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To our teacher, colleague and friend



Preface

The purpose of this book is twofold. We would like to offer our readers a
collection of high quality papers in selected topics of Discrete Mathematics,
and, at the same time, celebrate the 60th birthday of Jarik Nesettil. Since our
discipline has experienced an explosive growth during the last half century,
it is impossible to cover all of its recent developments in one modest volume.
Instead, we concentrate on six topics, those closest to Jarik’s interests. We
have invited leading experts and close friends of Jarik’s to contribute to this
endeavor, and the response has been overwhelmingly positive. We were for-
tunate to receive many outstanding contributions. They are divided into six
parts.

Contents

The topics of the first part are rather diverse, including Algebra, Geometry,
and Numbers and Games. Michael E. Adams and Ale§ Pultr consider rigidity
(lack of nontrivial homomorphisms) of algebraic structures, and they con-
struct 2% rigid countable Heyting algebras. Vitaly Bergelson, Hillel Fursten-
berg, and Benjamin Weiss introduce a new notion of “large” sets of integers,
piecewise-Bohr sets, and they show, in particular, that the sum of two sets
of positive upper density is piecewise Bohr. Christopher Cunningham and
Igor Kriz investigate a generalization of the Conway number games to more
than two players and construct games with any given value. Miroslav Fiedler
solves extremal geometric questions, namely, the shape of n-dimensional unit-
volume simplices that maximize the length of a Hamilton cycle or path in
their graph. The paper of Vaclav Koubek and Jiti Sichler in universal alge-
bra concerns the relation of (J-universality and finite-to-finite universality of
algebras. Christian Krattenthaler studies a simplicial complex associated to a
colored root system, the generalized cluster complex, and proves a generaliza-
tion of remarkable relations, discovered by Chapoton, concerning certain face
counts.
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Part IT contains contributions in Ramsey theory. Ron Graham and Jézsef
Solymosi give an elementary proof that an nxn integer grid colored by fewer
than loglogn colors contains a monochromatic vertex set of an equilateral
right triangle. Andras Gyarfas, Miklés Ruszinkd, Gabor N.Sarkézy, and En-
dre Szemerédi use the regularity lemma for constructing coverings of edge-r-
colored complete bipartite graphs by vertex-disjoint monochromatic cycles.
Neil Hindman and Imre Leader consider a variant of partition-regularity
of systems of linear equations, where they look for nonconstant solutions.
Alexandr Kostochka and Naeem Sheikh construct infinitely many graphs for
which the ratio of the induced Ramsey number to the weak induced Ramsey
number is bounded away from 1, answering a question of Luczak and Gorgol.
Pavel Pudlék applies the recent Bourgain—Katz—Tao theorem on sums and
products in finite fields to an explicit construction of 3-colorings of complete
bipartite graphs with no large monochromatic complete bipartite subgraphs.

Topics in graph and hypergraph theory begin with Part II1. Jézsef Balogh,
Béla Bollobas, and Robert Morris consider the enumeration of ordered graphs
not containing any ordered subgraph from a fixed (possibly infinite) set. The
contribution of Zoltan Firedi, Kyung-Won Hwang, and Paul Weichsel is best
described by its title: A proof and generalizations of the Erdés—Ko-Rado the-
orem using the method of linearly independent polynomials. Tom&s Kaiser,
Daniel Kral’, and Serguei Norine prove that in any cubic bridgeless graph at
least 60% of edges can be covered by two matchings, a result related to a
conjecture of Berge and Fulkerson. Brendan Nagle, Vojtéch Rédl, and Math-
ias Schacht apply the hypergraph regularity method, a recent hypergraph
generalization of the Szemerédi regularity lemma, to extremal problems for
hypergraphs. Colin McDiarmid, Angelika Steger, and Dominic Welsh define
addable graph classes, which include planar graphs and many other natural
classes, and show that the probability of a random graph from such a class
being connected is bounded away from both 0 and 1.

The papers in Part IV deal with graph homomorphisms. Noga Alon
and Asaf Shapira survey the role of homomorphisms in recent results on
constant-time probabilistic testing of graph properties. Christian Borgs, Jen-
nifer Chayes, Lasz1é Lovasz, Vera T. Sés, and Katalin Vesztergombi look at
the number of homomorphisms G — H from various perspectives such as
graph isomorphism, reconstruction, probabilistic property testing, and statis-
tical physics. Josep Diaz, Maria Serna, and Dimitrios Thilikos investigate an
algorithmic problem, the fixed-parameter complexity of testing the existence
of a homomorphism G — H, where H is fixed, G is the input, and the num-
ber of preimages of certain vertices of H is restricted. Pavol Hell considers
the Dichotomy Conjecture, stating that every class of constraint satisfaction
problems specified by a fixed relational structure H is either polynomial-time
solvable or NP-complete, establishes special cases, and connects the problem
to graph colorings.

Part V is concerned mostly with generalized graph colorings. Those in
the paper by Glenn Chappell, John Gimbel, and Chris Hartman are path-
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colorings of planar graphs. Dwight Duffus, Vojtéch Ro6dl, Bill Sands, and
Norbert Sauer consider the minimum chromatic number of graphs and hyper-
graphs of large girth that cannot be homomorphically mapped to a specified
graph or hypergraph, obtaining a new probabilistic hypergraph construction
in the process. Mickaél Montassier, André Raspaud, and Weifan Wang prove
acyclic 4-choosability of planar graphs with excluded cycles of certain lengths.
Xuding Zhu presents an authoritative survey of the circular chromatic num-
ber, a parameter introduced by Vince in 1988 that carries more information
than the chromatic number itself. The contribution of Claude Tardif sticks to
the usual chromatic number and provides an algorithmic version of a special
case of the celebrated Hedetniemi conjecture.

