Applied and Numerical Harmonic Analysis

Holger Boche Giuseppe Caire Robert Calderbank Maximilian März Gitta Kutyniok Rudolf Mathar Editors

Compressed Sensing and its Applications

Second International MATHEON Conference 2015

Applied and Numerical Harmonic Analysis

Series Editor John J. Benedetto University of Maryland College Park, MD, USA

Editorial Advisory Board

Akram Aldroubi Vanderbilt University Nashville, TN, USA

Douglas Cochran Arizona State University Phoenix, AZ, USA

Hans G. Feichtinger University of Vienna Vienna, Austria

Christopher Heil Georgia Institute of Technology Atlanta, GA, USA

Stéphane Jaffard University of Paris XII Paris, France

Jelena Kovačević Carnegie Mellon University Pittsburgh, PA, USA **Gitta Kutyniok** Technische Universität Berlin Berlin, Germany

Mauro Maggioni Duke University Durham, NC, USA

Zuowei Shen National University of Singapore Singapore, Singapore

Thomas Strohmer University of California Davis, CA, USA

Yang Wang Michigan State University East Lansing, MI, USA

More information about this series at http://www.springer.com/series/4968

Holger Boche • Giuseppe Caire • Robert Calderbank Maximilian März • Gitta Kutyniok • Rudolf Mathar Editors

Compressed Sensing and its Applications

Second International MATHEON Conference 2015

Editors Holger Boche Fakultät für Elektrotechnik und Informationstechnik Technische Universität München Munich, Bavaria, Germany

Robert Calderbank Department of Electrical & Computer Engineering Duke University Durham, North Carolina, USA

Gitta Kutyniok Institut für Mathematik Technische Universität Berlin Berlin, Germany Giuseppe Caire Institut für Telekommunikationssysteme Technische Universität Berlin Berlin, Germany

Maximilian März Institut für Mathematik Technische Universität Berlin Berlin, Germany

Rudolf Mathar Lehrstuhl und Institute für Statistik RWTH Aachen Aachen, Germany

 ISSN 2296-5009
 ISSN 2296-5017 (electronic)

 Applied and Numerical Harmonic Analysis
 ISBN 978-3-319-69801-4
 ISBN 978-3-319-69802-1 (eBook)

 https://doi.org/10.1007/978-3-319-69802-1
 ISBN 978-3-319-69802-1
 ISBN 978-3-319-69802-1

Library of Congress Control Number: 2017960841

Mathematics Subject Classification (2010): 94A12, 94A20, 68U10, 90C25, 15B52

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This book is published under the trade name Birkhäuser, www.birkhauser-science.com The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

ANHA Series Preface

The *Applied and Numerical Harmonic Analysis (ANHA)* book series aims to provide the engineering, mathematical, and scientific communities with significant developments in harmonic analysis, ranging from abstract harmonic analysis to basic applications. The title of the series reflects the importance of applications and numerical implementation, but richness and relevance of applications and implementation depend fundamentally on the structure and depth of theoretical underpinnings. Thus, from our point of view, the interleaving of theory and applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished, developed, and deepened over time within many disciplines and by means of creative cross-fertilization with diverse areas. The intricate and fundamental relationship between harmonic analysis and fields such as signal processing, partial differential equations (PDEs), and image processing is reflected in our state-of-the-art *ANHA* series.

Our vision of modern harmonic analysis includes mathematical areas such as wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with some basic problems in digital signal processing, speech and image processing, geophysics, pattern recognition, biomedical engineering, and turbulence. These areas implement the latest technology from sampling methods on surfaces to fast algorithms and computer vision methods. The underlying mathematics of wavelet theory depends not only on classical Fourier analysis but also on ideas from abstract harmonic analysis, including von Neumann algebras and the affine group. This leads to a study of the Heisenberg group and its relationship to Gabor systems, and of the metaplectic group for a meaningful interaction of signal decomposition methods. The unifying influence of wavelet theory in the aforementioned topics illustrates the justification for providing a means for centralizing and disseminating information from the broader, but still focused, area of harmonic analysis. This will be a key role of *ANHA*. We intend to publish with the scope and interaction that such a host of issues demands.

Along with our commitment to publish mathematically significant works at the frontiers of harmonic analysis, we have a comparably strong commitment to publish major advances in the following applicable topics in which harmonic analysis plays a substantial role:

Antenna theory	Prediction theory
Biomedical signal processing	Radar applications
Digital signal processing	Sampling theory
Fast algorithms	Spectral estimation
Gabor theory and applications	Speech processing
Image processing	Time-frequency and
Numerical partial differential equations	time-scale analysis
	Wavelet theory

The above point of view for the *ANHA* book series is inspired by the history of Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the development of mathematics, on the understanding of many engineering and scientific phenomena, and on the solution of some of the most important problems in mathematics and the sciences. Historically, Fourier series were developed in the analysis of some of the classical PDEs of mathematical physics; these series were used to solve such equations. In order to understand Fourier series and the kinds of solutions they could represent, some of the most basic notions of analysis were defined, e.g., the concept of "function." Since the coefficients of Fourier series are integrals, it is no surprise that Riemann integrals were conceived to deal with uniqueness properties of trigonometric series. Cantor's set theory was also developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena, such as sound waves, can be described in terms of elementary harmonics. There are two aspects of this problem: first, to find, or even define properly, the harmonics or spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second, to determine which phenomena can be constructed from given classes of harmonics, as done, e.g., by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineering, mathematics, and the sciences. For example, Wiener's Tauberian theorem in Fourier analysis not only characterizes the behavior of the prime numbers but also provides the proper notion of spectrum for phenomena such as white light; this latter process leads to the Fourier analysis associated with correlation functions in filtering and prediction problems, and these problems, in turn, deal naturally with Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier integral operators. Problems in antenna theory are studied in terms of unimodular trigonometric polynomials. Applications of Fourier analysis abound in signal processing, whether with the fast Fourier transform (FFT), or filter design, or the adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.

The coherent states of mathematical physics are translated and modulated Fourier transforms, and these are used, in conjunction with the uncertainty principle, for dealing with signal reconstruction in communications theory. We are back to the raison d'être of the *ANHA* series!

University of Maryland College Park, MD, USA John J. Benedetto Series Editor

Preface

The key challenge of compressed sensing arises from the task of recovering signals from a small collection of measurements, exploiting the fact that highdimensional signals are typically governed by intrinsic low-complexity structures, for instance, being sparse in an orthonormal basis. While the reconstruction from such compressed, typically randomly selected measurements is well studied from a theoretical perspective, there also exist numerous efficient recovery algorithms exhibiting excellent practical performance and thereby making compressed sensing relevant to many different applications. In fact, from an early stage on, the field has greatly benefited from the interaction between mathematics, engineering, computer science, and physics, leading to new theoretical insights as well as significant improvements of real-world applications.

