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Preface

Set theory provides an excellent foundation for the field of mathematics; however, it
suffers from Gödel’s incompleteness phenomenon: There are important statements,
such as the continuum hypothesis, that remain undecidable using the standard
axioms. It is therefore of great value to find well-justified approaches to the
discovery of new axioms of set theory.

The Hyperuniverse Project, funded by the John Templeton Foundation (JTF)
from January 2013 until September 2015, was the first concerning Friedman’s Hype-
runiverse Programme, a valuable such approach based on the intrinsic maximality
features of the set-theoretic universe. In the course of this project, the participants
Carolin Antos, Radek Honzik, Claudio Ternullo and Friedman discovered an
optimal form of “height maximality” and generated numerous “width maximality”
principles which are currently under intensive mathematical investigation. The
project also featured prominently in the important Symposia on the Foundations of
Mathematics held in Vienna (7–8 July 2014, 21–23 September 2015) and London
(12–13 January 2015); see https://sotfom.wordpress.com/.

The project resulted in 12 chapters, collected in this volume, which together
provide the necessary background to gain an understanding of maximality in set
theory and related topics.

Konstanz, Germany Carolin Antos
Vienna, Austria Sy-David Friedman
Prague, Czech Republic Radek Honzik
Wien, Austria Claudio Ternullo
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Introduction: On the Development
of the Hyperuniverse Project

In brief, the Hyperuniverse Programme (HP) aims to generate mathematical princi-
ples expressing the maximality of the set-theoretic universe in height and in width,
to analyse and synthesise these principles and ultimately to arrive at an optimal
maximal principle whose first-order consequences can be regarded as intrinsically
justified axioms of set theory.

The primary goal of the Templeton-funded project was to provide a robust and
convincing philosophical justification for the Hyperuniverse Programme, which
mainly consisted in providing intrinsic evidence for the acceptance of the maximal-
ity principles taken into consideration by the programme. And a secondary goal was
to systematically formulate mathematical criteria of maximality for the set-theoretic
universe and to develop the necessary mathematical tools for analysing them.

We achieved our primary goal, that of providing the HP with a firm foundation,
and made significant progress with our secondary goal, the mathematical unfolding
of the programme. However, it is now clear that the mathematical challenges for the
advancement of the programme are even greater than we had imagined, although
we are pleased with the very significant progress that we have made.

The Philosophical Grounding of the HP

At the start of the programme, we in fact considered a number of different features
of the set-theoretic universe that might be regarded as “intrinsic”.

However, we concluded that in fact the only feature for which there is a definitive
case for intrinsicness is the maximality feature of V (= the universe of sets).

Maximality naturally breaks into two forms, height maximality and width
maximality. Our initial approach was to treat them analogously, from both a height-
potentialist and width-potentialist perspective. However, thanks to the input of
several leading scholars in the philosophy of set theory, we later came to realise
that the programme is most appropriately (although not exclusively) formulated as
a height-potentialist and width-actualist programme.

vii



viii Introduction: On the Development of the Hyperuniverse Project

Height potentialism was further analysed and developed in the Friedman-Honzik
theory of sharp generation (“On Strong Reflection Principles in Set Theory”, in
this volume), what we feel to be the ultimate, strongest formulation of height
maximality. However, width maximality presented a serious challenge, as, for-
mally speaking, width actualism does not allow for the existence of thickenings
(widenings) of V, blocking the easy formulation of width-maximality principles
in which V is compared to wider universes. The resolution of this dilemma
constituted a major new discovery of the project: the use of V-logic to internally
express, consistently with width actualism, width-maximality principles which refer
to possible thickenings of V. A further important point was to realise that the
principles expressed in V-logic, although not first-order, are nevertheless first-order
over a mild lengthening (heightening) of V called V+ (the least admissible universe
past V) and of course such lengthenings are entirely permissible from a height-
potentialist perspective. The reason that this point is important is that it then allows
the use of the downward Löwenheim-Skolem theorem to reduce the study of width-
maximality principles for V to their study over countable transitive models of set
theory, quantifying solely over the collection of all countable transitive such models.
The latter collection is what is termed the “Hyperuniverse”, hence the name of the
programme.

In this way, we feel that the HP is well-justified philosophically and its conceptual
framework is sound. But of course there remains further work to be done from a
philosophical perspective: How is one to justify the “synthesis” of initially conflict-
ing maximality principles? How does one support the claim that the generation and
analysis of further maximality principles will ultimately converge upon a single
“optimal” maximality criterion? How can the programme be developed from a
height-actualist perspective?

The Mathematical Development of the HP

As already mentioned, height maximality is nicely captured using the notion of
sharp generation, which has a clean and convincing mathematical formulation.
However, the most natural form of width maximality, the inner model hypothesis
(IMH), is in conflict with sharp generation. Honzik and I succeeded in “synthesis-
ing” the two, arriving at a consistent combined maximality principle IMH-sharp.

However, we did not reach our goal of establishing the consistency of SIMH, the
strong IMH. This will be a major achievement, as it will yield a well-motivated form
of width maximality that resolves Cantor’s continuum problem. Ideally, we aim to
then further synthesise the SIMH with sharp generation, arriving at a consistent
principle SIMH-sharp, which not only resolves the continuum problem but is also
compatible with height maximality (and with large cardinal axioms).

A useful way of organising maximality principles is via the maximality protocol.
According to this, maximality is developed by first maximising the ordinals (via
sharp generation), then maximising the cardinals through the so-called CardMax
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principles and finally maximising width via the cardinal-preserving IMH with
absolute parameters. This is a satisfying, systematic approach to maximality.
However, we have not yet succeeded in finding the mathematical tools needed to
establish the consistency of the principles generated in this way. That remains for
the further development of the HP.

Two other appealing forms of maximality regard width indiscernibility and
omniscience. The former is an analogue for width of sharp generation for height.
It postulates that V occurs at stage Ord in a sequence of length Ord+Ord of
increasing universes which form a chain under elementary embeddings and which
are indiscernible in an appropriate sense. The consistency of this has not yet been
established, yet this form of maximality is especially appealing as it helps to restore
a symmetry between the notions of maximality in height and in width. Omniscience
asserts that the satisfiability of sentences with parameters from V in outer models
of V is V-definable. Here we have made definite progress: Honzik and I showed
(“Definability of Satisfaction in Outer Models”, in this volume) that one can obtain
the consistency of the omniscience principle (together with a definable well-order of
the universe) from just an inaccessible cardinal. What remains is to verify that it can
be successfully synthesised with other forms of maximality, such as the IMH-sharp.

