirements to be met and
the role of requirements engineering in the era of agile development. However, both
these issues have been taken up relatively recently.

Due to this recent interest in the area, requirements engineering for data ware-
housing is relatively unknown. We fear that there is widespread paucity of
understanding of the nature of data warehouse requirements engineering, how it
differs from traditional transaction-oriented requirements engineering and what are
the new issues that it raises.

Perhaps, the role of agility in data warehouse development is even more crucial
than in transactional systems development. This is because of the inherent com-
plexity of data warehouse systems, long lead times to delivery, and the huge costs
involved in their development. Indeed, the notion of data marts and the bus
approach to data warehouse development is an early response to these challenges.

This book is our attempt at providing exposure to the problem of data warehouse
requirements engineering. We hope that the book shall contribute to a wider

vii

viii Preface

awareness of the difference between requirements engineering for transactional and
data warehouse systems, and of the challenges that data warehousing presents to the
requirements engineering community.

The position adopted in this book is that even in the face of agile development,
requirements engineering continues to be relevant. Requirements engineering today
is not to produce requirements specifications of entire systems. Rather, it is done to
support incremental and iterative development. In other words, rather than restrict
incremental and iterative development to downstream tasks of design and imple-
mentation, we must extend it to the requirements engineering task as well. We
argue that the entire data warehouse systems development life cycle should become
agile.

Thus, we make requirements and requirements engineering as the fulcrum for
data warehouse agile development. Just as requirements specifications of systems
formed the basis for proceeding with systems development earlier, so also now
requirements specifications of system increments must form the basis of incremental
and iterative development.

Following this line of argument, instead of a requirements specification, we
propose to develop requirements granules. It is possible to consider building a
requirements granule per data mart. However, we consider a data mart as having
very large granularity because it addresses an entire subject like sales, purchase etc.
Therefore, the requirements granule that will be produced shall be large-grained
resulting in relatively long lead times to delivery of the intended product increment.
It is worth developing an approach to requirements engineering that can produce
requirements granules of smaller sizes.

To reduce the sizes of requirements granules, we introduce the notion of a
decision and propose to build data warehouse fragments for decisions. Thus, data
warehouse requirements engineering is for discovering the decisions of interest and
then determining the information relevant to each decision. A requirements granule
is the collection of information relevant to a decision. If this information is available
then it is possible for the decision maker to obtain it from the data warehouse
fragment, evaluate it, and decide whether to take the decision or not. This implies
that the size of a granule is determined by the amount of information that is
associated with a decision.

The notion of a decision is thus central to our approach. A decision represents
the useful work that the data warehouse fragment supports and a data warehouse
fragment is the implementation of a requirements fragment. The approach in this
book represents a departure from the conventional notion of a data mart that is built
to “analyze” a subject area. Analysis for us is not an aim in itself but taking a
decision is and analysis is only in support of the decision making task.

As more and more decisions are taken up for development, there is a prolifer-
ation of requirements granules and data warehouse fragments. This results in
problems of inconsistent information across the enterprise, and of proliferating costs
due to multiple platforms and ETL processes. This is similar to what happens in the
bus-of-data-marts approach except that a decision may be of a lower granularity
than a data mart. This means that we can expect many more data warehouse

Preface ix

fragments than data marts and the problem of inconsistency and costs is even more
severe.

Given the severity of the problem, we do not consider it advisable to wait for the
problem to appear and then take corrective action by doing consolidation. It is best
to take a preventive approach that minimizes fragment proliferation. Again, keeping
in mind that for us requirements are the fulcrum for data warehouse development,
we consolidate requirements granules even as they are defined.

This book is a summary of research in the area of data warehouse requirements
engineering carried out by the authors. To be sure, this research is ongoing and we
expect to produce some more interesting results in the future. However, we believe
that we have reached a point where the results we have achieved form a coherent
whole from which the research and industrial community can benefit.

The initial three chapters of the book form the backdrop for the last three. We
devote Chap. 1 to the state of the art in transactional requirement engineering
whereas Chap. 2 is for data warehouse requirements engineering. The salient issues
in data warehouse requirements engineering addressed in this book are presented in
Chap. 3.