Part VI on graph embeddings opens with the paper by Hubert de Fraysseix
and Patrice Ossona de Mendez, who consider embeddings of multigraphs in
the k-dimensional Euclidean space such that automorphisms correspond to
isometries and present an elegant characterization of such embeddings. Bojan
Mohar extends an intriguing result of Youngs on quadrangulations of the
projective plane, and constructs the first explicit family of infinitely many
5-critical graphs on a fixed surface. Jdnos Pach and Géza Téth relate the
torus crossing number of a graph to the planar crossing number. The survey
of Jozef Siran deals with the classification of regular maps (maps possessing
the highest level of symmetry — their automorphism groups act transitively
on the set of flags) and explains its intriguing connections to other branches
of mathematics.

Presented in a part of its own comes the last article written by Jgrgen
Bang-Jensen, Bruce Reed, Mathias Schacht, Robert Sadmal, Bjarne Toft and
Ulrich Wagner about six problems posed by Jarik Nesetfil and their current
status. This last paper is just a small example of the enormous influence Jarik
has had on other researchers.
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Dedication

Jarik Nesetfil is a scientist and an artist of extraordinary breadth and vision.
His publication record and other achievements, including over a half-dozen
textbooks and monographs, an honorary doctorate and an academy member-
ship, speak for themselves. Equally important is Jarik’s tireless work with
students and younger colleagues. He founded the Prague Combinatorics Sem-
inar, which helped shape the careers of several generations of Czech mathe-
maticians and computer scientists. Among them, the present editors greatly
benefited from Jarik’s guidance, ideas, and endless enthusiasm. We would like
to express our appreciation and wish him many more productive years filled
with success and satisfaction.

Acknowledgement. Many people helped us with this volume. We are in-
debted to the referees, who generously gave their time and effort in order to
improve the presentation of the contributions. In preparation of the final ver-
sion we were greatly assisted by our technical editor Helena Nyklova, whose
meticulous copyediting is warmly appreciated. We also thank Ms. J. Borkov-
cova for her kind permission to reprint the photograph of Jarik. Finally, we
would like to thank the Institute for Theoretical Computer Science and De-
partment of Applied Mathematics of Charles University for their support.'

Prague and Atlanta, Martin Klazar
13" March 2006 Jan Kratochwvil
Martin Loebl
Jir{ MatouSek

Robin Thomas
Pawvel Valtr

! In the framework of Czech research grants 1M0021620808 and MSM0021620838.
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Countable Almost Rigid Heyting Algebras

Michael E. Adams! and Ale§ Pultr?*

! Department of Mathematics, State University of New York, New Paltz,

NY 12561, USA
adamsm@newpaltz.edu

2 Department of Applied Mathematics and ITI, MFF, Charles University,
Malostranské nam. 25, CZ 11800 Praha 1, Czech Republic
pultr@kam.ms.mff.uni.cz

Summary. For non-trivial Heyting algebras Hi, H> one always has at least one
homomorphism H; — Hs; if Hi = H, there is at least one non-identical one. A
Heyting algebra H is almost rigid if |End(H)| = 2 and a system of almost rigid
algebras # is said to be discrete if | Hom(H:, H2)| = 1 for any two distinct Hi, H> €
H. We show that there exists a discrete system of 2“ countable almost rigid Heyting
algebras.

AMS Subject Classification. 06D20, 18A20, 18B15.
Keywords. Heyting algebras, almost rigid, discrete system, Priestley duality.

Introduction

A Heyting algebra
(H5 V7 /\7 _)7 07 ]')

is an algebra of type (2,2,2,0,0) where (H;V,A,0,1) is a distributive (0, 1)-
lattice and the extra operation z — y satisfies the formula

z<z—y iff zAz<y.

That is to say, a Heyting algebra is a bounded relatively pseudocomplemented
distributive lattice for which relative pseudocomplementation is taken to be
a binary algebraic operation.

Since any two elements of a finite distributive lattice have a uniquely
determined relative pseudocomplement, any finite distributive lattice can be
viewed as a Heyting algebra. So too, any two elements of a Boolean algebra

* The second author would like to express his thanks for the support by the project
LN 00A056 of the Ministry of Education of the Czech Republic.



4 Michael E. Adams and Ale§ Pultr

have a uniquely determined relative pseudocomplement a—b = —a V b which
also provides an example of a Heyting algebra.

For an algebra A, let Aut(A) (resp End(A)) denote the group of automor-
phisms (resp. the monoid of endomorphisms) of A under the operation of
composition. An algebra is automorphism rigid provided | Aut(A)| = 1, that
is, the only automorphism of A is the identity.

Independently, Jénsson [Jén51], Katétov [Kat51], Kuratowski [Kur26], and
Rieger [Rie51] have shown that there exists a proper class of non-isomorphic
automorphism rigid Boolean algebras. Since, as observed above, every Boolean
algebra is relatively pseudocomplemented, there exists a proper class of non-
isomorphic automorphism rigid Heyting algebras as well.

In sharp contrast with respect to their automorphism groups, as inde-
pendently shown by Magill [Mag72], Maxson [Max72], and Schein [Sch70],
Boolean algebras are uniquely recoverable from their endomorphism monoids.
That is, for Boolean algebras B and B, if End(B) = End(B’), then B = B’; or,
by the result of Tsinakis ([Tsi79]), for bounded relative Stone lattices which
are principal, End(S) = End(S’) implies S = S’ as well. However, this is far
from the case for general Heyting algebras, where endomorphisms can be very
few.