To summarise: The main success of the JTF-funded Hyperuniverse Project was
to establish a conceptually sound approach to the discovery of new set-theoretic
axioms based on the intrinsic maximality features of V. In addition, significant
progress was made on the mathematical formulation of maximality principles, on
their synthesis and on establishing their consistency. Thanks to this project, the HP
is now well-positioned to make important discoveries regarding set-theoretic truth
based on intrinsic evidence and through the use of as yet undiscovered mathematical
techniques.

The Chapters in Brief

The 12 chapters of this volume document some of the major advances of the JTF
Hyperuniverse Project.

A key technique in the mathematical development of the project is the method of
class-forcing. Chapter “Class Forcing in Class Theory” provides the proper setting
for class-forcing, which had formerly been done by reducing to versions of ZFC.
A further technique is hyperclass-forcing, the foundations for which is provided in
Chap. “Hyperclass Forcing in Morse-Kelley Class Theory”. Chapter “Multiverse
Conceptions in Set Theory” provides a broad analysis of multiverse conceptions
in set theory, taking into account different views regarding actualism and poten-
tialism in height and in width. Chapter “Evidence for Set-Theoretic Truth and the
Hyperuniverse Programme” is currently the most up-to-date full presentation of
the Hyperuniverse Programme. Chapter “On the Set-Generic Multiverse” provides
a modern treatment of Bukovsky’s characterisation of set-generic extensions, an
important feature of the set-generic multiverse. Chapters “On Strong Forms of
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Reflection in Set Theory” and “Definability of Satisfaction in Outer Models” are the
already-mentioned chapters on height maximality and omniscience. Chapters “The
Search for New Axioms in the Hyperuniverse Programme” and “Explaining
Maximality Through the Hyperuniverse Programme” take a deeper look at how
the HP analyses maximality in set theory. Finally, Chaps. “Large Cardinals and
the Continuum Hypothesis”, “Gödel’s Cantorianism”, and “Remarks on Buzaglo’s
Concept Expansion and Cantor’s Transfinite” provide insights into related topics,
such as the role of large cardinals, the Cantorian features of Gödel’s philosophy of
sets and Buzaglo’s treatment of concept expansion.
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Class Forcing in Class Theory

Carolin Antos

Abstract In this article we show that Morse-Kelley class theory (MK) provides
us with an adequate framework for class forcing. We give a rigorous definition of
class forcing in a model .M; C/ of MK, the main result being that the Definability
Lemma (and the Truth Lemma) can be proven without restricting the notion of
forcing. Furthermore we show under which conditions the axioms are preserved.
We conclude by proving that Laver’s Theorem does not hold for class forcings.

1 Introduction

The idea of considering a forcing notion with a (proper) class of conditions instead
of with a set of conditions was introduced by W. Easton in 1970. He needed the
forcing notion to be a class to prove the theorem that the continuum function 2� ,
for � regular, can behave in any reasonable way and as changes in the size of
2� are bounded by the size of a set forcing notion, the forcing has to be a class.
Two problems arise when considering a class sized forcing: the forcing relation
might not be definable in the ground model and the extension might not preserve
the axioms. This was addressed in a general way in S. Friedman’s book (see [3])
where he presented class forcings which are definable (with parameters) over a
model hM;Ai. This is called a model of ZF if M is a model of ZF and Replacement
holds in M for formulas which mention A as a predicate. We will call such forcings
A-definable class forcings, their generics G A-definable class-generics and the
resulting new model A-definable class-generic outer model. Friedman showed that
for such A-definable class forcing which satisfy an additional condition called
tameness the Definability Lemma, the Truth Lemma and the preservation of the
Axioms of ZFC hold.

Originally published in C. Antos, Class forcing in class theory (submitted). arXiv:1503.00116.
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2 C. Antos

In this article we consider class forcing in the framework of Morse-Kelley class
theory. In difference to the case of A-definable class forcings we are able to prove
in MK that the Definability Lemma holds for all forcing notions (without having to
restrict to tame forcings). For the preservation of the axioms however we still need
the property of tameness.1

In the following we will introduce Morse-Kelley class theory and define the
relevant notions like names, interpretations and the extension for class forcing in
Morse-Kelley. Then we will show that the forcing relation is definable in the ground
model, that the Truth Lemma holds and we characterize P-generic extensions which
satisfy the axioms of MK. We will show that Laver’s Theorem fails for class
forcings.

2 Morse-Kelley Class Theory

In ZFC we can only talk about classes as abbreviations for formulas as our
only objects are sets. In class theories like Morse-Kelley (MK) or Gödel-Bernays
(GB) the language is two-sorted, i.e. the object are sets and classes and we have
corresponding quantifiers for each type of object.2 We denote the classes by upper
case letters and sets by lower case letters, the same will hold for class-names and set-
names and so on. Hence atomic formulas for the 2-relation are of the form “x 2 X”
where x is a set-variable and X is a set- or class-variable. The models M of MK are
of the form hM;2; Ci, where M is a transitive model of ZFC, C the family of classes
of M (i.e. every element of C is a subset of M) and 2 is the standard 2 relation
(from now on we will omit mentioning this relation).

The axiomatizations of class theories which are often used and closely related to
ZFC are MK and GBC. Their axioms which are purely about sets coincide with
the corresponding ZFC axioms such as pairing and union and they share class
axioms like the Global Choice Axiom. Their difference lies in the Comprehension
Axiom in the sense that GB only allows quantification over sets whereas MK allows

1In [2] R. Chuaqui follows a similar approach and defines forcing for Morse-Kelley class theory.
However there is a significant difference between our two approaches. To show that the extension
preserves the axioms Chuaqui restricts the generic G for an arbitrary forcing notion P in the
following way: A subclass G of a notion of forcing P is strongly P-generic over a model .M; C/
of MK iff G is P-generic over .M; C/ and for all ordinals ˇ 2 M there is a set P0 2 M such that
P0 � P and for all sequences of dense sections hD˛ W ˛ 2 ˇi, there is a q 2 G satisfying

8˛.˛ 2 ˇ ! 9 p . p 2 P0 \ G^ the greatest lower bound of p and q exists

and is an element of D˛//:

where a subclass D of a partial order P is a P-section if every extension of a condition in D is in D.
2There is also an equivalent one-sorted formulation in which the only objects are classes and sets
are defined as being classes which are elements of other classes. For reasons of clarity we will use
the two-sorted version throughout the paper.
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quantification over sets as well as classes. This results in major differences between
the two theories which can be seen for example in their relation to ZFC: GB is
a conservative extension of ZFC, meaning that every sentence about sets that can
be proved in GB can already be proved in ZFC and so GB cannot prove “new”
theorems about ZFC. MK on the other hand can do just that, in particular MK
implies CON(ZFC)3 and so MK is not conservative over ZFC. The consistency
strength of MK is strictly stronger than that of ZFC but lies below that of ZFC +
there is an inaccessible cardinal as hV�;V�C1i for � inaccessible, is a model for MK
in ZFC.