Chapter 4 deals with the different types of decisions and contains techniques for
their elicitation. Chapter 5 is devoted to information elicitation for decisions and the
basic notion of a requirements granule is formulated here. Chapter 6 deals with
agility built around the idea of the requirements granules and data warehouse
fragments. The approach to data warehouse consolidation is explained here.

The book can be used in two ways. For those readers interested in a broad-brush
understanding of the differences between transactional and data warehouse
requirements engineering, the first three chapters would suffice. However, for those
interested in deeper knowledge, the rest of the chapters would be of relevance as
well.

New Delhi, India Naveen Prakash
Kishangarh, India Deepika Prakash
September 2017

Contents

1 Requirements Engineering for Transactional Systems 1
1.1 Transactional System Development Life Cycle 2
1.2 Transactional Requirements Engineering 5
1.3 Requirements Engineering (RE) as a Process 6
1.4 Informal Approaches to Requirements Elicitation 8
1.5 Model-Driven Techniques 11

1.5.1 Goal Orientation0oouoo..... 11
1.5.2 Agent-Oriented Requirements Engineering. 13
1.5.3 Scenario Orientation 14
1.54 Goal-Scenario Coupling 15
1.6 ConClusion. 15
References 16

2 Requirements Engineering for Data Warehousing 19
2.1 Data Warehouse Background. 19
2.2 Data Warehouse Development Experience 22
2.3 Data Warehouse Systems Development Life Cycle,

DWSDLC . .. 24
2.4 Methods for Data Warehouse Development 28
2.4.1 Monolithic Versus Bus Architecture 28
2.4.2 Data Warehouse Agile Methods 30
2.5 Data Mart Consolidation 34
2.6 Strategic Alignment 38
2.7 Data Warehouse Requirements Engineering 40
2.7.1 Goal-Oriented DWRE Techniques. 43
2.7.2 Goal-Motivated Techniques 46
2.7.3 Miscellaneous Approaches 47
2.74 Obtaining Information 47
2.8 Conclusion. 48
References 49

xi

Xii Contents
3 Issues in Data Warehouse Requirements Engineering 51
3.1 The Central Notion of a Decision 51
3.1.1 The Decision Process 52

3.1.2 Decision-Oriented Data Warehousing 54

3.2 Obtaining Information Requirements 60
3.2.1 Critical Success Factors 60

322 Ends Achievement 61

323 Means Efficiency L 62

324 Feedback Analysis 62

325 Summary. 62

3.3 Requirements Consolidation 63
34 Conclusion. 68
References 69
4 Discovering Decisions 71
4.1 Deciding Enterprise Policies 72
4.1.1 Representing Policies 74

4.1.2 Policies to Choice Sets 75

4.2 Deciding Policy Enforcement Rules. 79
4.2.1 Representing Enforcement Rules. 80

422 Developing Choice Sets 82

4.3 Defining Operational Decisions 89
4.3.1 Structure of an Action 89

44 Computer-Aided Support for Obtaining Decisions 92
44,1 Architecture 92

442 UserlInterface 94

4.5 ConCluSION 98
References 99
5 Information Elicitation 101
5.1 Obtaining Multidimensional Structure 101
5.2 Decisional Information Elicitation 103
5.3 The Decision Requirement Model 106
5.3.1 The Notion of a Decision 106

5.3.2 Metamodel of Decisions 107

533 Information, 109

5.4 Eliciting Information. 111
54.1 CSFlElcitation 111

5.4.2 ENDSI Elicitation 112

543 MEANSI Elicitation 113

5.4.4 Feedback Information Elicitation. 114

5.5 The Global Elicitation Process. 114

Contents Xiii
5.6 Eliciting Information for Policy Decision-Making 116
5.6.1 CSFIElcitation 116

5.6.2 Ends Information Elicitation 118

5.7 Eliciting Information for PER Formulation. 118
5.8 Information Elicitation for Operational Systems 120
5.8.1 Elicitation for Selecting PER 120