From the point of view of applied mathematics, the field makes use of tools from applied harmonic analysis, approximation theory, linear algebra, convex optimization, and probability theory, while the applications encompass many areas such as image processing, sensor networks, radar technology, quantum computing, or statistical learning, to name just a very few. Nowadays, it is fair to say that more than 10 years after its emergence, the field of compressed sensing has reached a mature state, where many of the underlying mathematical foundations are quite well understood. Therefore, some of the techniques and results are now being transferred to other related areas, leading to a broader conception of compressed sensing and opening up new possibilities for applications.

In December 2015, the editors of this volume organized the *Second International MATHEON Conference on Compressed Sensing and its Applications* at the Technische Universität Berlin. This conference was supported by the research center for *Mathematics for Key Technologies* (MATHEON), as well as the *German Research Foundation* (*DFG*). It was attended by more than 150 participants from 18 different countries, and as in the first workshop of this series in 2013, experts in a variety of different research areas were present. This diverse background of participants led to a very fruitful exchange of ideas and to stimulating discussions.

This book is the second volume in the *Applied and Numerical Harmonic Analysis* book series on *Compressed Sensing and its Applications*, presenting state-of-the-art

monographs on various topics in compressed sensing and related fields. It is aimed at a broad readership, reaching from graduate students to senior researchers in applied mathematics, engineering, and computer science.

This volume features contributions by two of the plenary speakers (chapters "On the Global-Local Dichotomy in Sparsity Modeling" and "Fourier Phase Retrieval: Uniqueness and Algorithms"), namely, Michael Elad (Technion-Israel Institute of Technology) and Yonina C. Eldar (Technion-Israel Institute of Technology), and by ten invited speakers (chapters "Compressed Sensing Approaches for Polynomial Approximation of High-Dimensional Functions," "Multisection in the Stochastic Block Model Using Semidefinite Programming," "Recovering Signals with Unknown Sparsity in Multiple Dictionaries," "Compressive Classification and the Rare Eclipse Problem," "Weak Phase Retrieval," "Cubatures on Grassmannians: Moments, Dimension Reduction, and Related Topics," "A Randomized Tensor Train Singular Value Decomposition," "Versatile and Scalable Cosparse Methods for Physics-Driven Inverse Problems," "Total Variation Minimization in Compressed Sensing," "Compressed Sensing in Hilbert Spaces"), namely, Ben Adcock (Simon Fraser University), Alfonso S. Bandeira (Massachusetts Institute of Technology), Peter G. Casazza (University of Missouri, Columbia), Mike E. Davies (University of Edinburgh), Martin Ehler (University of Vienna), Rémi Gribonval (INRIA Rennes), Felix Krahmer (Technische Universität München), Dustin G. Mixon (Air Force Institute of Technology), Reinhold Schneider (Technische Universität Berlin), and Philip Schniter (The Ohio State University, Columbus).

In the following, we will give a brief outline of the content of each chapter. For an introduction and a self-contained overview on compressed sensing and its major achievements, we refer the reader to chapter "A Survey of Compressed Sensing" of the first volume of this book series (*Boche, H., Calderbank, R., Kutyniok, G., and Vybiral, J. (eds.), Compressed Sensing and its Applications: MATHEON Workshop* 2013. Birkhäuser Boston, 2015).

Two of the chapters focus on phase retrieval: chapter "Fourier Phase Retrieval: Uniqueness and Algorithms" contains a detailed overview on Fourier phase retrieval and practical algorithms, whereas chapter "Weak Phase Retrieval" introduces a weaker formulation of the classical phase retrieval. Another key topic is the question how sparsity-promoting transformations are used in compressed sensing. In this realm, chapter "On the Global-Local Dichotomy in Sparsity Modeling" analyzes the gap between local and global sparsity in dictionaries, chapter "Versatile and Scalable Cosparse Methods for Physics-Driven Inverse Problems" focuses on the use of the analysis formulation in physics-driven inverse problems, chapter "Total Variation Minimization in Compressed Sensing" gives an overview over total variation minimization in compressed sensing, and chapter "Recovering Signals with Unknown Sparsity in Multiple Dictionaries" uses iterative reweighting for recovering signals with unknown sparsity in multiple dictionaries. Several chapters focus entirely on mathematical aspects, such as chapter "Compressed Sensing Approaches for Polynomial Approximation of High-Dimensional Functions" which exploits compressed sensing for approximating functions with polynomials. In chapter "Compressed Sensing in Hilbert Spaces," compressed sensing is considered in the abstract framework of Hilbert spaces, and chapter "Compressive Classification and the Rare Eclipse Problem" deals with random projections of convex sets. The other chapters study new frontiers in related areas, such as detecting community-like structures in graphs via the stochastic block model (chapter "Multisection in the Stochastic Block Model Using Semidefinite Programming"), cubatures on Grassmannians and their connection to the recovery of sparse probability measures (chapter "Cubatures on Grassmannians: Moments, Dimension Reduction, and Related Topics"), and an examination of randomized tensor train singular value decompositions (chapter "A Randomized Tensor Train Singular Value Decomposition").

We would like to thank the following current and former members of the research group "Applied Functional Analysis" at the Technische Universität Berlin without whom this conference would not have been possible: Axel Flinth, Martin Genzel, Mijail Guillemard, Anja Hedrich, Sandra Keiper, Anton Kolleck, Maximilian Leitheiser, Jackie Ma, Philipp Petersen, Friedrich Philipp, Mones Raslan, Martin Schäfer, and Yizhi Sun.

München, Germany Berlin, Germany Durham, USA Berlin, Germany Berlin, Germany Aachen, Germany July 2017 Holger Boche Giuseppe Caire Robert Calderbank Gitta Kutyniok Maximilian März Rudolf Mathar

Contents

On	the (Global-Local Dichotomy in Sparsity Modeling	1
Dn	nitry l	Batenkov, Yaniv Romano, and Michael Elad	
1	Intro	duction	2
	1.1	The Need for a New Local-Global Sparsity Theory	2
	1.2	Content and Organization of the Paper	3
2	Loca	al-Global Sparsity	3
	2.1	Preliminaries	4
	2.2	Globalized Local Model	4
	2.3	Uniqueness and Stability	9
3	Purs	uit Algorithms 1	2
	3.1	Global (Oracle) Projection, Local Patch Averaging (LPA) and	
		the Local-Global Gap 1	3
	3.2	Local Pursuit Guarantees 1	5
	3.3	Globalized Pursuits 1	5
4	Exar	nples 1	8
	4.1	Piecewise Constant (PWC) Signals 1	8
	4.2	Signature-Type Dictionaries 2	1
	4.3	Convolutional Dictionaries 2	4
5	Num	nerical Experiments 2	6
	5.1	Signature-Type Signals 2	6
	5.2	Denoising PWC Signals 3	0
6	Disc	ussion 3	1
	6.1	Relation to Other Models 3	2
	6.2	Further Extensions 3	2
	6.3	Learning Models from Data 3	3
Ap	pendi	ix A: Proof of Lemma 1 3	4
Ap	pendi	ix B: Proof of Lemma 2 3	4
Ap	pendi	ix C: Proof of Theorem 6 3	8
Ap	pendi	ix D: Proof of Theorem 8 4	0
Ap	pendi	ix E: Generative Models for Patch-Sparse Signals 4	3
Re	feren	ces 5	0