As said above we choose MK (and not GB) as underlying theory to define
class forcing. The reason lies mainly in the fact that within MK we can show the
Definability Lemma for class forcing without having to restrict the forcing notion
whereas in GB this would not be possible. We use the following axiomatization of
MK:

A) Set Axioms:

1. Extensionality for sets: 8x8y.8z .z 2 x$ z 2 y/! x D y/.
2. Pairing: For any sets x and y there is a set fx; yg.
3. Infinity: There is an infinite set.
4. Union: For every set x the set

S
x exists.

5. Power set: For every set x the power set P.x/ of x exists.

B) Class Axioms:

1. Foundation: Every nonempty class has an 2-minimal element.
2. Extensionality for classes: 8z .z 2 X $ z 2 Y/! X D Y.
3. Replacement: If a class F is a function and x is a set, then fF.z/ W z 2 xg is a

set.
4. Class-Comprehension:

8X1 : : :8Xn9Y Y D fx W '.x;X1; : : : ;Xn/g

where ' is a formula containing class parameters in which quantification
over both sets and classes are allowed.

5. Global Choice: There exists a global class well-ordering of the universe of
sets.

There are different ways of axiomatizing MK, one of them is obtained by using
the Limitation of Size Axiom instead of Global Choice and Replacement. Limitation
of Size is an axiom that was introduced by von Neumann and says that for everyC 2
M, C is a proper class if and only if there is a one-to-one function from the universe
of sets to C, i.e. all the proper classes have the same size. The two axiomatizations
are equivalent: Global Choice and Replacement follow from Limitation of size and

3This is because in MK we can form a Satisfaction Predicate for V and then by reflection we get
an elementary submodel V˛ of V. But any such V˛ models ZFC.
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vice versa.4 A nontrivial argument shows that Limitation of Size does not follow
from Replacement plus Local Choice.

In the definition of forcing we will use the following induction and recursion
principles:

Proposition 1 (Induction) Let .Ord;R/ be well-founded and '.˛/ a property of
an ordinal ˛. Then it holds that

8˛ 2 Ord ..8ˇ 2 Ord .ˇ R ˛! '.ˇ///! '.˛//! 8˛ 2 Ord '.˛/

Proof Otherwise, as R is well-founded, there exists an R-minimal element ˛ of Ord
such that :'.˛/. That is a contradiction. ut
Proposition 2 (Recursion) For every well-founded binary relation R on Ord and
every formula '.X;Y/ satisfying 8X 9Š Y '.X;Y/, there is a unique binary relation
S on Ord � V such that for every ˛ 2 Ord it holds that '.S<˛; S˛/, where S˛ D
fx j .˛; x/ 2 Sg and S<˛ D f.ˇ; x/ 2 S jˇR˛g.
Proof By induction on ˛ it holds that for each � there exists a unique binary
relation S� on Ord<� � V , where Ord<� D fˇ 2 Ord jˇR�g, such that '.S�<˛; S

�
˛/

holds for all ˛R� . Then it follows from Class-Comprehension that we can take
S D S

�2Ord S� . ut

3 Generics, Names and the Extension

To lay out forcing in MK we have to redefine the basic notions like names,
interpretation of names etc. to arrive at the definition of the forcing extension. As
we work in a two-sorted theory we will define these notions for sets and classes
respectively. Let us start with the definition of the forcing notions and its generics.
We use the notation .X1; : : : ;Xn/ 2 C to mean Xi 2 C for all i.

Definition 3 Let P 2 C and �P 2 C be a partial ordering with greatest element 1P.
We call .P;�P/ 2 C an .M; C/-forcing and often abbreviate it by writing P. With
the above convention .P;�P/ 2 C means that P and �P are in C.

G � P is P-generic over .M; C/ if

1. G is compatible: If p; q 2 G then for some r, r � p and r � q.
2. G is upwards closed: p � q 2 G ! p 2 G.
3. G \D ¤ ; whenever D � P is dense, D 2 C.

4This is because Global Choice is equivalent with the statement that every proper class is bijective
with the ordinals.
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Note that from now on we will assume M to be countable (and transitive) and C to
be countable to ensure that for each p 2 P there exists G such that p 2 G and G is
P-generic.

We build the hierarchy of names for sets and classes in the following way (we
will use capital greek letters for class-names and lower case greek letters for set-
names):

Definition 4

N s
0 D ;.

N s
˛C1 D f� W � is a subset of N s

˛ � P in Mg.
N s
� D

SfN s
˛ W ˛ < �g, if � is a limit ordinal.

N s DSfN s
˛ W ˛ 2 ORD.M/g is the class of all set-names of P.

N D f† W † is a subclass of N s � P in Cg.
Note that the N s

˛ (for ˛ > 0) are in fact proper classes (and indeed N is a
hyperclass) and therefore Definition 4 is an inductive definition of a sequence of
proper classes of length the ordinals. The fact that with this definition we stay inside
C follows from Proposition 2.

Lemma 5

a) If ˛ � ˇ then N s
˛ � N s

ˇ .
b) N s � N .

Proof

a) By induction on ˇ. For ˇ D 0 there is nothing to prove.
Successor step ˇ ! ˇ C 1. Assume N s

˛ � N s
ˇ for all ˛ � ˇ. Let � 2 N s

˛ for
some ˛ < ˇ C 1. Then we know by assumption that � 2 N s

ˇ . So by Definition 4
there is some � < ˇ such that � D fh�i; pii j i 2 Ig where for each i 2 I, �i 2 N s

�

and pi 2 P. By assumption �i 2 N s
ˇ for all i 2 I and so � 2 N s

ˇC1.
Limit step �. Assume N s

˛ � N s
ˇ for all ˛ � ˇ < �. But by Definition 4,

� 2 N s
� iff � 2 N s

ˇ for some ˇ < � and so it follows that N s
˛ � N s

� for all
˛ � �.

b) By Definition 4, † 2 N iff † is a subclass of N s � P iff for every h�; pi 2 †,
� 2 N s and p 2 P iff for every h�; pi 2 † there is an ordinal ˛ such that � 2 N s

˛

and p 2 P. Let � 2 N s, i.e. there is an ordinal ˇ such that � 2 N s
ˇ . Then it holds

that for every h�; pi 2 � there is an ordinal ˛ < ˇ such that � 2 N s
˛ and p 2 P.

So � 2 N .
ut

We define the interpretations of set- and class-names recursively.