5.8.2 Information Elicitation for Actions 121

5.9 The Late Information Substage 125
59.1 ER Schema for Policy Formulation 125

5.9.2 ER Schema for PER Formulation and Operations 126

5.9.3 Guidelines for Constructing ER Schema 126

5.10 Computer-Based Support for Information Elicitation. 127
5.10.1 UserInterfaces................ 127
5.10.2 The Early Information Base 131

5.1 Conclusion. 132
References 133
6 The Development Process 135
6.1 Agile Data Warehouse Development 135
6.2 Decision Application Model (DAM) for Agility 137
6.3 A Hierarchical View 139
6.4 Granularity of Requirements 141
6.4.1 Selecting the Right Granularity 144

6.5 Showing Agility Using an Example 148
6.6 Comparison of DAM and Epic—-Theme-Story Approach 150
6.7 Data Warehouse Consolidation 151
6.8 Approaches to Consolidation. 155
6.9 Consolidating Requirements Granules 156
6.9.1 An Example Showing Consolidation 160

6.10 Tool Support 165
6.11 Conclusion. 167
References 168

7 Conclusion 169

About the Authors

Naveen Prakash started his career with the Computer Group of Bhabha Atomic
Research Centre Mumbai in 1972. He obtained his doctoral degree from the Indian
Institute of Technology Delhi (IIT Delhi) in 1980. He subsequently worked at the
National Center for Software Development and Computing Techniques, Tata
Institute of Fundamental Research (NCSDCT, TIFR) before joining the R&D group
of CMC Ltd where he worked for over 10 years doing industrial R&D. In 1989, he
moved to academics. He worked at the Department of Computer Science and
Engineering, Indian Institute of Technology Kanpur (IIT Kanpur), and at the Delhi
Institute of Technology (DIT) (now Netaji Subhas Institute of Technology (NSIT)),
Delhi. During this period he provided consultancy services to Asian Development
Bank and African Development Bank projects in Sri Lanka and Tanzania,
respectively, as well as to the Indira Gandhi National Centre for the Arts (IGNCA)
as a United Nations Development Programme (UNDP) consultant. He served as a
scientific advisor to the British Council Division, New Delhi and took up the
directorship of various educational institutes in India. Post-retirement, he worked on
a World Bank project in Malawi.

Prof. Prakash has lectured extensively in various universities abroad. He is on
the editorial board of the Requirements Engineering Journal, and of the
International Journal of Information System Modeling and Design (IJISMD). He
has published over 70 research papers and authored two books.

Prof. Prakash continues to be an active researcher. Besides Business Intelligence
and Data Warehousing, his interests include the Internet-of-things and NoSQL
database. He also lectures at the Indira Gandhi Delhi Technical University for
Women (IGDTUW), Delhi and IIIT Delhi.

Deepika Prakash obtained her Ph.D. from Delhi Technological University, Delhi
in the area of Data Warehouse Requirements Engineering. Currently, she is an
Assistant Professor at the Department of Big Data Analytics, Central University of
Rajasthan, Rajasthan.

XV

XVi About the Authors

Dr. Prakash has five years of teaching experience, as well as two years of
experience in industrial R&D, building data marts for purchase, sales and inventory
and in data mart integration. Her responsibilities in industry spanned the complete
life cycle, from requirements engineering through conceptual modeling to extract-
transform-load (ETL) activities.

As aresearcher, she has authored a number of papers in international forums and
has delivered invited lectures at a number of Institutes throughout India. Her current
research interests include Business Intelligence, Health Analytics, and the
Internet-of-Things.

Chapter 1
Requirements Engineering
for Transactional Systems

Transactional systems have been the forte of Information Systems/Software
Engineering. These systems deal with automating the functionality of systems, to
provide value to the users. Initially, up to the end of the decade of the 1960s,
transactional systems were simple, single-function systems. Thus, we had payroll
systems that accounts people would use to compute the salary of employees and
print out salary. Information Systems/Software Engineering technology graduated
to multi-functional systems that looked at the computerization of relatively larger
chunks of the business. Thus, it now became possible to deal with the accounts
department, the human resource department, customer interface, etc. Technology to
deal with such systems stabilized in the period 1960-1980. Subsequently, attention
shifted to even more complex systems, the computerization of the entire enterprise,
and to inter-organization information systems.