Fo	urier	Phase Retrieval: Uniqueness and Algorithms	55
Ta	mir B	endory, Robert Beinert, and Yonina C. Eldar	
1	Intro	oduction	56
2	Prob	elem Formulation	57
3	Unic	queness Guarantees	59
	3.1	Trivial and Non-Trivial Ambiguities	59
	3.2	Ensuring Uniqueness in Classical Phase Retrieval	61
	3.3	Phase Retrieval with Deterministic Masks	65
	3.4	Phase Retrieval from STFT Measurements	68
	3.5	FROG Methods	70
	3.6	Multidimensional Phase Retrieval	71
4	Phas	se Retrieval Algorithms	73
	4.1	Alternating Projection Algorithms	75
	4.2	Semidefinite Relaxation Algorithms	77
	4.3	Additional Non-Convex Algorithms	80
	4.4	Algorithms for Sparse Signals	82
5	Con	clusion	84
Re	feren	ces	85
C	mnr	assed Sensing Approaches for Polynomial Approximation of	
н	ah-D	imensional Functions	03
Re	n Ad	cock Simone Brugianaglia and Clayton G Webster))
1	Intro	eduction	93
1	1 1	Compressed Sensing for High-Dimensional Approximation	94
	1.1	Structured Sparsity	95
	1.2	Dealing with Infinity	96
	1.5	Main Results	96
	1.5	Existing Literature	97
2	Spar	rese Polynomial Approximation of High-Dimensional Functions	98
	2.1	Setup and Notation	98
	2.2	Regularity and Best k-Term Approximation	99
	2.3	Lower Sets and Structured Sparsity	100
3	Con	pressed Sensing for Multivariate Polynomial Approximation	102
	3.1	Exploiting Lower Set-Structured Sparsity	102
	3.2	Choosing the Optimization Weights: Nonuniform Recovery	104
	3.3	Comparison with Oracle Estimators	105
	3.4	Sample Complexity for Lower Sets	106
	3.5	Quasi-Optimal Approximation: Uniform Recovery	108
	3.6	Unknown Errors, Robustness, and Interpolation	111
	3.7	Numerical Results	115
4	Con	clusions and Challenges	120
Re	feren	ces	121

M	Iltisection in the Stochastic Block Model Using Semidefinite	
Pr	ogramming	. 125
Na	man Agarwal, Afonso S. Bandeira, Konstantinos Koiliaris, and	
Ale	exandra Kolla	
1	Introduction	. 126
	1.1 Related Previous and Parallel Work	. 128
	1.2 Preliminaries	. 130
2	SDP Relaxations and Main Results	. 131
3	Proofs	. 135
	3.1 Proof of Optimality: Theorem 1	. 135
	3.2 Proof of Optimality: Theorem 2	. 137
	3.3 Proof of Theorem 3	. 141
	3.4 Proof of Theorem 4	. 149
4	Note About the Monotone Adversary	. 153
5	Experimental Evaluation	. 154
6	The Multireference Alignment SDP for Clustering	. 155
Ар	pendix	. 159
Re	ferences	. 160
Re	covering Signals with Unknown Sparsity in Multiple Dictionaries	. 163
Riz	zwan Ahmad and Philip Schniter	
1	Introduction	. 164
	1.1 ℓ_2 -Constrained Regularization	. 164
	1.2 Sparsity-Inducing Composite Regularizers	. 165
	1.3 Contributions	. 166
	1.4 Related Work	. 166
	1.5 Notation	. 168
2	The Co-L1 Algorithm	. 168
	2.1 Log-Sum MM Interpretation of Co-L1	. 170
	2.2 Convergence of Co-L1	. 171
	2.3 Approximate $\ell_{1,0}$ Interpretation of Co-L1	. 172
	2.4 Bayesian MAP Interpretation of Co-L1	. 172
	2.5 Variational EM Interpretation of Co-L1	. 173
	2.6 Co-L1 for Complex-Valued <i>x</i>	. 175
	2.7 New Interpretations of the IRW-L1 Algorithm	. 176
3	The Co-IRW-L1 Algorithm	. 177
	3.1 Log-Sum-Log MM Interpretation of Co-IRW-L1-δ	. 179
	3.2 Convergence of Co-IRW-L1- δ	. 180
	3.3 Approximate $\ell_0 + \ell_{0,0}$ Interpretation of Co-IRW-L1-8	. 180
	3.4 Bayesian MAP Interpretation of Co-IRW-L1-δ	. 180
	3.5 Variational EM Interpretation of Co-IRW-L1-8	. 181
	3.6 Co-IRW-L1	. 183
	3.7 Co-IRW-L1 for Complex-Valued <i>x</i>	. 183
	÷	

4	Numerical Results	184
	4.1 Experimental Setup	185
	4.2 Synthetic 2D Finite-Difference Signals	185
	4.3 Shepp-Logan and Cameraman Recovery	187
	4.4 Dynamic MRI	188
	4.5 Algorithm Runtime	191
5	Conclusions	192
Re	ferences	193
С	umpressive Classification and the Rare Eclipse Problem	197
Af	Fonso S Bandeira Dustin G Mixon and Benjamin Recht	177
1	Introduction	198
2	Our Model and Related Work	198
3	Theoretical Results	200
5	3.1 The Case of Two Balls	200
	3.2 The Case of Two Ellipsoids	202
	3.3 The Case of Multiple Convex Sets	202
4	Random Projection Versus Principal Component Analysis	200
-	4.1 Comparison Using Toy Examples	200
	4.1 Comparison Using Toy Examples	210
5	Future Work	210
6	Appendix: Proofs	213
Ŭ	6.1 Proof of Gordon's Escape Through a Mesh Theorem	214
	6.2 Proof of Lemma 1	215
	6.3 Proof of Theorem 2	216
Re	ferences	210
		21)
W	eak Phase Retrieval	221
Sa	ra Botelho-Andrade, Peter G. Casazza, Dorsa Ghoreishi, Shani Jose,	
an	d Janet C. Tremain	
1	Introduction	221
2	Preliminaries	222
3	Weak Phase Retrieval	224
	3.1 Real Case	224
	3.2 Complex Case	228
4	Weak Phaseless Reconstruction	228
5	Illustrative Examples	231
Re	ferences	234
Cı	ubatures on Grassmannians: Moments, Dimension Reduction,	
an	d Related Topics	235
Ar	na Breger, Martin Ehler, Manuel Gräf, and Thomas Peter	
1	Introduction	235
2	Reconstruction from Moments and Dimension Reduction	237
	2.1 Reconstructing Sparse Distributions from Moments	237
	2.2 Dimension Reduction	239