Definition 6

�G D f�G W 9p 2 G.h�; pi 2 �/g for � 2 N s.
†G D f�G W 9p 2 G.h�; pi 2 †/g for† 2 N .
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According to the definitions above we define the extension of an MK model
.M; C/ to be the extension of the set part and the extension of the class part:

Definition 7 .M; C/ŒG� D .MŒG�; CŒG�/ D .f�G W � 2 N sg; f†G W † 2 N g/.
Definition 8 If P is a partial order with greatest element 1P, we define the canonical
P-names of x 2 M and C 2 C:

Lx D fh Ly; 1Pi j y 2 xg.
LC D fh Lx; 1Pi j x 2 Cg.
From these definitions the basic facts of forcing follow easily:

Lemma 9 Let M D hM; Ci be a model of MK, where M is a transitive model of
ZFC and C the family of classes of M. Then it holds that:

a) 8x 2 M.Lx 2 N s ^ LxG D x/ and 8C 2 C. LC 2 N ^ LCG D C/.
b) .M; C/ � .M; C/ŒG� in the sense that M � MŒG� and C � CŒG�.
c) G 2 .M; C/ŒG�, i.e. G 2 CŒG�
d) MŒG� is transitive and Ord.MŒG�/ D Ord.M/.
e) If .N; C 0/ is a model of MK, M � N, C � C 0, G 2 C 0 then .M; C/ŒG� � .N; C 0/.

Proof

a) Using Definitions 6 and 8 we can easily show this by induction.
b) follows immediately from 1.
c) Let 	 D fh Lp; pi W p 2 Pg. Then this is a name for G as 	G D f LpG j p 2 Gg D
f p j p 2 Gg D G.

d) It follows from Definition 6 and Definition 7 that MŒG� is transitive. For every
� 2 Ns the rank of �G is at most rank � , so Ord.MŒG�/ � Ord.M/.

e) For each name † 2 N , † 2 .M; C/ and therefore † 2 .N; C 0/. As G 2 C 0 the
interpretation of † in .M; C/ŒG� is the same as in .N; C 0/.

ut

4 Definability and Truth Lemmas

We will define the forcing relation and show that it is definable in the ground model
and how it relates to truth in the extension. The main focus will be the Definability
Lemma, since it now is possible to prove that it holds for all forcing notions in
contrast to A-definable class forcings in a ZFC setting (see [3]). Note that when
we talk about a formula '.x1; : : : ; xm;X1; : : : ;Xn/ we mean ' to be a second-order
formula that allows second-order quantification and we always assume the model
.M; C/ to be countable.

Definition 10 Suppose p belongs to P, '.x1; : : : ; xm;X1; : : : ;Xn/ is a formula,
�1; : : : ; �m are set-names and †1; : : : ; †n are class-names. We write p �
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'.�1; : : : ; �m; †1; : : : ; †n/ iff whenever G � P is P-generic over .M; C/ and
p 2 P, we have .M; C/ŒG� ˆ '.�G

1 ; : : : ; �
G
m ; †

G
1 ; : : : ; †

G
n /.

Lemma 11 (Definability Lemma) For any ', the relation “p � '.�1; : : : ;

�m; †1; : : : ; †n/” of p, E� , E† is definable in .M; C/.
Lemma 12 (Truth Lemma) If G is P-generic over .M; C/ then

.M; C/ŒG� ˆ '.�G
1 ; : : : ; �

G
m ; †

G
1 ; : : : ; †

G
n /, 9p 2 G . p � '.�1; : : : ; �m; †1; : : : ; †n//:

Following the approach of set forcing we introduce a new relation �� and prove
the Definability and Truth Lemma for this ��. Then we will show that �� equals
the intended forcing relation �.

The definition of �� consists of ten cases: six cases for atomic formulas, where
the first two are for set-names, the second two for the “hybrid” of set- and class-
names and the last two for class-names, one for ^ and : respectively and two
quantifier cases, one for first-order and one for second-order quantification. By
splitting the cases in this way we can see very easily that it is enough to prove
the Definability Lemma for set-names only (case one and two in the Definition) and
then infer the general Definability Lemma by induction.

Definition 13 D � P is dense below p if 8q � p 9r .r � q; r 2 D/.

Definition 14 Let �; �; � be elements of N s and †;	 elements of N .

1. p �� � 2 � iff fq W 9h�; ri 2 � such that q � r; q �� � D �g is dense below
p.

2. p �� � D � iff for all h�; ri 2 � [ �; p �� .� 2 � $ � 2 �/.
3. p �� � 2 † iff fq W 9h�; ri 2 † such that q � r; q �� � D �g is dense below

p.
4. p �� � D † iff for all h�; ri 2 � [†; p �� .� 2 � $ � 2 †/.
5. p �� † 2 	 iff fq W 9h�; ri 2 	 such that q � r; q �� � D †g is dense below

p.
6. p �� † D 	 iff for all h�; ri 2 † [ 	; p �� .� 2 †$ � 2 	/.
7. p �� ' ^  iff p �� ' and p ��  .
8. p �� :' iff 8q: � p .: q �� '/.
9. p �� 8x' iff for all � , p �� '.�/.

10. p �� 8X' iff for all †, p �� '.†/.

We have to show that �� is definable within the ground model. For this it is
enough to concentrate on the first two of the above cases, because we can reduce the
definability of the ��-relation for arbitrary second-order formulas to its definability
for atomic formulas � 2 � , � D � , where � and � are set-names. The rest of the
cases then follow by induction. So let us restate Lemma 11 for the case of �� and
set-names:

Lemma 15 (Definability Lemma for the Atomic Cases of Set-Names) The
relation “p �� '.�; �/” is definable in .M; C/ for ' D “� 2 �” and ' D “� D �”.
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Proof We will show by induction5 on ˇ 2 ORD that there are unique classes
Xˇ;Yˇ � ˇ�M which define the ��-relation for the first two cases of Definition 14
in the following way: for all ˛ < ˇ, R˛ D .Xˇ/˛; S˛ D .Yˇ/˛ where .Xˇ/˛ D
fx j h˛; xi 2 Xˇg and

R˛ D f. p; �;2; �/ j p 2 P; � and � are set P-names, (?)

rank.�/ and rank.�/ < ˛; for all q � p

there is q0 � q and h�; ri 2 � such that

q0 � r and .q0; �;D; �/ 2 S˛g

and

S˛ D f. p; �;D; �/ j p 2 P; � and � are set P-names, (??)

rank.�/ and rank.�/ < ˛;

for all h�; ri 2 � [ � such that

. p; �;2; �/ 2 R˛ iff . p; �;2; �/ 2 R˛g

To show that Xˇ and Yˇ are definable we will define the classes R˛ and S˛ at each
step by recursion on the tupel . p; �; e; �/ according to the following well-founded
partial order on P �N s � f“ 2 ”; “ D ”g �N s.