The demand for engineering of ever more complex systems led to the “software
crisis”, a term widely used in the 1990s to describe the difficulties that industry of
that time faced. A number of studies were carried out and some of the problems
highlighted were systems failure/rejection by clients, inability to deliver complex
and large software well.

The Standish Group’s “Chaos” reports [1] presented software industry’s record
in delivering large-sized systems using traditional development methods. The
Group conducted a survey of 8380 projects carried out by 365 major American
companies. The results showed that projects worth up to even $750,000 exceeded
budget and time. Further, they failed to deliver the promised features more than
55% of the time. As the size of the applications grew, the success rate fell to 25%
for efforts over $3 million and down to zero for projects over $10 million.

Bell labs and IBM [2] found that 80% of all defects in software products lie in
the requirements phase. Boehm and Papaccio [3] said that correcting requirements
errors is 5 times more expensive when carried out during the design phase; the cost
of correction is 10 times during implementation phase; the cost rises to 20 times for
corrections done during testing and it becomes an astronomical 200 times after the
system has been delivered. Evidently, such corrections result in expensive products

© Springer Nature Singapore Pte Ltd. 2018 1
N. Prakash and D. Prakash, Data Warehouse Requirements Engineering,
https://doi.org/10.1007/978-981-10-7019-8_1

2 1 Requirements Engineering for Transactional Systems

and/or total rejection of software. The Standish group [4] reported that one of the
reasons for project failure is “incomplete requirements”. Clearly, the effect of
poorly engineered requirements ranges from outright systems rejection by the
customer to major reworking of the developed system.

The Software Hall of Shame [5] surveyed around 30 large software development
projects that failed between 1992 and 2005 to try to identify the causes of this
failure. It was found that failures arise because either projects go beyond actual
needs or because of expansion in the scope of the original project. This implied that
requirements changed over the course of product development and this change was
difficult to handle.

The foregoing suggested that new methods of software development were
needed that delivered on time, on budget, met their requirements, and were also
capable of handling changing requirements. The response was twofold:

e An emphasis on incremental and iterative product development rather than
one-shot development of the entire product. Small, carefully selected product
parts were developed and integrated with other parts as and when these latter
became available. As we shall see this took the form of agile software
development.

e The birth of the discipline of requirements engineering in which the earlier
informal methods were replaced by model-driven methods. This led to the
systematization of the requirements engineering process, computer-based
management of requirements, guidance in the requirements engineering task,
and so on.

We discuss these two responses in the rest of this chapter.

1.1 Transactional System Development Life Cycle

The System Development Life cycle, SDLC, for transactional systems (TSDLC)
starts from gathering system/software requirements and ends with the deployment
of the system. One of the earliest models of TSDLC is the waterfall model. The
waterfall model has six sequential phases. Each phase has different actors partici-
pating in it. Output of one phase forms the input to the next phase. This output is
documented and used by the actors of the next phase. The size of documentation
produced is very large and time-consuming.

Since the model is heavy on documentation, the model is sometimes referred to
as document driven. Table 1.1 shows the actors and document produced against
each phase of the life cycle.

The process starts with identifying what needs to be built. There are usually
several stakeholders of a system. Each stakeholder sits down with the requirements
engineer and details what s/he specifically expects from the system. These needs are
referred to as requirements. A more formal definition of the term requirements is
available in the subsequent sections of this chapter. These requirements as given

1.1 Transactional System Development Life Cycle 3

Table 1.1 The different phases of TSDLC

TSDLC phase Actor Document

Requirements Stakeholder, Requirements System requirements specification
engineering engineer

System and software System analysts High-level and low-level design
design documents

Implementation Development team Code

Verification Tester Test case document

Maintenance Project manager, Stakeholder | User manuals

by the stakeholder are documented as a System Requirements Specification
(SRS) document.

Once the SRS is produced, the actors of the system design phase, system analyst,
convert the requirements into high-level design and low-level design. The former
describes the software architecture. The latter discusses the data structure to be
used, the interfaces and other procedural details. Here, two documents are pro-
duced, the high-level and low-level design document.