There are necessary non-identical homomorphisms, though. Every non-
trivial Heyting algebra has at least one minimal prime ideal. Furthermore, for
each minimal prime ideal I of a Heyting algebra H, and any other Heyting
algebra H', p(x) = 0 for x € I and 1 otherwise determines an homomorphism
¢ : H— H'. Such homomorphisms will be referred to as

trivial homomorphisms.
In particular, if |[H| > 3, then | End(H)| > 2. Dismissing the necessary trivial
endomorphisms one defines an almost rigid Heyting algebra H as such that
| End(H)| = 2. Thus, by the preceding remarks, H is almost rigid if and only if
|H| > 3,if H has exactly one minimal prime ideal and the only endomorphism
other than the identity is associated with the minimal prime as indicated.

In [AKSS85] it was shown that there exists a proper class of non-isomorphic
almost rigid Heyting algebras. All the almost rigid Heyting algebras from
[AKSS85] have cardinality > 2¢. Taking into account that for |H| > 4 there is
no almost rigid finite Heyting algebra (for any such H either there are at least
two minimal prime ideals I and I’ or else a minimal prime ideal I and another
prime ideal I' which is minimal with respect to properly containing I; in the
former case obviously | End(H)| > 3, in the latter case, fora € I' \ I, ¢p(z) =0
for x € I, a for x € I' \ I, and 1 otherwise determines an endomorphism
¥ € End(H) distinct from ¢ associated with I, and |End(H)| > 3 again) this
begs the question whether there are countable almost rigid Heyting algebras.
This is answered in the positive in this article. Moreover, we show that

there exists a system H of 2% countable almost rigid Heyting algebras such that

— for each A in H, End(H) = {ida,Taa}, and



Countable Almost Rigid Heyting Algebras 5

— for any two distinct A, B in H there is exactly one homomorphism Tap :
A — B,

where the Top are unique trivial homomorphisms.
For related background on Heyting or Boolean algebras see Balbes and
Dwinger [BD74] or Koppelberg [Kop89].

1 Preliminaries

Let (P,<) be a partially ordered set. For Q C P, set | Q = {z € P |
x < y forsome y € Q} and 1Q = {z € P | z > y for some y € Q}; for
Q = {z} we write just |z and fz, respectively. A set () is said to be decreasing
or increasing if @ =1Q or Q@ =1Q), respectively. For partially ordered sets P
and P, a mapping ¢ : P — P’ is order-preserving providing ¢(z) < ¢(y)
whenever x < y.

A Priestley space (P;<,7) is a partially ordered set (P, <) endowed with
a compact topology 7 which is totally order-disconnected (namely, for any
x,y € P such that x £ y there exists a clopen decreasing set () C P such that
z € Qandy € Q).

As shown by Priestley [Pri70], [Pri72], the category of non-trivial distribu-
tive (0, 1)-lattices together with all (0, 1)-lattice homomorphisms is dually
isomorphic to the category of Priestley spaces together with all continuous
order-preserving maps. The equivalence functors are usually given as

P(L) = {z | L # = a prime ideal of L}, P(h)(z) = h '[z],
D(X) ={U | U= C X clopen }, D(f)(U) = f[U];

P(L) is endowed with a suitable topology and ordered by inclusion.

Since every Heyting algebra is a distributive (0, 1)-lattice, it is to be ex-
pected that the category of all non-trivial Heyting algebras is dually isomor-
phic to a well-defined subcategory of the category of all Priestley spaces. And
indeed, the Priestley spaces X dual to Heyting algebras are precisely those
with the additional property that tU is clopen whenever U is clopen. Such
Priestley spaces will be called

h-spaces,
and if L, M are Heyting algebras then the Heyting homomorphisms h : L — M
correspond to the Priestley maps f such that, moreover,

flz) =1f ().

Such maps will be referred to as
h-maps.
It is this dual equivalence that we will use in order to establish our result.
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2 The Construction

The Posets

Set X ={n € N | n > 5} and decompose this set as follows. Start with

X, ={5}, ¢(2)=5
Xo = X1 = {6,7,8,9,10}, ¢(3) = 10,

and further proceed inductively: if Xy = {#(k) + 1,0(k) +2,...,¢(k + 1)} is
already defined (and, hence, ¢(k) and ¢(k + 1) too), take, for each element
o(k) +j € Xk, a set Xjy1,; determined as follows

Xiy11 ={o(k+1)+1,...,0(k+1)+¢(k)+ 1}, the first ¢(k) + 1 natural
numbers after ¢(k + 1),

Xit12 ={op(k+1)+d(k)+2,0p(k+1)+d(k)+3,....o(k+1)+24(k)+3},
the next ¢(k) + 2 natural numbers after ¢(k + 1) + (k) + 1,

where, in general, for 1 < j < ¢(k + 1) — ¢(k), ‘
X1y = {o(k+ 1)+ (G = Dok) + (3) +1,...,0(k+1) +jo(k) + (731)},

the next ¢(k) + j natural numbers after ¢(k + 1) + (j — 1)p(k) + ().

Then set

é(k+1)—¢(k)
Xpp1 = {8k + D)+ Lok + 1) +2,..,0k+2} = | = Xppaye

=1
For triples x, y, z of distinct elements belonging to the same X, choose distinct

m(z,y,2) ¢ X
and set
T ={7(z,y,2) | 7,y,2}
and
Y =XUTU{w}

where w is an element ¢ X UT.
Now choose a countably infinite system Q of quadruples {z;,x2, 23,24}
such that

e for every ¢ = {x1,x2, 23,24}, ¢ C X}, for some k, and
e if pgeQ p#q,then png=10.