Definition 16 Suppose . p; �; e; �/; .q; � 0; e0; � 0/ 2 P �N s � f“ 2 ”; “ D ”g �N s.
Say that .q; � 0; e0; � 0/ < . p; �; e; �/if

• max.rank.� 0/; rank.� 0// < max.rank.�/; rank.�//, or
• max.rank.� 0/; rank.� 0// D max.rank.�/; rank.�//, and rank.�/ � rank.�/ but

rank.� 0/ < rank.� 0/, or
• max.rank.� 0/; rank.� 0// D max.rank.�/; rank.�//, and rank.�/ � rank.�/ $

rank.� 0/ � rank.� 0/, and e is “D” and e0 is “2”.

Note that clause 1 and 2 of Definition 14 always reduce the <-rank of the
members of P �N s � f“ 2 ”; “ D ”g �N s.

“Successor step ˇ ! ˇ C 1.” We know that there are unique classes Xˇ;Yˇ
such that for all ˛ < ˇ, R˛ D .Xˇ/˛; S˛ D .Yˇ/˛ and (?) and (??) hold. We
want to show that there are unique classes XˇC1;YˇC1 such that for all ˛ < ˇ C
1, R˛ D .XˇC1/˛; S˛ D .YˇC1/˛ and (?) and (??) hold. So let for all ˛ < ˇ

.XˇC1/˛ D .Xˇ/˛ D R˛ and .YˇC1/˛ D .Yˇ/˛ D S˛ and define .XˇC1/ˇ D Rˇ and

.YˇC1/ˇ D Sˇ uniquely as follows:

5To show how this induction works in the context of a class-theory we will not simply use
Propositions 1 and 2, but rather give the complete construction.
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A) . p; �;“2”; �/ 2 Rˇ if and only if for all q � p there is q0 � q and h�; ri 2 �
such that q0 � r and .q0; �;“=”; �/ 2 Sˇ.

B) . p; �;“D”; �/ 2 Sˇ if and only if for all h�; ri 2 � [ � : . p; �;“2”; �/ 2
Rˇ iff . p; �;“2”; �/ 2 Rˇ .

These definitions clearly satisfy (?) and (??) and to see that they are indeed
inductive definitions over the well-order defined in Definition 16, we consider the
following three cases for each of the definitions A) and B):

1. rank.�/ < rank.�/
2. rank.�/ < rank.�/
3. rank.�/ D rank.�/

Ad A.1: .q0; �;“=”; �/ < . p; �;“2”; �/ because rank.�/; rank.�/ < rank.�/ (first
clause of Denfition 16).

Ad A.2: .q0; �;“=”; �/ < . p; �;“2”; �/ because max(rank.�/; rank.�// D
max(rank.�/; rank.�// and rank.�/ � rank.�/ and rank.�/ < rank.�/ (second
clause of Definition 16).

Ad A.3: .q0; �;“=”; �/ < . p; �;“2”; �/ because max(rank.�/; rank.�// D
max(rank.�/; rank.�// and rank.�/ � rank.�/ and rank.�/ < rank.�/ D rank.�/
(second clause of Definition 16).

Ad B.1: . p; �;“2”; �/ < . p; �;“D”; �/ because rank.�/; rank.�/ <

rank.�/ and . p; �;“2”; �/ < . p; �;“D”; �/ because max(rank.�/; rank.�// D
max(rank.�/; rank.�// and rank.�/ < rank.�/ and rank.�/ < rank.�/ (third clause
of Definition 16).

Ad B.2: . p; �;“2”; �/ < . p; �;“D”; �/ because of the second clause of Defini-
tion 16 and . p; �;“2”; �/ < . p; �;“D”; �/ because rank.�/; rank.�/ < rank.�/.

Ad B.3: . p; �;“2”; �/ < . p; �;“D”; �/ and . p; �;“2”; �/ < . p; �;“D”; �/
because max(rank.�/; rank.�// D max(rank.�/; rank.�// and rank.�/ � rank.�/
and rank.�/ < rank.�/; rank.�/ (both second clause of Definition 16).

“Limit step �.” We know that for every ˇ < � there are unique classes Xˇ;Yˇ
such that for all ˛ < ˇ, R˛ D .Xˇ/˛; S˛ D .Yˇ/˛ and (?) and (??) hold. We have to
show that there are unique classes X�;Y� � � �M, � limit, such that for all ˇ < �,
Rˇ D .X�/ˇ; Sˇ D .Y�/ˇ and (?) and (??) hold respectively. We define the required
classes as follows:

h˛; xi 2 X� $9hhR� ; S� i j � � ˛i 9X;Y..8� � ˛..X/� D R� and

.Y/� D S� and they satisfy .?/ and .??/ resp./^

.x 2 .X/� for some � � ˛//

h˛; xi 2 Y� $9hhR� ; S� i j � � ˛i 9X;Y..8� � ˛..X/� D R� and

.Y/� D S� and they satisfy (?) and (??) resp./^

.x 2 .Y/� for some � � ˛//
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From the proof of the successor step we see that the sequence hhR� ; S�i j � � ˛i
is unique for every ˛ < � and therefore X�;Y� are also unique. This definition is
possible only in Morse-Kelly with its version of Class-Comprehension and not in
Gödel-Bernays, because we are quantifying over class variables (in fact we only
need
1

1 Class-Comprehension). ut
The general Definability Lemma now follows immediately from this Lemma and
Definition 14. We now turn to the Truth Lemma.

In the following a capital greek letter denotes a name from N (and therefore can
be a set- or a class-name), whereas a lower case greek letter is a name from N s (and
therefore can only be a set-name).

Lemma 17

a) If p �� ' and q � p then q �� '
b) If fp j q �� 'g is dense below p then p �� '.
c) If :p �� ' then 9q � p.q �� :'/.
Proof

a) By induction on ': Let ' be † 2 	 , then by Definition 4 D D fq0 W 9h�; ri 2
	 such that q0 � r; q0 �� � D †g is dense below p. Then for all q � p, D is
also dense below q and therefore q �� '. The other cases follow easily.

b) By induction on '. Let ' be † 2 	 and fq j q �� † 2 	g is dense below p.
From Definition 14 it follows that fq j fs W 9h�; ri 2 	 such that s � r; s �� � D
†g is dense below qg is dense below p and from a well-known fact it follows that
D D fs W 9h�; ri 2 	 such that s � r; s �� � D †g is dense below p. Again by
Definition 14 we get as desired p �� † 2 	 .