The design documents are made available to the implementation team for the
development activity to start. Apart from development, unit testing is also a feature
of this phase. In the Verification phase, functional and non-functional testing is
performed and a detailed test case document is produced. Often test cases are
designed with involvement of the stakeholders. Thus, apart from the testers,
stakeholders are also actors of this phase. Finally, the software is deployed and
support is provided for maintenance of the product.

Notice, each phase is explored fully before moving on to the next phase. Also
notice, there is no feedback path to go to a previous already completed phase.
Consider the following scenario. The product is in the implementation phase and
the developers realize that an artifact has been poorly conceptualized. In other
words, there is a need to rework a part of the conceptual model for development to
proceed. However, there is no provision in the model to go back to the system
design phase once the product is in the development phase.

This model also implies that

(a) Requirements once specified do not change. However, this is rarely the case.
A feedback path is required in the event of changing requirements. This ensures
that changes are incorporated in the current software release rather than waiting
for the next release to adopt the changed requirement.

(b) “All” requirements can be elicited from the stakeholders. The requirements
engineering phase ends with a sign-off from the stakeholder. However, as
already brought out, studies have shown that it is not possible to elicit all the
requirements upfront from the stakeholders. Stakeholders are often unable to
envision changes that could arise 12-24 months down the line and generally
mention requirements as of the day of the interview with the requirements
engineer.

4 1 Requirements Engineering for Transactional Systems

Being sequential in nature, a working model of the product is released only at the
end of the life cycle. This leads to two problems. One that feedback can be got from
the stakeholder only after the entire product is developed and delivered. Even a
slightly negative feedback means that the entire system has to be redeveloped;
considerable time and effort in delivering the product is wasted.

The second problem is that these systems suffer from long lead time for product
delivery. This is because the entire requirements specification is made before the
system is taken up for design and implementation.

An alternate method to system development is to adopt an agile development
model. The aim of this model is to provide an iterative and incremental devel-
opment framework for delivery of a product. An iteration is defined by clear
deliverables which are identified by the stakeholder. Deliverables are pieces of the
product usable by the stakeholder. Several iterations are performed to deliver the
final product making the development process incremental. Also, iterations are time
boxed with time allocated to each iteration remaining almost the same till the final
product is delivered.

One of the popular approaches to agile development is Scrum. In Scrum, iter-
ations are referred to as sprints. There are two actors, product owner and developer.
The product owner is the stakeholder of the waterfall model. The requirements are
elicited in the form of user stories. A user story is defined as a single sentence that
identifies a need. User stories have three parts, “Who” identifies the stakeholder,
“What” identifies the action, and “Why” identifies the reason behind the action.
A good user story is one that is actionable, meaning that the developer is able to use
it to deliver the need at the end of the sprint.

Wake [6] introduced the INVEST test as a measure of how good a user story is.
A good user story must meet the following criteria: Independent, Not too specific,
Valuable, Estimable, Small, and Testable. One major issue in building stories is that
of determining when the story is “small”. Small is defined as that piece of work that
can be delivered in a sprint. User stories as elicited from the product owner may not
fit in a sprint. Scrum uses the epic—theme—user story decomposition approach to
deal with this. Epics are stories identified by the product owner in the first con-
versation. They require several sprints to deliver. In order to decompose the epic,
further interaction with the product owner is performed to yield themes. However, a
theme by itself may take several sprints, but a lesser number than for its epic, to
deliver. Therefore, a theme is further decomposed into user stories of the right size.

When comparing agile development model with the waterfall model, there are
two major differences as follows:

1. In Scrum, sprints do not wait for the full requirements specification to be pro-
duced. Further, the requirements behind a user story are also not fully specified
but follow the 80-20 principle. 80% of the requirements need to be clarified
before proceeding with a sprint and the balance 20% are discovered during the
sprint. Thus, while in waterfall model, stakeholder involvement in the require-
ments engineering phase ends with a sign-off from the stakeholder, in Scrum the
stakeholder is involved during the entire life cycle. In fact, iterations proceed
with the feedback of the stakeholder.