For A C QQ set
Z(A)=YUA

and define an order C on Z(A) by

wC z for all z € Z(A),
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and by transitivity from the successor relation < where

z,y,2 < 7(2,y,2),
x; < {x1, 22, x3,24} for {x1,20,23,24} € A,
and for € Xj41,5, < ¢(k) + j.
Note that
1z is finite for all x € Z(A) \ {w}.
To simplify the notation define the degree
d(n)=n for ne€X,

d (r(z,y,2)) =3,
d (q) = 4 for q € A;

for w the degree is undefined.

The Topology

Z(A) is endowed with the topology in which
U is open iff either w ¢ U or Z(A) \ U is finite.
Thus we have

Observation 2.1. The clopen sets are precisely the finite M not containing w

and the complements of such sets,and hence the TM with clopen M are clopen.
If x is not C y then y ¢tz and 1z is clopen. Thus,

each Z(A) with the order T and the topology just defined is an h-space.

From this we immediately obtain
Fact 2.2. All the Heyting algebras D(Z(A)) are countable.
In the sequel, f will always be an h-map Z(A4) — Z(B).

Lemma 2.3. 1. f(w) =w.
2. If f(M) = {z} for an infinite M C Z(A) then x = w.

Proof. 1. {f(w)} = f(Jw) =1f(w); hence }f(w) has just one element.
2. For an infinite M we have w € M. Thus, w = f(w) € f(M) C

f(M) = {x}.

A branch of an element z € Z(A) is any |y with y < z. Note that the
degree d(z) defined above is the number of distinct branches of z.

Lemma 2.4. 1. Ift = 7(x1,22,23) (resp. ¢ = {x1,22,23,24} € A) and
f(zi) T f(t) (resp. f(q)) for all i then we cannot have d(f(t)) > 4 (resp.
d(f(q) = 5)-



8 Michael E. Adams and Ale§ Pultr

2. If t = 1(x1,22,23) and f(z;) T f(t) for all i then we cannot have two
f(xi), f(xj), i # j in the same branch ly of f(t).

3. If ar,as,a3 < a € Z(A) are distinct, f(a1) C f(a2) C
f(a) then all the f(a;) are in the same branch of f(a).

Proof. 1. LF(t) = F(I£) = {F()}U Lf(21)U LF(22)U Lf(zs) (resp. {£(g)}U 4
Fx)U Lf (22)U Lf (23)U Lf(x4)) and hence |f(t) cannot have more than
three (resp. four) branches.

2. 1 f(t) consists of at least three branches and hence it cannot be covered
by ly and just one more branch.

3. By 2, a € X UA. Consider t = 7(a1,a2,a3). By 2, f(t) = f(a2) or
f(t) = f(as). Then either f(as) C f(a2) or f(a2) C f(as). O

Observation 2.5. The map

f(a) and f(a3) C

const, = const’*B : Z(A) — Z(B)
defined by const,(x) = w for all x € Z(A) is an h-map.

(This is the Priestley image of the unique trivial homomorphism between
the corresponding Heyting algebras, each of which has precisely one minimal
prime ideal.)

3 The Result

Lemma 3.1. For a # w such that f(a) # w one cannot have d(f(a)) < d(a).

Proof. It f(b) C f(a) for all b < a we are led to a contradiction by 2.4.3: let
C consist of all the ¢ < f(a). Then there have to be two distinct by,bs with
f(b;) C ¢ for some ¢ € C and we have an 2 C a such that ¢ = f(z). Now 2 C b
for some b < a and we have f(b1), f(b2) C f(b) (of course, b can be one of the
b;). Now by 2.4.3 all the f(b) with b < a are in the same branch of f(a), a
contradiction.

Thus, there is an a1 < a9 = a such that f(a1) = f(a) and as d(a1) > d(ap)
we can repeat the procedure to obtain

ag > ai > ag > --- with f(al) = f(a),
and by 2.3.2 we have f(a) = w contradicting the assumption. [

Thus in particular
fIXU{w}] € X U{w}.
In the following four lemmas, f is, as before, an h-map Z(4) — Z(B), but

since all the facts are relevant for the restriction X U {w} — X U {w} only
(and since | (X U{w}) = X U{w}), we can use expressions such as f(a) = a,

f(f(a)), or f(L a) = | f(a).
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Lemma 3.2. If a € X and f(a) # w then f(a) C a and f(f(a)) = f(a). If
f(a) C a, we have an a' C a such that a’ = f(a) = f(a’).

Proof. We already know that d(f(a)) > d(a), hence if f(a) # w we have
f(a) € X. Suppose that d(f(a)) > d(a). Then we cannot have f(b) C f(a) for
all b < a since in such a case

fla) = {f@}uJ{ru) 1 b < a}

cannot cover Jf(a).

Hence for some a; < a we have f(a1) = f(a). Now d(a;) > d(a). If we still
have d(f(a)) > d(a1), we can repeat the argument and ultimately we obtain
a=ap = a = - = ap with f(a;) = f(a), d(a;) < d(f(a)) for i < k, and
d(ar) = d(f(a)) (by 3.1 we cannot have d(ay) > d(f(a))). Since d(ax) > 5,
ar, and f(a) = f(ag) are in X and hence ar = f(ax) by the equality of the
degrees.

Lemma 3.3. If for an a € X one has f(a) = a then f is identical on the
whole of la.

Proof. Let x C a be an element with the shortest path z < 1 < --- < a such
that f(z) C z. As Ja = f(la), z = f(y) C y for some y C a. But then y is
one of the x; which is a contradiction, by Lemma 3.2. O

Lemma 3.4. If there is an & € X such that f(x) = b T z then there is a
y € X such that f(y) =u C y and b,u are incomparable.