3	High-Dimensional Moments from Lower-Dimensional Ones	240
	3.1 Moments and Spanning Sets	240
	3.2 Frames for Polynomial Spaces	241
4	Frames vs. Cubatures for Moment Reconstruction	243
	4.1 Frames and Cubatures on the Sphere and Beyond	243
	4.2 Moment Reconstruction with Cubatures in Grassmannians	245
5	Cubatures in Grassmannians	246
	5.1 Numerical Construction of Cubatures	246
	5.2 Cubatures for Approximation of Integrals	247
	5.3 Cubatures for Function Approximation	249
	5.4 Cubatures as Efficient Coverings	251
	5.5 Cubatures for Phase Retrieval	252
6	Cubatures of Varying Ranks	253
Re	ferences	257
	Pandomized Tonsor Train Singular Value Decomposition	261
Re	miamin Huber, Reinhold Schneider, and Sebastian Wolf	201
1	Introduction	261
1	1.1 Tensor Product Spaces	261
	1.2 Tensor Contractions and Diagrammatic Notation	203
2	Low-Rank Tensor Decompositions	204
2	2.1 Tensor Train Format	200
3	Randomized SVD for Higher-Order Tensors	207
5	3.1 Randomized SVD for Matrices	274
	3.2 Randomized TT-SVD	274
4	Relation to the Alternating Least Squares (ALS) Algorithm	270
5	Numerical Experiments	201
5	5.1 Approximation Quality for Nearly Low-Rank Tensors	282
	5.2 Approximation Quality with Respect to Oversampling	205
	5.2 Approximation Quality with Respect to the Order	285
	5.5 A Computation Time	205
	5.5 Approximation Quality Using Low-Rank Random Tensors	287
6	Conclusions and Outlook	287
Re	ferences	289
Itt		207
Ve	rsatile and Scalable Cosparse Methods for Physics-Driven	
In	verse Problems	291
Sr	đan Kitić, Siouar Bensaid, Laurent Albera, Nancy Bertin,	
an	d Rémi Gribonval	• • • •
1	Introduction	292
2	Physics-Driven Inverse Problems	293
	2.1 Linear PDEs	293
	2.2 Green's Functions	294
	2.3 Linear Inverse Problem	295

3	Worked Examples 29		
	3.1 Acoustic Source Localization from Microphone Measurements	296	
	3.2 Brain Source Localization from EEG Measurements	298	
4	Discretization	299	
	4.1 Finite-Difference Methods (FDM)	299	
	4.2 Finite Element Methods (FEM)	301	
	4.3 Numerical Approximations of Green's Functions	303	
	4.4 Discretized Inverse Problem	304	
5	Sparse and Cosparse Regularization	305	
	5.1 Optimization Problems	305	
	5.2 Optimization Algorithm	306	
	5.3 Computational Complexity	310	
6	Scalability	311	
	6.1 Analysis vs Synthesis	312	
	6.2 Multiscale Acceleration	315	
7	Versatility	317	
	7.1 Blind Acoustic Source Localization	318	
	7.2 Cosparse Brain Source Localization	323	
8	Summary and Conclusion	328	
Re	ferences	329	
m		222	
10	tal variation Minimization in Compressed Sensing	333	
Fe	lix Krahmer, Christian Kruschel, and Michael Sandbichler	222	
1	Introduction	333	
2	An Overview over 1 v Recovery Results	330	
	2.1 Sumcient Recovery Conditions	330	
	2.2 Recovery from Gaussian Measurements	338	
	2.3 Recovery from Haar-Incoherent Measurements	339	
2	2.4 Recovery from Subsampled Fourier Measurements	341	
3	I V Recovery from Subgaussian Measurements in ID	343	
	3.1 <i>M</i> ⁺ Bounds and Recovery	344	
	3.2 The Mean Width of Gradient Sparse Vectors in ID	346	
	3.3 The Extension to Gradient Compressible Vectors Needs	240	
	a New Approach	349	
	3.4 Exact Recovery	351	
	3.5 Subgaussian Measurements	353	
4 D	Discussion and Open Problems	356	
Re	terences	356	
Co	ompressed Sensing in Hilbert Spaces	359	
Ya	nn Traonmilin, Gilles Puy, Rémi Gribonval, and Mike E. Davies		
1	Introduction	360	
	1.1 Observation Model and Low-Complexity Signals	360	
	1.2 Decoders	361	
	1.3 The RIP: A Tool for the Study of Signal Recovery	362	
	1.4 A General Compressed Sensing Framework	363	

2	2 Low-Dimensional Models		
	2.1	Definition and Examples	364
	2.2	Structured Sparsity	365
	2.3	in Levels	366
3	Dim	ension Reduction with Random Linear Operators	367
	3.1	Projection on a Finite-Dimensional Subspace	368
	3.2	Dimension Reduction Step	369
	3.3	Summary	372
4	Perf	ormance of Regularizers for the Recovery of Low-Dimensional	
	mod	lels	372
	4.1	Convex Decoders and Atomic Norms	372
	4.2	Stable and Robust Recovery of Unions of Subspaces	375
	4.3	Definition and Calculation of $\delta_{\Sigma}(f)$	378
5	Gen	erality of the Whole Framework	379
	5.1	A Flexible Way to Guarantee Recovery	379
	5.2	Uniform vs Nonuniform Recovery Guarantees	380
	5.3	Extensions	380
	5.4	Sharpness of Results?	381
	5.5	New Frontiers: Super-Resolution and Compressive Learning	381
Re	feren	ces	382
A	plied	and Numerical Harmonic Analysis (87 Volumes)	385

On the Global-Local Dichotomy in Sparsity Modeling

Dmitry Batenkov, Yaniv Romano, and Michael Elad

Abstract The traditional sparse modeling approach, when applied to inverse problems with large data such as images, essentially assumes a sparse model for small overlapping data patches and processes these patches as if they were independent from each other. While producing state-of-the-art results, this methodology is suboptimal, as it does not attempt to model the entire global signal in any meaningful way—a nontrivial task by itself.

In this paper we propose a way to bridge this theoretical gap by constructing a global model from the bottom-up. Given local sparsity assumptions in a dictionary, we show that the global signal representation must satisfy a constrained underdetermined system of linear equations, which forces the patches to agree on the overlaps. Furthermore, we show that the corresponding global pursuit can be solved via local operations. We investigate conditions for unique and stable recovery and provide numerical evidence corroborating the theory.

Keywords Sparse representations · Inverse problems · Convolutional sparse coding

D. Batenkov (🖂)

Y. Romano

Department of Electrical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel

e-mail: yromano@tx.technion.ac.il

M. Elad

© Springer International Publishing AG 2017

H. Boche et al. (eds.), *Compressed Sensing and its Applications*, Applied and Numerical Harmonic Analysis, https://doi.org/10.1007/978-3-319-69802-1_1

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA e-mail: batenkov@mit.edu

Department of Computer Science, Technion - Israel Institute of Technology, 32000 Haifa, Israel e-mail: elad@cs.technion.ac.il

1 Introduction

1.1 The Need for a New Local-Global Sparsity Theory

The sparse representation model [17] provides a powerful approach to various inverse problems in image and signal processing such as denoising [18, 37], deblurring [14, 57], and super-resolution [47, 56], to name a few [38]. This model assumes that a signal can be represented as a sparse linear combination of a few columns (called atoms) taken from a matrix termed dictionary. Given a signal, the sparse recovery of its representation over a dictionary is called sparse coding or pursuit (such as the orthogonal matching pursuit, OMP, or basis pursuit, BP). Due to computational and theoretical aspects, when treating high-dimensional data, various existing sparsity-inspired methods utilize local patched-based representations rather than the global ones, i.e., they divide a signal into small overlapping blocks (patches), reconstruct these patches using standard sparse recovery techniques, and subsequently average the overlapping regions [11, 17]. While this approach leads to highly efficient algorithms producing state-of-the-art results, the global signal prior remains essentially unexploited, potentially resulting in suboptimal recovery.