The other cases follow easily; for the case of negation we will use the fact that
if f p j q �� :'g is dense below p then 8q � p.:q �� '/, using a).

c) follows directly from b).
ut

Now, the proofs for the Truth Lemma and ��D� follow similarly to the proofs
in set forcing (note that a name † 2 N can also be a set-name and therefore we
don’t need to mention the cases for set-names explicitly):

Lemma 18 (Truth Lemma) If G is P-generic then

.M; C/ŒG� ˆ '.†G
1 ; : : : ; †

G
m/, 9p 2 G . p �� '.†1; : : : ; †m//:

Proof By induction on '.

† 2 	 . “!” Assume †G 2 	G then choose a h�; ri 2 	 such that †G D �G and
r 2 G. By induction there is a p 2 G with p � r and p �� � D †. Then
for all q � p, q �� � D † and by Definition 4 p �� † 2 	 .

“ ”: Assume 9p 2 G. p �� † 2 	/. Then fq W 9h�; ri 2
� such that q � r; q �� � D �g D D is dense below p and so by
genericity G \ D ¤ ;. So there is a q 2 G, q � p such that 9h�; ri 2 	
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with q � r, q �� � D †. By induction �G D †G and as r � q, r 2 G and
therefore �G 2 	G. So †G 2 	G.

† D 	 . “!” Assume �G D 	G. Then for all h�; ri 2 † [ 	 with r 2 G it
holds that �G 2 †G $ �G 2 	G. Let D D f p j either p �� † D
	 or for some h�; ri 2 † [ 	; p �� :.� 2 † $ � 2 	/g. Then D
is dense: By contradiction, let q 2 P and assume that there is no p � q
such that p 2 D. But if there is no p � q such that for some h�; ri 2
† [ 	; p �� :.� 2 † $ � 2 	/g then by Lemma 17 q �� .� 2
† $ � 2 	/ for all h�; ri 2 † [ 	 and therefore q �� † D 	 . So
there is a p � q such that p 2 D. Since the filter G is generic, there is a
p 2 G \ D. If p �� :.� 2 † $ � 2 	/g for some h�; ri 2 † [ 	 then
by induction :.�G 2 †G $ �G 2 	G/ for some h�; ri 2 † [ 	 . But this
is a contradiction to †G D 	G and so P �� † D 	 .

“ ” Assume that there is p 2 G . p �� † D 	/. By Definition 4 it
follows that for all h�; ri 2 † [ 	 P �� .� 2 † $ � 2 	/. Then by
induction �G 2 †G $ �G 2 	G for all h�; ri 2 † [ 	 . So †G D 	G.

' ^  “!” Assume that .M; C/ŒG� ˆ ' ^  iff .M; C/ŒG� ˆ ' and .M; C/ŒG� ˆ
 . Then by induction 9p 2 G P �� ' and 9q 2 G, q ��  and we know
that 9r 2 G.r � p and r � q/ such that r �� ' and r ��  and so by
Definition 4 r �� ' ^  .

“ ” Assume 9p 2 G; p �� ' ^  , then p �� ' and p ��  . So
.M; C/ŒG� ˆ ' and .M; C/ŒG� ˆ  and therefore .M; C/ŒG� ˆ ' ^  .

:' “!” Assume that .M; C/ŒG� ˆ :'. D D fp j p �� ' or p �� :'g is
dense (using Lemma 17 and Definition 4). Therefore there is a p 2 G \ D
and by induction p �� :'.

“ ” Assume that there is p 2 G such that p �� :'. If .M; C/ ˆ '

then by induction hypothesis there is a q 2 G such that q �� '. But
then also r �� ' for some r � p; q and this is a contradiction because of
Definition 4. So .M; C/ ˆ :'.

8X' “!” Assume that .M; C/ŒG� ˆ 8X'. Following the lines of the “!”-
part of the proof for † D 	 , there is a dense D D f p j either p ��
8X' or for some �; p �� :'.�/g. By induction we show that the second
case is not possible and so it follows that p �� 8X'.

“ ” By induction.
ut

Lemma 19 ��D�
Proof p �� '.�1; : : : ; �n/ ! p � '.�1; : : : ; �n/ follows directly from the Truth
Lemma. For the converse we use Lemma 17 c) and note that we assumed the
existence of generics. Then from :p �� '.�1; : : : ; �n/ it follows that for some
q � p, q �� :'.�1; : : : ; �n/ and so :p � '.�1; : : : ; �n/. ut
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5 The Extension Fulfills the Axioms

We have shown that in MK we can prove the Definability Lemma without restricting
the forcing notion as we have to do when working with A-definable class forcing in
ZFC (see [3]). Unfortunately we do not have the same advantage when proving the
preservation of the axioms. For example, when proving the Replacement Axiom we
have to show that the range of a set under a class function is still a set and this does
not hold in general for class forcings. In [3] two properties of forcing notions are
introduced, namely pretameness and tameness. Pretameness is needed to prove the
Definability Lemma and show that all axioms except Power Set are preserved. For
the Power Set Axiom this restriction needs to be strengthened to tameness. Let us
give the definitions in the MK context:

Definition 20 (Pretameness) D � P is predense � p 2 P if every q � p is
compatible with an element of D.

P is pretame if and only if whenever hDi j i 2 ai is a sequence of dense classes
in M, a 2 M and p 2 P then there exists a q � p and hdi j i 2 ai 2 M such that
di � Di and di is predense � q for each i.

Definition 21 q 2 P meets D � P if q extends an element in D.
A predense � p partition is a pair .D0;D1/ such that D0 [ D1 is predense � p

and p0 2 D0; p1 2 D1 ! p0; p1 are incompatible. Suppose h.Di
0;D

i
1/ j i 2 ai,

h.Ei
0;E

i
1/ j i 2 ai are sequences of predense � p partitions. We say that they are

equivalent� p if for each i 2 a, fq j q meets Di
0 $ q meets Ei

0g is dense � p. When
p D 1P we omit � p.

To each sequence of predense� p partitions ED D h.Di
0;D

i
1/ji 2 ai 2 M and G is

P-generic over hM; Ci, p 2 G we can associate the function

f GED W a! 2

defined by f .i/ D 0 $ G \ Di
0 ¤ ;. Then two such sequences are equivalent � p

exactly if their associated functions are equal, for each choice of G.

Definition 22 (Tameness) P is tame iff P is pretame and for each a 2 M and p 2 P
there is q � p and ˛ 2 ORD.M/ such that whenever ED D h.Di

0;D
i
1/ji 2 ai 2 M

is a sequence of predense � q partitions, fr j ED is equivalent � r to some EE D
h.Ei

0;E
i
1/ j i 2 ai in VM

˛ g is dense below q.