Proof. f(b) = b and hence f is identical on |b. Choose by # b2, b; < b; thus
f(b;) = b;. Let by,bs € Xj. Choose a y € Xy incomparable with b (since
b C x C 5 there exist such incomparable elements). Set

t = 71(b1,b2,y).

Now b; = f(b;) C f(t) (we cannot have an equality as b; are incomparable)
and hence f(y) # w (else (1) = {£(£)}U Ib1U 1bs £LF(1)). Thus, f(y) T y
We cannot have f(y) = y for all such y: in such a case f would be identical
on the whole of X} which would fix all the elements above as well, including
5 and z, contradicting the assumption (if f(a) = a for all a < n € X then
f(n) Jdafor all @ < n and hence f(n) O n; we cannot have f(n) J n though,
since that would imply d(f(n)) < d(n)).

Thus there has to be some such y with v = f(y) C y, and now u is
incomparable with b.

Lemma 3.5. For w # x € X one cannot have f(x) # w and d(f(x)) > d(z).

Proof. Suppose there is such an z. By 3.2 and 3.4 we can choose an instance of
b < a such that f(a) = f(b) = b and that there exists a u € X incomparable
with b such that f(u) = w is in an X; with | < k where b is in X} (this can
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be achieved but exchanging the b and u in 3.4 if necessary). Consider a ¢ < a,
¢ # b and a general z # b,cin Xy. Set t = 7(b, ¢, z). Since f(c) C f(a) = f(b)
we cannot have (see 2.4.2)

f(0), f(c), f(z) T f(D).

Now f(t) cannot be equal to f(z) and distinct from the others since then
b= f(b) C f(t) = f(z) and hence, z being in the same X}, as b, d(f(z)) < d(z)
contradicting 3.1. Thus we have f(¢) equal to either f(c) or f(b) and hence
f(z) T () =b.

Thus, f(X) Clb. Take a v CE u in Xj. Then f(v) = v by 3.3 and we have
a contradiction: v cannot be in |b since u and b are incomparable and the
subposet (X,C) of Z(A) is a tree.

Lemma 3.6. Let f : Z(A) — Z(B) be an h-map. Then either f(X) = {w} or
fn)=n for alln € X.

Proof. By 3.5 and 3.1, f(5) = w or f(5) = 5. Hence f(5) =5 and, by 3.3, f is
identical on X =J5.

Theorem 3.7. Let f : Z(A) — Z(B) be an h-map. Then either f is const,,
or it is the inclusion map Z(A) C Z(B).

On the other hand, any inclusion A C B, with A, B C Q can be extended
to an inclusion h-map Z(A) C Z(B).

Proof. If f(5) = w then f(X) = {w} by monotonicity. Now if for y € T or
y € A one should have f(y) = z # w we had |z # f(ly) = {f(y)} U{w}.
Thus, also f(y) = w.

If f(5) # w then f is identical on X. This also fixes T, since for
t = 7(x,y,2), v,y,2 C f(t) and equality is impossible since x,y,z are in-
comparable, and since any other element greater then all the z,y, z has too
many branches to be covered by f(Jt). Finally for ¢ = {1, 22, 23,24} € A one
cannot have f(q) € T by 3.1. Since the z; are incomparable, f(q) coincides
with none of the f(x;) = z; and hence, by 2.4.1, f(¢q) ¢ X. By monotonicity,
f(q@) # w and hence f(q) € B. But there is only one p € Q such that z; C p
for i = 1,2, 3,4, namely ¢ itself. The second statement is obvious.

As above, denote by N the set of all natural numbers.

Theorem 3.8. There exist countable almost rigid Heyting algebras H(A) as-
sociated with the subsets A C N such that

e if A¢ B there is no non-trivial homomorphism H(A) — H(B), and
e if A C B there exists exactly one non-trivial homomorphism H(A) —
H(B).

Consequently there exist 2% countable almost rigid Heyting algebras such that
the only homomorphism between any two distinct of them is the trivial one.
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Proof. The first part immediately follows from 3.7 and 2.2.

For the second statement it suffices to observe that there are 2¥ many
subsets of N such that no two of them are in inclusion.

For any N C N consider the set

N={2n|neN}U{2n+1|n¢N}.

Then N, C N, only if N; = No. 0
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Summary. We use ergodic-theoretical tools to study various notions of “large” sets
of integers which naturally arise in theory of almost periodic functions, combinatorial
number theory, and dynamics. Call a subset of IN a Bohr set if it corresponds to
an open subset in the Bohr compactification, and a piecewise Bohr set (PWB) if
it contains arbitrarily large intervals of a fixed Bohr set. For example, we link the
notion of PWB-sets to sets of the form A+B, where A and B are sets of integers
having positive upper Banach density and obtain the following sharpening of a recent
result of Renling Jin.

Theorem. If A and B are sets of integers having positive upper Banach density,
the sum set A+B is PWB-set.

AMS Subject Classification. 37TA45.
Keywords. Bohr sets, Banach density, measure preserving system, Kronecker factor.

1 Introduction to Some Large Sets of Integers

In combinatorial number theory, as well as in dynamics, various notions of
“large” sets arise. Some familiar notions are those of sets of positive (upper)
density, syndetic sets, thick sets (also called “replete”), return-time sets (in
dynamics), sets of recurrence (also known as Poincaré sets), (finite or infinite)
difference sets, and Bohr sets. We will here introduce the notion of “piecewise-
Bohr” sets (or PWB-sets), as well as “piecewise-Bohry” sets (or PWBg-sets),
and we’ll show how they arise in some combinatorial number-theoretic ques-
tions.