1.1 Transactional System Development Life Cycle 5

2. At the end of one iteration, a working sub-product is delivered to the stake-
holder. This could either be an enhancement or a new artifact. This is unlike the
waterfall model where the entire product is delivered at the end of the life cycle.

1.2 Transactional Requirements Engineering

Let us start with some basic definitions that tell us what requirements are and what
requirements engineering does.

Requirements

A requirement has been defined in a number of ways. Some definitions are as
follows.

Definition 1: A requirement as defined in [7] is “(1) a condition or capability
needed by a user to solve a problem or achieve an objective, (2) A condition or
capability that must be met or possessed by a system or system components to
satisfy a contract, standard, specification or other formally imposed documents,
(3) A document representation of a condition as in (1) or in (2)”.

According to this definition, requirements arise from user, general organization,
standards, government bodies, etc. These requirements are then documented.

A requirement is considered as a specific property of a product by Robertson,
and Kotonya as shown in Definition 2 and Definition 3 below.

Definition 2: “Something that the product must do or a quality that the product
must have” [8].

Definition 3: “A description of how the system shall behave, and information about
the application domain, constraints on operations, a system property etc.” [9].

Definition 4: “Requirements are high level abstractions of the services the system
shall provide and the constraints imposed on the system”.

Requirements have been classified as functional requirements, FR, and
non-functional requirements, NFR. Functional requirements are “statements about
what a system should do, how it should behave, what it should contain, or what
components it should have” and non-functional requirements are “statements of
quality, performance and environment issues with which the system should con-
form” [10]. Non-functional requirements are global qualities of a software system,
such as flexibility, maintainability, etc. [11].

Requirements Engineering

Requirements engineering, RE, is the process of obtaining and modeling require-
ments. Indeed, a number of definitions of RE exist in literature.

Definition 1: Requirements engineering (RE) is defined [7] as “the systemic process
of developing requirements through an iterative cooperative process of analyzing

6 1 Requirements Engineering for Transactional Systems

the problem, documenting the resulting observations in a variety of representation
formats and checking the accuracy of understanding gained”.

The process is cooperative because different stakeholders have different needs
and therefore varying viewpoints. RE must take into account conflicting views and
interests of users and stakeholders. Capturing different viewpoints allows conflicts
to surface at an early stage in the requirements process. Further, the resulting
requirements are the ones that are agreeable to both customers and developers.

Definition 2 Zave [12]: Requirements engineering deals with the real-world goals
for functions and constraints of the software system. It makes a precise specification
of software behavior and its evolution over time.

This definition incorporates “real-world goals” in its definition. In other words,
this definition hopes to capture requirements that answer the “why” of software
systems. Here, the author is referring to “functional requirements”. Further, the
definition also gives emphasis to “precise requirements”. Thus quality of require-
ments captured is also important.

Definition 3 van Lamsweerde [13]: RE deals with the identification of goals to be
achieved by the system to be developed, the operationalization of such goals into
services and constraints.

Definition 4 Nuseibeh and Easterbrook [14]: RE aims to discover the purpose
behind the system to be built, by identifying stakeholders and their needs, and their
documentation.

Here, the emphasis is on identifying stakeholders and capturing the requirements
of the stakeholders.

1.3 Requirements Engineering (RE) as a Process

Evidently, requirements engineering can be viewed as a process with an input and
an output. Stakeholders are the problem owners. They can be users, designers,
system analysts, business analysts, technical authors, and customers. In the RE
process, requirements are elicited from these sources. Output of the process is
generally a set of agreed requirements, system specifications, and system models.
The first two of these are in the form of use cases, goals, agents, or NFRs. System
models can be object models, goal models, domain descriptions, behavioral models,
problem frames, etc.

There are three fundamental concerns of RE, namely, understanding the prob-
lem, describing the problem, and attaining an agreement on the nature of the
problem. The process involves several actors for the various activities. We visualize
the entire process as shown in Fig. 1.1. There are four stages each with specific
actors, marked with green in the figure. A requirements engineer is central in the
entire process.

Let us elaborate the components of the figure.