Theorem 23 Let .M; C/ be a model of MK. Then, if G is P-generic over .M; C/ and
P is tame then .M; C/ŒG� is a model of MK.

Proof Extensionality and Foundation follow because MŒG� is transitive (see
Lemma 9 d); axioms 2 and 3 from Definitions 4 and 6. For Pairing, let �G

1 ; �
G
2 be

such that �1, �2 2 N s. Then the interpretation of the name � D fh�1; 1Pi; h�2; 1Pig
in the extension gives the desired �G D f�G

1 ; �
G
2 g. Infinity follows because ! exists
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in .M; C/ and the notion of ! is absolute to any model, ! 2 .M; C/ŒG�. Union
follows as in the set forcing case.

Replacement This follows as in [3] from the property of pretameness and we give
the proof to make clear where the property of pretameness is needed: Suppose
that F W �G ! MŒG�. Then for each �0 of rank < rank � the class D.�0/ D
f p j for some �; q � �0 2 � ! F.�0/ D �g is dense below p, for some p 2 G
which forces that F is a total function on � . We now use pretameness to “shrink”
this class to a set: so for each q � p there is an r � q and ˛ 2 Ord.M/ such that
D˛.�0/ D fs j s 2 VM

˛ and for some � of rank < ˛; s � �0 2 � ! F.�0/ D �g is
predense � r for each �0 of rank < rank � . Then it follows by genericity that there
is a q 2 G and ˛ 2 Ord.M/ such that q � p and D˛.�0/ is predense � q for each
�0 of rank < rank � . So let � D fh�; ri j rank � < ˛; r 2 VM

˛ ; r � � 2 ran.F/g and
then it follows that ran.F/ D �G 2 MŒG�.

Power Set This follows from tameness as shown in [3].

Class-Comprehension Let 	 D fh�; pi 2 N s � P j p � '.�;†1; : : : ; †n/g.
Because of the Definability Lemma, we know that 	 2 N . By Definitions 4 and 6,
	G D f�G j 9p 2 G.h�; pi 2 	/g and we need to check that this equals the desired
Y D fx j .'.x; †G

1 ; : : : ; †
G
n //

.M;C/ŒG�g. So let �G 2 	G. Then by the definition of 	G

we know that p � '.�;†1; : : : ; †n/ and because of the Truth Lemma it follows
that .M; C/ŒG� ˆ '.�G; †G

1 ; : : : ; †
G
n /. For the converse, let x 2 Y. By the Truth

Lemma, 9p 2 G. p � '.�;†1; : : : ; †n/, where � is a name for x. By definition of
	 , h�; pi 2 	 .

Global Choice Let <M denote the well-order of M and let �x; �y be the least names
for some x; y 2 MŒG�. As the names are elements of M, we may assume that
�x <M �y. So we define the relation <G in MŒG� using M and <M as parameters,
so that x <G y iff �x <M �y for the corresponding least names of x and y. Let
R D f.x; y/ j x; y 2 MŒG� and x <G yg. Then by Class-Comprehension the class R
exists. ut

Friedman [3] gives us a simple sufficient condition for tameness that translates
directly into the context of MK:

Definition 24 For regular, uncountable � > !, P is �-distributive if whenever p 2
P and hDi j i < ˇi are dense classes, ˇ < � then there is a q � p meeting each Di (p
meets D if p � q 2 D for some q).

P is tame below � if the tameness conditions hold for P with the added restriction
that Card.a/ < �.

Lemma 25 If P is �-distributive then P is tame below �.

Proof Analogous to set forcing.6 ut

6See [3, p. 37].
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6 Laver’s Theorem

In the following we will give an example which shows that a fundamental theorem
that holds for set forcing can be violated by tame class forcings.

Laver’s Theorem (see [5]) shows that for a set-generic extension V � VŒG�,
V ˆ ZFC with the forcing notion P 2 V and G P-generic over V , V is definable
in VŒG� from parameter VıC1 (of V) and ı D jP jC in VŒG�. This result makes
use of the fact that every such forcing extension has the approximation and cover
properties as defined in [4] and relies on certain results for such extensions.

In general, the same does not hold for class forcing. In fact there are class forcings
such that the ground model is not even second-order definable from set-parameters:

Theorem 26 There is an MK-model .M; C/ and a first-order definable, tame class
forcing P with G P-generic over .M; C/ such that the ground model M is not
definable with set-parameters in the generic extension .M; C/ŒG�.
Proof We are starting from L. For every successor cardinal ˛, let P˛ be the forcing
that adds one Cohen set to ˛: P˛ is the set of all functions p such that

dom. p/ � ˛; jdom. p/j < ˛; ran. p/ � f0; 1g:

Let P be the Easton product of the P˛ for every successor ˛: A condition p 2 P
is a function p 2 L of the form p D hp˛ W ˛ successor cardinali 2 …˛ succ.P˛ (p is
stronger then q if and only if p � q) and p has Easton support: for every inaccessible
cardinal �, j f˛ < � j p.˛/ ¤ ;g j < �. Then P is the forcing which adds one Cohen
set to every successor cardinal.

Let P D P � P D …˛ succP˛ �…˛ succP˛ be the forcing that adds simultaneously
two Cohen sets to every successor cardinal.7 Note that …˛ succ.P˛ � …˛ succ.P˛ is
isomorphic to…˛ succ.P˛�P˛ . Let G be P-generic. Then G D …˛ succ.G0.˛/�G1.˛/
and we let G0 D …˛ succ.G0.˛/ and G1 D …˛ succ.G1.˛/ with G0;G1 P-generic over
L. We consider the extension LŒG0� � LŒG0�ŒG1� and we will show, that LŒG0� is not
definable in LŒG0�ŒG1� from parameters in LŒG0�.

The reason that we cannot apply Laver’s and Hamkins’ results of [5] to this
extension is that it does not fulfill the ı approximation property8: As the forcing adds
a new set to every successor, the ı approximation property cannot hold at successor
cardinals ı: the added Cohen set is an element of the extension and a subset of the
ground model and all of its < ı approximations are elements of the ground model
but the whole set is not.