We begin with some basic definitions and elementary considerations. We’ll
say that a subset A C Z has positive upper (Banach) density, d*(A) > 0,

* V. Bergelson was partially supported by NSF, grant DMS-0345350.
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if for some § > 0, there exist arbitrarily large intervals of integers J =
{a,a+1,...,a +1— 1} with |J‘9f‘ > §. (Here |S| is the cardinality of the
set S; d*(A) = Lu.b.{d as above}.) Syndetic sets are special cases of sets
with positive upper density. Namely, A is syndetic if for some [, every inter-
val J of integers with |J| > [ intersects A. Clearly d*(A4) > 1/l in this case.
We'll say a set A is thick if it contains arbitrarily long intervals; thus A is
syndetic & Z\A is not thick & AN B # () for any thick set B. For any
distinct r integers {a1,as,...,a,} the set {a; —a;|]1 < i < j < r} is called
an r-difference set or a A,-set. Every thick set contains some r-difference
set for every r. This is obvious for r = 2, and inductively, if A is thick
and if A contains the (r — 1)-difference set formed from {a,...,a,_1}, by
choosing a, in the middle of a large enough interval in A, we can complete
this to an r-difference set. It follows that for any r, a set that meets every
r-difference set is syndetic. An example of this is the set of (non-zero) differ-
ences A— A={z—y:x,y € A,z #y} when A has positive upper density.
For if d*(A) > 1/r and if the numbers a1, as,...,a, are distinct, the sets
A+ ay, A+ as,..., A+ a, cannot be disjoint; so, for some 1 < i < j < r,
aj —a; € A — A. One conclusion which is behind much of our subsequent
discussion is that if A has positive upper density, then A — A is syndetic. We
shall see in §3 that d*(A) > 0 implies that A — A is a piecewise-Bohr set.

Definition 1.1. S C Z is a Bohr set if there exists a trigonometric polynomial

m .
P(t) = 3 cpe™t, with the Ny real numbers, such that the set
k=1

S"'={n e€Z:Rey(n) >0}

is non-empty and S D S'. When (0) > 0 we say S is a Bohry set. (Compare
with [Bilu97]).

The fact that a Bohr set is syndetic is a consequence of the almost period-
icity of trigonometric polynomials. It is also a consequence of the “uniform
recurrence” of the Kronecker dynamical system on the m-torus

(01302;---0m) — (01+)\1;02+)\2;---;0m+)\m)-

Indeed, it is not hard to see that a set S C Z is Bohr if and only if there exist
m €N, o« € T™ and an open set U C T™ suchthatSD{nEZ:naEU}.

Alternatively we can define Bohr sets and Bohrg sets in terms of the topol-
ogy induced on the integers Z by imbedding Z in its Bohr compactification.
Namely, a set in Z is Bohr if it contains an open set in the induced topology,
and it is Bohry if it contains a neighborhood of 0 in this topology.

We can apply the foregoing observations regarding A — A to dynamical
systems. We shall be concerned with measure preserving systems (X, B, u,T),
where (X, B, 1) is a probability space, T: X — X a measurable measure pre-
serving transformation. We assume (for simplicity) that the system is ergodic
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(T7'A = Afor A € B = pu(A)u(X\A) = 0). The ergodic theorem then
ensures that for A € B with u(4) > 0, the orbit {T™z},cz of almost ev-
ery z visits A along a set of times V(z,A) = {n : T"z € A} of positive
density. If we set Ry(4) = {n: ANT ™A # (0} (the return time set of A),
then for any z, Ri(A) D V(z,A) — V(z,A). Hence R;(A) is syndetic. We
can define a smaller set R(A) = {n : p(ANT"A) > 0} = R(A') where
A= A\ U{(ANnT™A4) : y(ANT"™A) = 0}, and it follows that R(A) is
also syndetic. This can be seen directly as well (and for arbitrary measure
preserving systems), but the present argument illustrates the connection of
dynamics to combinatorial properties of sets. We shall call sets containing sets
of the form R(A), where u(A) > 0, RT-sets (for return time). A set meeting
every RT-set is called a Poincaré set since Poincaré’s recurrence theorem gives
content to the property by implying that R(A) is never empty for u(A) > 0
even if T is not ergodic. These are also known in the literature as intersec-
tive sets. (See [Ruz82]). Much is known about these (see [Fur81], [B-M86|,
[BH96], [BFM96]). In particular {n";n = 1,2,...} is a Poincaré set for each
r=123,...

For a family F of subsets of Z it is customary to denote by F* the dual
family: 7* = {S C Z:VS' € F,SNS’ # }. Note that {syndetic} = {thick}*,
{thick} = {syndetic}* and {RT'} = {Poincaré}*, {Poincaré} = {RT}*.

We have seen above that a AZ-set is necessarily syndetic. One of our
objectives is to sharpen this statement.

We will need the notion of a “PW-F” set for a family F of subsets of Z.
“PW” stands for “piecewise” and if S € F and @ is a thick set then we
shall say SN Q is PW-F (or SN Q € PW-F). Clearly this notion is useful
only for families of syndetic sets. “PW-syndetic” is itself a useful notion. Van
der Waerden’s theorem [GRS80] implies that syndetic sets contain arbitrarily
long arithmetic progressions. In fact this is true for PW-syndetic sets. Unlike
the family of syndetic sets, the latter have the “divisibility” property: if S is
PW-syndetic and S = S; U Sy U---U S is a finite partition, then some
S; is PW-syndetic, see [Bro71]. A recent result of Renling Jin [Jin02] is the
following;:

Theorem 1.2. If A,B C Z and d*(A) > 0, d*(B) > 0, then A+ B is PW-
syndetic.

We will sharpen this to

Theorem 1. If A,B C Z and d*(A) > 0, d*(B) > 0, then A+ B is a PW-
Bohr set (PWB-set).