As an attempt to tackle this flaw, methods based on the notion of *structured sparsity* [19, 29, 30, 32, 55] started to appear; for example, in [14, 37, 47] the observation that a patch may have similar neighbors in its surroundings (often termed the self-similarity property) is injected to the pursuit, leading to improved local estimations. Another possibility to consider the dependencies between patches is to exploit the multi-scale nature of the signals [36, 40, 53]. A different direction is suggested by the expected patch log likelihood (EPLL) method [40, 52, 60], which encourages the patches of the final estimate (i.e., after the application of the averaging step) to comply with the local prior. Also, a related work [45, 46] suggests promoting the local estimations to agree on their shared content (the overlap) as a way to achieve a coherent reconstruction of the signal.

Recently, an alternative to the traditional patch-based prior was suggested in the form of the convolutional, or shift-invariant, sparse coding (CSC) model [10, 25, 27, 28, 49, 54]. Rather than dividing the image into local patches and processing each of these independently, this approach imposes a specific structure on the global dictionary—a concatenation of banded circulant matrices—and applies a global pursuit. A thorough theoretical analysis of this model was proposed very recently in [41, 42], providing a clear understanding of its success.

The empirical success of the above algorithms indicates the great potential of reducing the inherent gap that exists between the independent local processing of patches and the global nature of the signal at hand. However, a key and highly desirable part is still missing—a theory which would suggest how to modify the basic sparse model to take into account the mutual dependencies between the patches, what approximation methods to use, and how to efficiently design and learn the corresponding structured dictionary.

1.2 Content and Organization of the Paper

In this paper we propose a systematic investigation of the signals which are implicitly defined by local sparsity assumptions. A major theme in what follows is that the presence of patch overlaps reduces the number of degrees of freedom, which, in turn, has theoretical and practical implications. In particular, this allows more accurate estimates for uniqueness and stability of local sparse representations, as well as better bounds on performance of existing sparse approximation algorithms. Moreover, the global point of view allows for development of new pursuit algorithms, which consist of local operation on one hand, while also taking into account the patch overlaps on the other hand. Some aspects of the offered theory are still incomplete, and several exciting research directions emerge as well.

The paper is organized as follows. In Section 2 we develop the basic framework for signals which are patch-sparse, building the global model from the "bottomup," and discuss some theoretical properties of the resulting model. In Section 3 we consider the questions of reconstructing the representation vector and of denoising a signal in this new framework. We describe "globalized" greedy pursuit algorithms [43] for these tasks, where the patch disagreements play a major role. We show that the frequently used local patch averaging (LPA) approach is in fact suboptimal in this case. In Section 4 and Appendix E: Generative Models for Patch-Sparse Signals, we describe several instances/classes of the local-global model in some detail, exemplifying the preceding definitions and results. The examples include piecewise constant signals, signature-type (periodic) signals, and more general bottom-up models. In Section 5 we present results of some numerical experiments, where in particular we show that one of the new globalized pursuits, inspired by the ADMM algorithm [9, 23, 24, 33], turns out to have superior performance in all the cases considered. We conclude the paper in Section 6 by discussing possible research directions.

2 Local-Global Sparsity

We start with the local sparsity assumptions for every patch and subsequently provide two complimentary characterizations of the resulting global signal space. On one hand, we show that the signals of interest admit a global "sparse-like" representation with a dictionary of convolutional type and with additional linear constraints on the representation vector. On the other hand, the signal space is in fact a union of linear subspaces, where each subspace is a kernel of a certain linear map. To complement and connect these points of view, in Appendix E: Generative Models for Patch-Sparse Signals, we show that the original local dictionary must carry a combinatorial structure, and based on this structure, we develop a generative model for patch-sparse signals. Concluding this section, we provide some theoretical analysis of the properties of the resulting model, in particular uniqueness and

stability of representation. For this task, we define certain measures of the dictionary, similar to the classical spark, coherence function, and the restricted isometry property, which take the additional dictionary structure into account. In general, this additional structure implies possibly better uniqueness as well as stability to perturbations; however, it is an open question to show they are provably better in certain cases.

2.1 Preliminaries

Let [m] denote the set $\{1, 2, ..., m\}$. If D is an $n \times m$ matrix and $S \subset [m]$ is an index set, then D_S denotes the submatrix of D consisting of the columns indexed by S.

Definition 1 (Spark of a Matrix). Given a dictionary $D \in \mathbb{R}^{n \times m}$, the *spark* of *D* is defined as the minimal number of columns which are linearly dependent:

$$\sigma(D) := \min\{j: \exists S \subset [m], |S| = j, \operatorname{rank} D_S < j\}.$$
(1)

Clearly σ (*D*) \leq *n* + 1.

Definition 2. Given a vector $\alpha \in \mathbb{R}^m$, the ℓ_0 pseudo-norm is the number of nonzero elements in α :

$$\|\alpha\|_0 := \#\{j: \alpha_j \neq 0\}$$

Definition 3. Let $D \in \mathbb{R}^{n \times m}$ be a dictionary with normalized atoms. The μ_1 coherence function (Tropp's Babel function) is defined as

$$\mu_1(s) := \max_{i \in [m]} \max_{S \subset [m] \setminus \{i\}, |S| = s} \sum_{j \in S} \left| \langle d_i, d_j \rangle \right|.$$

Definition 4. Given a dictionary *D* as above, the restricted isometry constant of order *k* is the smallest number δ_k such that

$$(1 - \delta_k) \|\alpha\|_2^2 \leq \|D\alpha\|_2^2 \leq (1 + \delta_k) \|\alpha\|_2^2$$

for every $\alpha \in \mathbb{R}^m$ with $\|\alpha\|_0 \leq k$.

For any matrix M, we denote by $\mathscr{R}(M)$ the column space (range) of M.

2.2 Globalized Local Model

In what follows we treat one-dimensional signals $x \in \mathbb{R}^N$ of length *N*, divided into P = N overlapping patches of equal size *n* (so that the original signal is thought

to be periodically extended). The other natural choice is P = N - n + 1, but for simplicity of derivations, we consider only the periodic case.

Let $R_1 := [I_{n \times n} \mathbf{0} \mathbf{0} \dots \mathbf{0}] \in \mathbb{R}^{n \times N}$, and for each $i = 2, \dots, P$, we define $R_i \in \mathbb{R}^{n \times N}$ to be the circular column shift of R_1 by $n \cdot (i - 1)$ entries, i.e., this operator extracts the *i*-th patch from the signal in a circular fashion.