7It follows by a standard argument that P is pretame (and indeed tame) over .M; C/, see [3].
8A pair of transitive classes M � N satisfies the ı approximation property (with ı 2 CardN ) if
whenever A � M is a set in N and A \ a 2 M for any a 2 M of size less than ı in M, then A 2 M.
For models of set theory equipped with classes, the pair M � N satisfies the ı approximation
property for classes if whenever A � M is a class of N and A\ a 2 M for any a of size less than ı
in M, then A is a class of M.
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Note that the forcing is weakly homogeneous, i.e. for every p; q 2 P there is an
automorphism � on P such that �. p/ is compatible with q. This is because every
P˛ is weakly homogeneous (let �. p/ 2 P˛ such that dom.�. p// D dom. p/ and
�. p/.�/ D q.�/ if � 2 dom. p/ \ dom.q/ and �. p/.�/ D p.�/ otherwise, then
� is order preserving and a bijection) and therefore also P is weakly homogeneous
(define � componentwise using the projection of p to p˛). Similar for P � P.

To show that LŒG0� is not definable in LŒG0�ŒG1� with parameters, assume to the
contrary that there is a set-parameter a0 such that LŒG0� is definable by the second-
order formula '.x; a0/ in LŒG0�ŒG1� from a0. Let ˛ be such that a0 2 LŒG0�˛;G1�
˛�. Now consider a D G0.˛C/, the Cohen set which is added to ˛C in the first
component of P. a is P˛C -generic over LŒG0� ˛;G1� ˛� and as a is an element of
LŒG0� the formula ' holds for a. So we also know that there is a condition q 2 G
such that q � '.Pa; a0/.

Now we construct another generic G� D G�
0 � G�

1 which produces the same
extension but also an element for which ' holds and which is not an element of
LŒG0�. This new generic adds the same sets as G, but we switch G0 and G1 at ˛C so
that the set added by G1.˛C/ is now added in the new first component G�

0 . However
we have to make sure that the new generic respects q so that ' is again forced in the
extension. We achieve this by fixing the generic G on the length of q.˛C/ (we can
assume that the length is the same on G0 and G1).

It follows that q 2 G�
0 � G�

1 and because of weakly homogeneity G�
0 � G�

1 is
generic and LŒG0�ŒG1� D LŒG�

0 �ŒG
�
1 �. Because of the construction of G�, the formula

'.x; a0/ holds for the set b D G�
0 .˛

C/ but b is not an element of LŒG0�. That is a
contradiction! ut

We have seen that there are different ways of approaching class forcing, namely
on the one hand as definable from a class parameter A in a ZFC model .M;A/ and
on the other hand in the context of an MK model .M; C/. That presents us with
three notions of genericity: set-genericity, A-definable class genericity and class-
genericity. One of the questions that arises now is in which way we can define the
next step in this “hierarchy” of genericity. To answer this question, Sy Friedman and
the author of this paper are currently working on so-called hyperclass forcings in a
variant of MK, i.e. forcings in which the conditions are classes (see [1]). We will
show in which context such forcings are definable and which application they have
to class-theory.
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Hyperclass Forcing in Morse-Kelley Class
Theory

Carolin Antos and Sy-David Friedman

Abstract In this article we introduce and study hyperclass-forcing (where the
conditions of the forcing notion are themselves classes) in the context of an
extension of Morse-Kelley class theory, called MK��. We define this forcing by
using a symmetry between MK�� models and models of ZFC� plus there exists
a strongly inaccessible cardinal (called SetMK��). We develop a coding between
ˇ-models M of MK�� and transitive models MC of SetMK�� which will allow
us to go from M to MC and vice versa. So instead of forcing with a hyperclass
in MK�� we can force over the corresponding SetMK�� model with a class of
conditions. For class-forcing to work in the context of ZFC� we show that the
SetMK�� model MC can be forced to look like L�� ŒX�, where �� is the height of
MC, � strongly inaccessible in MC and X � �. Over such a model we can apply
definable class forcing and we arrive at an extension of MC from which we can go
back to the corresponding ˇ-model of MK��, which will in turn be an extension of
the original M. Our main result combines hyperclass forcing with coding methods
of Beller et al. (Coding the universe. Lecture note series. Cambridge University
Press, Cambridge, 1982) and Friedman (Fine structure and class forcing. de Gruyter
series in logic and its applications, vol 3, Walter de Gruyter, New York, 2000) to
show that every ˇ-model of MK�� can be extended to a minimal such model of
MK�� with the same ordinals. A simpler version of the proof also provides a new
and analogous minimality result for models of second-order arithmetic.
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1 Introduction

When considering forcing notions with respect to their size, there are three different
types: the original version of forcing, where the forcing notion is a set, called
set forcing; forcing in ZFC, where the forcing notion is a class, called definable
class forcing and class forcing in Morse-Kelley class theory (MK). In this article
we consider a fourth type which we call definable hyperclass forcing and give
applications for this forcing in the context of Morse-Kelley class theory, where
hyperclass forcing denotes a forcing with class conditions. We will define hyperclass
forcing indirectly by using a correspondence between certain models of MK and
models of a version of ZFC� (minus PowerSet) and show that we can define
definable hyperclass forcing by going to the related ZFC� model and using definable
class forcing there.

Two problems arise when considering definable class forcing in ZFC: the forcing
relation might not be definable in the ground model and the extension might
not preserve the axioms. As an example consider Col.!;ORD/ with conditions
p W n ! Ord for n 2 ! which adds a cofinal sequence of length ! in the
ordinals. Here Replacement fails.1 These problems were addressed in a general
way by the second author in [4] where class forcings are presented which are
definable (with parameters) over a model hM;Ai where M is a transitive model of
ZFC, A � M and Replacement holds in M for formulas mentioning A as a unary
predicate. Two properties of the forcing notion are introduced, pretameness and
tameness and it is shown that for a pretame forcing notion the Definability Lemma
holds and Replacement is preserved and that tameness (which is a strengthening
of pretameness) is equivalent to the preservation of the Power Set axiom. In this
article we will adjust this approach to definable class forcing in ZFC�. Pretameness
is defined as follows:

Definition 1 A forcing notion P is pretame iff whenever hDiji 2 ai, a 2 M, is
an hM;Ai-definable sequence of dense classes and p 2 P then there is q � p and
hdiji 2 ai 2 M such that di � Di and di is predense � q for each i.

For definable hyperclass forcing we will work in the context of Morse-Kelley
class theory, by which we mean a theory with a two-sorted language, i.e. the object
are sets and classes and we have corresponding quantifiers for each type of object.
We denote the classes by upper case letters and sets by lower case letters, the same
will hold for class-names and set-names and so on. Hence atomic formulas for the
2-relation are of the form “x 2 X” where x is a set-variable and X is a set- or class-
variable. The models M of MK are of the form hM;2; Ci, where M is a transitive
model of ZFC, C the family of classes of M (i.e. every element of C is a subset
of M) and 2 is the standard 2 relation (from now on we will omit mentioning this
relation). We use the following axiomatization of MK:

1A detailed analyses on how even the Definability Lemma for class forcings can fail can be found
in [7].