In particular d*(A) > 0 will imply that A— A is a PW-Bohr set. More precisely
it is a PW-Bohry (PWBy)-set. This will also follow from our earlier observation
that it is a A¥-set for sufficiently large 7, and from

Theorem II. For each r > 2, a A}-set is PW-Bohry.
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It is not hard to see that the prefix “PW” is indispensable in these the-
orems. For example A = (J[10",10" 4+ n] has d*(A) = 1 but A + A is not
syndetic. Also since z2 + 3® = 23 has no solution in non-zero integers, it fol-
lows that the set of non-cubes S = Z\{n%n = +£1,£2,+3,...} is a A} set.
But by Weyl’s equidistribution theorem S is not a Bohrg-set. (See Theorem 4.1
below for a stronger form of this observation.)

From Theorem I we shall deduce the following result which should be
compared with a theorem due to Ruzsa ([Ruz82], Theorem 3) which states
that if d*(A) > 0, then A + A — A is a Bohr set. (Both Ruzsa’s theorem
and our result can be viewed as improvements on a theorem of Bogoliouboff
([Bog39], [Fel54]) which implies that if d*(A4) > 0, then A — A+ A — Ais a
Bohr set.)

Corollary 1.3. If A, B,C are three subsets of 7 with positive upper density
and one of them is syndetic, then A+ B + C is a Bohr set.

2 Measure Preserving Systems, Time Series, and
Generic Schemes

In this section we introduce a basic tool which will be needed repeatedly: the
correspondence between data given on large intervals of time (“time series”)
and measure preserving dynamical systems. This tool has been used previously
under the name “correspondence principle” (see e.g., [Ber96]) and here we
present it in a more general form. We repeat the definition of a measure
preserving system which was given informally in §1.

Definition 2.1. A measure preserving system is a quadruple (X,B,u,T)
where (X, B, u) is a probability space where we assume B is countably gen-
erated, and T is a measurable, invertible, and measure preserving map,
T:X — X. The system is ergodic if every measurable T-invariant set has
measure 0 or 1.

For a measurable function f: X — C we denote by Tf the function
Tf(x) = f(Tx). We take note of the ergodic theorem (see, for example,
[Kre85]):

Theorem 2.2. If (X,B,u,T) is a measure preserving system and f € L' (X,
B, ), then

N—1
1 ey
JJEHOONT;TJE f

exists almost everywhere. If f € LP(X,B,u), 1 < p < oo, the convergence is

in LP as well. If the system is ergodic then f = [ fdu a.e., so that the average
of the sequence {f(T"xz)} equals a.e. the average of f over X.
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Sequences of the form {f(T"x)},<n<p are referred to as “time series”. In
a certain sense the ergodic theorem enables one to reconstruct a dynamical
system from “time series data”. We shall make this precise in the notion of
“generic schemes” which we proceed to define. In the next definitions the
indices [ and r range over the natural numbers.

Definition 2.3. An array is a sequence {J;} of intervals of integers, J; =
{ag,ap +1,...,b;} for which |J)|=b —a;+1— o0 as | — 0.

Definition 2.4. A scheme ({J;}, {€L}) is an array {J;} together with a doubly
indexed set of complez-valued functions {€L} where, for each r, £.(n) is defined
for n € J; and, for each r, the functions {¢.;1 = 1,2,...} are uniformly
bounded. For n ¢ J; we take £.(n) = 0. The {£L} will be referred to as time
series. They are defined on all of 7 but only the values on J; have significance.
The following notion relates closely to that of a “stationary stochastic process”.

Definition 2.5. A process (X,B,u,T,®) consists of a measure preserving
system (X,B,u,T) together with an at most countable ordered set & =
{¢1,92,...} of L>®-functions on X such that B is the o-algebra generated
by the functions of ® and their translates under T. (When the p; are com-
plex valued we assume ® closed under conjugation). A process is ergodic if the
underlying measure preserving system is ergodic.

Finally we have

Definition 2.6. A scheme ({J;}, {€.}) is generic for a process (X, B, u, T, ®)
if for every m and for every choice of i1,i2,..,im and j1,jo,-.-,Jm (the
indices here need not be distinct):

1
lim - S ¢ el Vol ; .
Jim 57 2t e 0t ki) 0
= /lesOMTJZSOlZ T]msolmdu
X

It will be convenient to introduce the countable family ®* consisting of
the products appearing in (1):
= {¢ =T"¢; Tpi - T 5, }
The corresponding time series have the form

¢'(n) =&, (n+ )€, (n+j2) - & (n+ jm),

and when (1) holds, we say that {('}represents 1.
It will be convenient in the sequel to regard ®* as the increasing union of
o0
finite sets, ®* = |J ®}. The subscript h has no significance other than as an

h=1
index with ® C ®3 C--- C & C ---.
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We note that the ergodic theorem implies that if (X, B, u,T) is ergodic,
then for almost every zo € X, the scheme ({.J;}, {¢L} is generic for the process
(X,B,u, T, ®) with J; = [1,1] and &L(n) = ¢, (T"x0) independently of /.

The main result of this section goes in the opposite direction, and will
attach to an arbitrary scheme an ergodic process. First we need the notions
of subarrays and subschemes.

Definition 2.7. An array {H,} is a subarray of {J;} if | = L; is a monotone
increasing function from N to N and Hj is a subinterval of Jr,.

Definition 2.8. A scheme ({H;},{n.}) is a subscheme of ({J;},{¢L}) if {H;}
is a subarray of {J;} : Hy C Jr,, and 1. is the restriction of & to Hj.

Our main result in this section is

Theorem 2.9. For any scheme ({J;},{¢.}) there exists a subscheme and an
ergodic process for which the subscheme is generic.