Definition 5. Given local dictionary $D \in \mathbb{R}^{n \times m}$, sparsity level s < n, signal length N, and the number of overlapping patches P, the *globalized local sparse* model is the set

$$\mathscr{M} = \mathscr{M} (D, s, P, N) := \left\{ x \in \mathbb{R}^N, \ R_i x = D\alpha_i, \ \|\alpha_i\|_0 \leqslant s \ \forall i = 1, \dots, P \right\}.$$
(2)

This model suggests that each patch, $R_i x$ is assumed to have an *s*-sparse representation α_i , and this way we have characterized the global *x* by describing the local nature of its patches.

Next we derive a "global" characterization of \mathcal{M} . Starting with the equations

$$R_i x = D\alpha_i, \qquad i = 1, \ldots, P_i$$

and using the equality $I_{N\times N} = \frac{1}{n} \sum_{i=1}^{P} R_i^T R_i$, we have a representation

$$x = \frac{1}{n} \sum_{i=1}^{P} R_i^T R_i x = \sum_{i=1}^{P} \left(\frac{1}{n} R_i^T D\right) \alpha_i.$$

Let the global "convolutional" dictionary D_G be defined as the horizontal concatenation of the (vertically) shifted versions of $\frac{1}{n}D$, i.e., (see Figure 1 on page 5)

$$D_G := \left[\left(\frac{1}{n} R_i^T D \right) \right]_{i=1,\dots,P} \in \mathbb{R}^{N \times mP}.$$
(3)

Let $\Gamma \in \mathbb{R}^{mP}$ denote the concatenation of the local sparse codes, i.e.,

Fig. 1 The global dictionary D_G . After permuting the columns, the matrix becomes a union of circulant Toeplitz matrices, hence the term "convolutional".

$$\Gamma := \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_P \end{bmatrix}.$$

Given a vector Γ as above, we will denote by \tilde{R}_i the operator of extracting its *i*-th portion,¹, i.e., $\tilde{R}_i \Gamma \equiv \alpha_i$.

Summarizing the above developments, we have the global convolutional representation for our signal as follows:

$$x = D_G \Gamma. \tag{4}$$

Next, applying R_i to both sides of (4) and using (2), we obtain

$$D\alpha_i = R_i x = R_i D_G \Gamma. \tag{5}$$

Let $\Omega_i := R_i D_G$ denote the *i*-th stripe from the global convolutional dictionary D_G . Thus (5) can be rewritten as

$$\underbrace{\left[\mathbf{0}\dots\mathbf{0}\ D\ \mathbf{0}\dots\mathbf{0}\right]}_{:=\mathcal{Q}_{i}}\Gamma=\Omega_{i}\Gamma,\tag{6}$$

or $(Q_i - \Omega_i) \Gamma = 0$. Since this is true for all i = 1, ..., P, we have shown that the vector Γ satisfies

$$\underbrace{\begin{bmatrix} Q_1 - \Omega_1 \\ \vdots \\ Q_P - \Omega_P \end{bmatrix}}_{:=M \in \mathbb{R}^{n^{p \times m^{p}}}} \Gamma = 0.$$

Thus, the condition that the patches $R_i x$ agree on the overlaps is equivalent to the global representation vector Γ residing in the null-space of the matrix M.

An easy computation provides the dimension of this null-space (see proof in Appendix A: Proof of Lemma 1), or in other words the overall number of degrees of freedom of admissible Γ .

¹Notice that while R_i extracts the *i*-th patch from the signal *x*, the operator \tilde{R}_i extracts the representation α_i of $R_i x$ from Γ .

Lemma 1. For any frame $D \in \mathbb{R}^{n \times m}$ (i.e., a full rank dictionary), we have

$$\dim \ker M = N\left(m - n + 1\right).$$

Note that in particular for m = n, we have dim ker M = N, and since in this case D is invertible, we have $R_i x = D\alpha_i$ where $\alpha_i = D^{-1}R_i x$, so that every signal admits a unique representation $x = D_G \Gamma$ with $\Gamma = (D^{-1}R_1 x, \dots, D^{-1}R_P x)^T$.

As we shall demonstrate now, the equation $M\Gamma = 0$ represents the requirement that the local sparse codes $\{\alpha_i\}$ are not independent but rather should be such that the corresponding patches $D\alpha_i$ agree on the overlaps.

Definition 6. Define the "extract from top/bottom" operators $S_T \in \mathbb{R}^{(n-1)\times n}$ and $S_B \in \mathbb{R}^{(n-1)\times n}$:

$$S_{T(op)} = \begin{bmatrix} I_{n-1} & \mathbf{0} \end{bmatrix}, \quad S_{B(ottom)} = \begin{bmatrix} \mathbf{0} & I_{n-1} \end{bmatrix}.$$

The following result is proved in Appendix B: Proof of Lemma 2.

Lemma 2. Let $\Gamma = [\alpha_1, \ldots, \alpha_P]^T$. Under the above definitions, the following are equivalent:

1. $M\Gamma = 0$; 2. For each i = 1, ..., P, we have $S_B D\alpha_i = S_T D\alpha_{i+1}$.

Definition 7. Given $\Gamma = [\alpha_1, \ldots, \alpha_P]^T \in \mathbb{R}^{mP}$, the $\|\cdot\|_{0,\infty}$ pseudo-norm is defined by

$$\|\Gamma\|_{0,\infty} := \max_{i=1,\dots,P} \|\alpha_i\|_0.$$

Thus, every signal complying with the patch-sparse model, with sparsity *s* for each patch, admits the following representation.

Theorem 1. *Given D, s, P, and N, the globalized local sparse model* (2) *is equivalent to*

$$\mathcal{M} = \left\{ x \in \mathbb{R}^N : \ x = D_G \Gamma, \ M \Gamma = 0, \ \|\Gamma\|_{0,\infty} \leq s \right\}$$
(7)
$$= \left\{ x \in \mathbb{R}^N : \ x = D_G \Gamma, \ M_* \Gamma = 0, \ \|\Gamma\|_{0,\infty} \leq s \right\},$$

where the matrix $M_* \in \mathbb{R}^{(n-1)P \times mP}$ is defined as

$$M_* := \begin{bmatrix} S_B D - S_T D \\ S_B D - S_T D \\ & \ddots & \ddots \end{bmatrix}.$$

Proof. If $x \in \mathcal{M}$ (according to (2)), then by the above construction *x* belongs to the set defined by the RHS of (7) (let's call it \mathcal{M}^* for the purposes of this proof only). In the other direction, assume that $x \in \mathcal{M}^*$. Now $R_i x = R_i D_G \Gamma = \Omega_i \Gamma$, and since $M\Gamma = 0$, we have $R_i x = Q_i \Gamma = D\tilde{R}_i \Gamma$. Denote $\alpha_i := \tilde{R}_i \Gamma$, and so we have that $R_i x = D\alpha_i$ with $\|\alpha_i\|_0 \leq s$, i.e., $x \in \mathcal{M}$ by definition. The second part follows from Lemma 2.