Proof. First we will pass to a subscheme which is generic for a process
(X,B, 1, T,®) which is not necessarily ergodic. For each r, let A, C C be
a compact set with £.(n) € A, for all l and n. Let A = [[ A, and let X = A%
We denote by &, the point in AZ with &L = (..., &L(=1),£L(0),&£L(1),...) and
form El = (&, d,..) ¢ A? = X. X is a compact metrizable space and we

form the measures 1
V) = —— (S n &l (2)
1 25,7

where T: X — X denotes the shift map Tw(n) = w(n + 1). Since |.J;| — oo,
any weak limit of a subsequence of v; is T-invariant, and we let v be some
such limit: v = lim vz,. It is not hard to see that ({Jr,},{¢L1}) is generic for
the process (X, B,v, T, ®) where B is the Borel o-algebra of sets in X and
® = {1, ps,...} with ¢, the functions on AZ given by ¢,(w) = w(0)(r). By
ergodic decomposition there will be an ergodic measure y whose support is a
subset of the support of v. Any point in the support of y is a limit of points
of the form T"¢" with n € J; and | — oo, by (2). Since p is ergodic, almost
every point w in its support is generic for u, in the sense that averages of a
given bounded measurable function along the orbit of w tend to the integral
of the function. In particular for functions in ®* we have:

k+N-—1
N > Tl T4, - Timep;, (T"w) — /T”%lT”% s Ty, dp
n==k

3)
uniformly for |k| < N.

We can find N sufficiently large that the difference of the two sides in (3)
is < e for all TV, ---Timp; € ®%. We then choose ¢! close enough
to w, n € Jj, so that the difference of the two sides of (3) remains < ¢ with
w replaced by T"E!. Since n € J;, assuming ! sufficiently large, we will have
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H =h+kn+k+N-—1] C J; for some k with |k|] < N. We now let
e = 0, h oo, and choose an appropriate subsequence of [; rescrambling
the information in (3) we find a subscheme ({H;}, {¢L}) which is generic for
(X,B,u,T,®).

Scholium to Theorem 2.9. If for some r,

1
limsup —| Y &(n)| >0,

=00 |Jl| ned;

we can add the condition that the corresponding ¢, does not vanish a.e. This
follows from the fact that the measure v satisfies [ ¢,dv # 0 and so v must
have an ergodic component with [ ¢,du # 0.

We remark that in the case of ergodic processes, given a generic scheme,
“many” subschemes will again be generic. This is made precise in the follow-
ing: For any process (X, B, u,T,®), ®* is countable and we fix an increasing
family of finite sets ®; C ®* increasing to ®*. Given a scheme ({J;},{¢L})
and fixing [, and letting ¢ > 0, we shall say that an interval H C J; is
e-h-generic for the process (X, B, u, T, ®) if (1) holds approximately; i.e, if for
every 1) € ®; and corresponding time series (' (n).

i 3 < = [ v

neH

<e. (4)

Assume now a process (X, B, u, T, ®) given with ®* = | J @} as above, and let
({T1},{€L}) be a generic scheme for the process.

Proposition 2.10. If (X, B, u, T, ®) is an ergodic process, then for any e > 0
and h € N there exists pg € N so that for any p > po there exists a positive
number ly(e, h, p) so that for 1 > ly(g, h,p), at least (1 —)(|J;| —p+1) of the
(|Ji]| = p + 1) intervals of length p in J; are e-h-generic for the process.

Letting p and [ grow we see, according to the proposition, that the intervals
J; can be replaced by many choices of subintervals, and the scheme will remain
generic. It is easy to see that this is not true for non-ergodic processes (where
time series have different statistical behavior along different intervals of time).

Proof of Proposition 2.10. It suffices to treat a single function and the cor-
responding time series. For if for each of the |®}| functions in ®; we have
(1 —e1)(J il —p+ 1) “ei-generic” intervals with £1|®}| < &, the number of
intervals common to all of these will not be less than (1 —¢)(|J;] —p + 1),
and these intervals are €;-h-generic, and so also e-h-generic. So let ¢ € ®*.

p—1
Ergodicity assures that for p large, % > T%) is L?-close to [ ¢dpu, and so
q=0

JGEr) (/)
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p—1

is small. Fix p and set n(n) = % qZ:O ¢((n+q). n and ¢ have the same long-term
averages,
2 1
MX; (n(m) = [ o) :717;1"" (IJIZ; )(f¢du)

+ (f ¢du)

— [ ( T%) — (v’

which is small for large p. But this implies that most 7(n) are close to [ du
as asserted in the proposition.

3 Some Examples of PW-Bohr Sets

3.1 Fourier Transforms

Our first example of PW-Bohr sets will lead to three more in the following
subsections.

Theorem 3.1. Let w be a non-negative measure on T = R/Z with a non-
trivial discrete (atomic) component, and let & denote its Fourier transform:
@(n) = [e2mitndw(t). If

T

S ={n:Rew(n) >0},
then S is a PW-Bohry set.

Proof. Let wy denote the discrete component of w: wg = Y., w({\})dx where
AEA
A consists of all the atoms of w . Let Ag be a finite subset of A so that

wi(Ao) > 3wq(A). Set

,(/}(7.) — Z wd(A)GQﬂ'iAT

AEAq

and let By be the Bohrg set: By = {n : Ret)(n) > 2wq(Ao)}. The measure
w — wq is continuous and so by Wiener’s theorem (see [Kre85], p.96)

N

=0

o(n) — Galm)|

im —
N 2N + 1 ZN

It follows that Q' = {n : ‘d}(n) - d)d(n)‘ Fw (Ao)} has density 0 so that
Q =7Z\Q' is a thick set.