We say that α_i is a *minimal* representation of x_i if $x_i = D\alpha_i$ such that the matrix $D_{\text{supp }\alpha_i}$ has full rank—and therefore the atoms participating in the representation are linearly independent.²

Definition 8. Given a signal $x \in \mathcal{M}$, let us denote by $\rho(x)$ the set of all locally sparse *and minimal* representations of *x*:

$$\rho(x) := \left\{ \Gamma \in \mathbb{R}^{mP} : \|\Gamma\|_{0,\infty} \leq s, \ x = D_G \Gamma, \ M\Gamma = 0, \ D_{\operatorname{supp} \tilde{R}_i \Gamma} \text{ is full rank} \right\}.$$

Let us now go back to the definition (2). Consider a signal $x \in \mathcal{M}$, and let $\Gamma \in \rho(x)$. Denote $S_i := \operatorname{supp} \tilde{R}_i \Gamma$. Then we have $R_i x \in \mathcal{R}(D_{S_i})$, and therefore we can write $R_i x = P_{S_i} R_i x$, where P_{S_i} is the orthogonal projection operator onto $\mathcal{R}(D_{S_i})$. In fact, since D_{S_i} is full rank, we have $P_{S_i} = D_{S_i} D_{S_i}^{\dagger}$ where $D_{S_i}^{\dagger} = (D_{S_i}^T D_{S_i})^{-1} D_{S_i}^T$ is the Moore-Penrose pseudoinverse of D_{S_i} .

Definition 9. Given a support sequence $\mathscr{S} = (S_1, \ldots, S_P)$, define the matrix $A_{\mathscr{S}}$ as follows:

$$A_{\mathscr{S}} := \begin{bmatrix} (I_n - P_{S_1}) R_1 \\ (I_n - P_{S_2}) R_2 \\ \vdots \\ (I_n - P_{S_P}) R_P \end{bmatrix} \in \mathbb{R}^{nP \times N}.$$

The map $A_{\mathscr{S}}$ measures the local patch discrepancies, i.e., how "far" is each local patch from the range of a particular subset of the columns of *D*.

Definition 10. Given a model \mathcal{M} , denote by $\Sigma_{\mathcal{M}}$ the set of all valid supports, i.e.,

$$\Sigma_{\mathscr{M}} := \{ (S_1, \dots, S_P) : \exists x \in \mathscr{M}, \ \Gamma \ amma \in \rho \ (x) \ \text{s.t.} \ \forall i = 1, \dots, P : \\ S_i = \text{supp} \ \tilde{R}_i \Gamma \}.$$

With this notation in place, it is immediate to see that the global signal model is a union of subspaces.

Theorem 2. The global model is equivalent to the union of subspaces

$$\mathscr{M} = \bigcup_{\mathscr{S} \in \Sigma_{\mathscr{M}}} \ker A_{\mathscr{S}}.$$

²Notice that α_i might be a minimal representation but not a unique one with minimal sparsity. For discussion of uniqueness, see Subsection 2.3.

Remark 1. Contrary to the well-known union of subspaces model [7, 35], the subspaces $\{\ker A_{\mathscr{S}}\}$ do not have in general a sparse joint basis, and therefore our model is distinctly different from the well-known block-sparsity model [19, 20].

An important question of interest is to estimate dim ker $A_{\mathscr{S}}$ for a given $\mathscr{S} \in \Sigma_{\mathscr{M}}$. One possible solution is to investigate the "global" structure of the corresponding signals (as is done in Subsection 4.1 and Subsection 4.2), while another option is to utilize information about "local connections" (Appendix E: Generative Models for Patch-Sparse Signals).

2.3 Uniqueness and Stability

Given a signal $x \in \mathcal{M}$, it has a globalized representation $\Gamma \in \rho(x)$ according to Theorem 1. When is such a representation unique, and under what conditions can it be recovered when the signal is corrupted with noise?

In other words, we study the problem

$$\min \|\Gamma\|_{0,\infty} \qquad \text{s.t. } D_G \Gamma = D_G \Gamma_0, \ M\Gamma = 0 \qquad (P_{0,\infty})$$

and its noisy version

$$\min \|\Gamma\|_{0,\infty} \qquad \text{s.t. } \|D_G \Gamma - D_G \Gamma_0\| \leq \varepsilon, \ M\Gamma = 0 \qquad (P_{0,\infty}^{\varepsilon}).$$

For this task, we define certain measures of the dictionary, similar to the classical spark, coherence function, and the restricted isometry property, which take the additional dictionary structure into account. In general, the additional structure implies *possibly* better uniqueness as well as stability to perturbations; however, it is an open question to show they are *provably* better in certain cases.

The key observation is that the global model \mathcal{M} imposes a constraint on the allowed local supports.

Definition 11. Denote the set of allowed local supports by

$$\mathscr{T} := \{T : \exists (S_1, \ldots, T, \ldots, S_P) \in \Sigma_{\mathscr{M}} \}.$$

Recall the definition of the spark (1). Clearly σ (D) can be equivalently rewritten as

$$\sigma(D) = \min\{j: \exists S_1, S_2 \subset [m], |S_1 \cup S_2| = j, \operatorname{rank} D_{S_1 \cup S_2} < j\}.$$
(8)

Definition 12. The globalized spark $\sigma^*(D)$ is

$$\sigma^*(D) := \min\{j: \exists S_1, S_2 \in \mathscr{T}, |S_1 \cup S_2| = j, \operatorname{rank} D_{S_1 \cup S_2} < j\}.$$
(9)

The following proposition is immediate by comparing (8) with (9).

Proposition 1. $\sigma^*(D) \ge \sigma(D)$.

The globalized spark provides a uniqueness result in the spirit of [15].

Theorem 3 (Uniqueness). Let $x \in \mathcal{M}(D, s, N, P)$. If there exists $\Gamma \in \rho(x)$ for which $\|\Gamma\|_{0,\infty} < \frac{1}{2}\sigma^*(D)$ (i.e., it is a sufficiently sparse solution of $P_{0,\infty}$), then it is the unique solution (and so $\rho(x) = \{\Gamma\}$).

Proof. Suppose that there exists $\Gamma_0 \in \rho(x)$ which is different from Γ . Put $\Gamma_1 := \Gamma - \Gamma_0$, then $\|\Gamma_1\|_{0,\infty} < \sigma^*(D)$, while $D_G \Gamma_1 = 0$ and $M \Gamma_1 = 0$. Denote $\beta_j := \tilde{R}_j \Gamma_1$. By assumption, there exists an index *i* for which $\beta_i \neq 0$, but we must have $D\beta_j = 0$ for every *j*, and therefore $D_{\text{supp }\beta_i}$ must be rank-deficient—contradicting the fact that $\|\beta_i\| < \sigma^*(D)$.

In classical sparsity, we have the bound

$$\sigma(D) \ge \min\{s: \mu_1(s-1) \ge 1\},\tag{10}$$

where μ_1 is given by Definition 3. In a similar fashion, the globalized spark σ^* can be bounded by an appropriate analog of "coherence"—however, computing this new coherence appears to be in general intractable.

Definition 13. Given the model \mathcal{M} , we define the following globalized coherence function

$$\mu_1^*(s) := \max_{S \in \mathscr{T} \cup \mathscr{T}, |S| = s} \max_{j \in S} \sum_{k \in S \setminus \{j\}} |\langle d_j, d_k \rangle|,$$

where $\mathscr{T} \cup \mathscr{T} := \{S_1 \cup S_2 : S_1, S_2 \in \mathscr{T}\}.$

Theorem 4. The globalized spark σ^* can be bounded by the globalized coherence as follows³:

$$\sigma^*(D) \ge \min\left\{s : \ \mu_1^*(s) \ge 1\right\}.$$

Proof. Following closely the corresponding proof in [15], assume by contradiction that

$$\sigma^*(D) < \min\{s : \mu_1^*(s) \ge 1\}.$$

Let $S^* \in \mathscr{T} \cup \mathscr{T}$ with $|S^*| = \sigma^*(D)$ for which D_{s^*} is rank-deficient. Then the restricted Gram matrix $G := D_{S^*}^T D_{S^*}$ must be singular. On the other hand, $\mu_1^*(|S^*|) < 1$, and so in particular

$$\max_{j\in S^*}\sum_{k\in S^*\setminus\{j\}} |\langle d_j, d_k\rangle| < 1.$$

³In general min $\{s : \mu_1^* (s-1) \ge 1\} \ne \max \{s : \mu_1^* (s) < 1\}$ because the function μ_1^* need not be monotonic.

But that means that G is diagonally dominant and therefore det $G \neq 0$, a contradiction.

We see that $\mu_1^*(s+1) \leq \mu_1(s)$ since the outer maximization is done on a smaller set. Therefore, in general the bound of Theorem 4 appears to be sharper than (10).

A notion of globalized RIP can also be defined as follows.

Definition 14. The globalized RIP constant of order *k* associated to the model \mathcal{M} is the smallest number $\delta_{k,\mathcal{M}}$ such that

$$(1 - \delta_{k,\mathcal{M}}) \|\alpha\|_2^2 \leq \|D\alpha\|_2^2 \leq (1 + \delta_{k,\mathcal{M}}) \|\alpha\|_2^2$$

for every $\alpha \in \mathbb{R}^m$ with supp $\alpha \in \mathscr{T}$.

Immediately one can see the following (recall Definition 4).

Proposition 2. *The globalized RIP constant is upper bounded by the standard RIP constant:*

$$\delta_{k,\mathcal{M}} \leq \delta_k.$$

Definition 15. The generalized RIP constant of order *k* associated to signals of length *N* is the smallest number $\delta_k^{(N)}$ such that

$$(1 - \delta_k^{(N)}) \|\Gamma\|_2^2 \le \|D_G\Gamma\|_2^2 \le (1 + \delta_k^{(N)}) \|\Gamma\|_2^2$$

for every $\Gamma \in \mathbb{R}^{mN}$ satisfying $M\Gamma = 0$, $\|\Gamma\|_{0,\infty} \leq k$.

Proposition 3. We have

$$\delta_k^{(N)} \leq \frac{\delta_{k,\mathcal{M}} + (n-1)}{n} \leq \frac{\delta_k + (n-1)}{n}$$

Proof. Obviously it is enough to show only the leftmost inequality. If $\Gamma = (\alpha_i)_{i=1}^N$ and $\|\Gamma\|_{0,\infty} \leq k$, this gives $\|\alpha_i\|_0 \leq k$ for all i = 1, ..., P. Further, setting $x := D_G \Gamma$ we clearly have $\Gamma \in \rho(x)$ and so supp $\Gamma \in \Sigma_M$. Thus supp $\alpha_i \in \mathcal{T}$, and therefore

$$(1-\delta_{k,\mathscr{M}}) \|\alpha_i\|_2^2 \leq \|D\alpha_i\|_2^2 \leq (1+\delta_{k,\mathscr{M}}) \|\alpha_i\|_2^2.$$

By Corollary 3 we know that for every Γ satisfying $M\Gamma = 0$, we have

$$||D_G \Gamma||_2^2 = \frac{1}{n} \sum_{i=1}^N ||D\alpha_i||_2^2.$$

Now for the lower bound,

$$\begin{split} \|D_G \Gamma\|_2^2 &\ge \frac{1 - \delta_{k,\mathcal{M}}}{n} \sum_{i=1}^N \|\alpha_i\|_2^2 = \left(1 - 1 + \frac{1 - \delta_{k,\mathcal{M}}}{n}\right) \|\Gamma\|_2^2 \\ &= \left(1 - \frac{\delta_{k,\mathcal{M}} + (n-1)}{n}\right) \|\Gamma\|_2^2. \end{split}$$

For the upper bound,

$$\|D_G \Gamma\|_2^2 \leq \frac{1+\delta_{k,\mathcal{M}}}{n} \sum_{i=1}^N \|\alpha_i\|_2^2 < \left(1+\frac{\delta_{k,\mathcal{M}}+1}{n}\right) \|\Gamma\|_2^2$$
$$\leq \left(1+\frac{\delta_{k,\mathcal{M}}+(n-1)}{n}\right) \|\Gamma\|_2^2.$$

Theorem 5 (Uniqueness and Stability of $P_{0,\infty}$ **via RIP).** Suppose that $\delta_{2s}^{(N)} < 1$, and suppose further that $x = D_G \Gamma_0$ with $\|\Gamma_0\|_{0,\infty} = s$ and $\|D_G \Gamma_0 - x\|_2 \leq \varepsilon$. Then every solution $\hat{\Gamma}$ of the noise-constrained $P_{0,\infty}^{\varepsilon}$ problem

$$\hat{\Gamma} \leftarrow \arg\min_{\Gamma} \|\Gamma\|_{0,\infty} \text{ s.t. } \|D_G\Gamma - x\| \leq \varepsilon, \ M\Gamma = 0$$

satisfies

$$\|\hat{\Gamma} - \Gamma_0\|_2^2 \leqslant \frac{4\varepsilon^2}{1 - \delta_{2s}^{(N)}}.$$

In particular, Γ_0 is the unique solution of the noiseless $P_{0,\infty}$ problem.

Proof. Immediate using the definition of the globalized RIP:

$$\begin{split} \|\hat{\Gamma} - \Gamma_0\|_2^2 &< \frac{1}{1 - \delta_{2s}^{(N)}} \|D_G\left(\hat{\Gamma} - \Gamma_0\right)\|_2^2 \leq \frac{1}{1 - \delta_{2s}^{(N)}} \left(\|D_G\hat{\Gamma} - x\|_2 + \|D_G\Gamma_0 - x\|_2\right)^2 \\ &\leq \frac{4\varepsilon^2}{1 - \delta_{2s}^{(N)}}. \end{split}$$

3 Pursuit Algorithms

In this section we consider the problem of efficient projection onto the model \mathcal{M} . First we treat the "oracle" setting, i.e., when the supports of the local patches (and therefore of the global vector Γ) are known. We show that the local patch averaging