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Supervisor’s Foreword

The Himalaya not only influences the rainfall pattern in India but also obstructs the
path of the cold winds coming from the north because of altitude and location. The
Inner Asian high-pressure systems and winter Westerlies are main components
of the Himalayan climate, and a combined impact of rainfall, latitude, and altitude
mainly affects the climate pattern. The region mainly experiences two seasons, i.e.,
summer (June to September) and winter (October to May). The Indian Summer
Monsoon (ISM) decreases toward northwest India where Western Disturbances
(WDs) play a major role in the annual precipitation. Therefore, the role of the WDs
cannot be overlooked while using any archive or proxy for the past climatic
changes in the Indian Himalaya. Taking this into account as well as knowing that
the high-resolution palaeoclimatic records are scarce from the Indian Himalaya,
Anoop Kumar Singh was given an assignment on high-resolution past climatic
changes in selected sectors of the Indian Himalaya employing cave speleothems,
particularly for the last *15 ka period and undoubtedly the results should be very
helpful to develop the models for ISM variability and WDs through an improved
understanding of the monsoon–climate interaction.

The doctoral thesis encompasses study of six cave stalagmites, chronology of
which was constructed on the basis of 35 U/Th and 5 AMS dates. Other proxies used
were SEM analysis, XRD, and Mg/Ca ratio in order to differentiate calcite from
aragonite, in addition to about 1500 samples for d18O and d13C isotopes for
reconstructing past precipitation model. Three major events were identified, e.g.,
Older Dryas (OD), Bølling–Allerød (BA) period, and Younger Dryas (YD) at ca.
14.3–13.9, 13.9–12.7, and 12.7–12.2 ka BP, respectively. While comparing NW
Himalayan record with Central Himalaya, there appears a similar trend in general but
a shift in the duration of YD event, proving that the past climate of these two sectors
also does not co-vary. The study also showed a gradual reduction in the precipitation
from 4.0 ka BP onward for about a millennium with a peak arid period between 3.2
and 3.1 ka BP—a period correlated with fall of the Harappan–Indus civilization
which finally collapsed due to severe scarcity of water reserves at 3.1 ka BP.
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Considering very high variability in the d18O and d13C values, Anoop believes
that the precipitation in the Himalayan foothills was a result of two sources of
moisture and therefore he suggests that the WDs contributed significantly in the
total rainfall during the Holocene period in the Indian Himalaya. This must be a
reason for anti-correlation in the climatic pattern from Mid-Holocene onward
between Himalaya and Peninsular India, the former received substantial precipi-
tation from WDs.

Interestingly, the LIA in the Indian Himalaya was wetter compared to that in the
post-LIA period. This is because during ISM break conditions, the moisture winds
moved directly from the south to the Himalayan foothills and the WDs extended to
the southern edge of the Tibet Plateau. As a result, during this period, the
Himalayan southern slopes received high precipitation than the core monsoon zone.

I was deeply impressed by Anoop’s excellent and matchless depth of under-
standing of the Holocene climatic process. During the doctoral programme, he
visited several well-known laboratories in India and abroad as well as attended
several training programmes to get skilled in this subject, refine his research, and
get exposed to variety of climate archives and proxies.

Nainital, India
August 2017

Prof. B. S. Kotlia
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Chapter 1
Introduction

Monsoon is one of the complex rain bearing features of Earth’s climate. The Asian
Monsoon System (ASM) is a large and most extensive monsoon pattern in the world
as well as important component of global climate system (Morrill et al. 2006). It
strongly affects most of the nations of south and south-east Asia. The ASM has
two dominant monsoon patterns, e.g., East Asian Summer Monsoon (EASM) and
Indian Summer Monsoon (ISM). The EASM is a monsoonal stream that carries
wet air from the Indian and Pacific Oceans to East Asia and affects parts of Japan,
Koreas, Taiwan, Philippines, Hongkong, Indo-china and much of mainland China
(Webster et al. 1998; Trenberth et al. 2000; Ding and Chan 2005). It is derived
by temperature difference between the Pacific Ocean and the Asian continent. The
ISM pattern of the Indian subcontinent, different from the rest of Asia decides the
economic and agricultural growth of India and its dramatic pattern and intensity are
great challenge for climatologists to reconstruct the past climatic conditions and also
future predictions.

The ISM arrives from southwest direction (Arabian Sea) to land, and brings rain to
most parts of the Indian subcontinent (Rao 1976; Agnihotri et al. 2002; Gadgil 2003)
during the months of June–September and contributes about 80% precipitation of the
total annual rainfall (Gadgil 2003) while remaining is received fromwintermonsoon,
e.g., North East monsoon (NE monsoon) and Westerlies (WDs). The ISM splits into
two branches (Fig. 1.1), (i) The Arabian Sea branch and, (ii) Bay of Bengal branch.
It is divided into three different streams on arriving in the mainland of India. The
first stream strikes the elevated Western Ghats (Ananthakrishnan et al. 1967; Rao
1976; Ananthakrishnan and Soman 1988; Soman and Kumar 1993; Chakraborty
et al. 2006; Rao et al. 2010; Goswami 2012) at almost right angle (Fig. 1.1) and
provides extremely heavy rainfall. The second stream enters Narmada-Tapi troughs
and reaches Central India. It does not cause much rain near the coast but is very much
responsible for precipitation in the Indo-Gangetic Plains. The third stream moves in
a North-Easterly route parallel to the Aravalli Range. Since the orientation of the
Aravalli Range is parallel to the direction of prevailing monsoon winds, it does not
offer a major blockage in Rajasthan. The Bay of Bengal branch is main cause of

© Springer International Publishing AG 2018
A. K. Singh, High Resolution Palaeoclimatic Changes in Selected
Sectors of the Indian Himalaya by Using Speleothems, Springer Theses,
https://doi.org/10.1007/978-3-319-73597-9_1
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2 1 Introduction

Fig. 1.1 Extent of present day ISM and WDs (after Kotlia et al. 2015)

precipitation in Northeast India and further moves towards the Indo-Gangetic Plain.
It is divided into two distinct streams; first stream of Bay of Bengal branch hits
the western coast of Burma where Arakan and Tenasserim mountains receive heavy
rainfall (Gadgil 2003). Another southerly stream crosses the Ganga-Brahmaputra
delta and reaches Meghalaya. This moves towards southern slopes of Assam hills.
The rain bearing winds decrease from south to north and east to west.

TheNEmonsoon (October–December) brings rain to several places in south India
(Prasad and Enzel 2006). The ISMwithdraws from the extreme north-west end of the
country in September, from the Peninsula by October and from the extreme south-
eastern tip by December. The NE Monsoon contributes mainly to coastal Andhra
Pradesh and Tamil Nadu-Pondicherry.

Westerlies or Western Disturbances (WDs) bring heavy rainfall/snow fall in low
lying areas in western Himalayan region, particularly over Northwest India. The
WDs are active in the winter months (November–February) and are important for
Rabi crops (wheat). The WDs (between 30° and 60° latitude) originate mostly from
theMediterraneanSea andmove eastward towards India acrossAfghanistan/Pakistan
(Benn and Owen 1998; Kotlia et al. 2015). They split into two branches in Asia due
to orographic barrier of the Himalaya and the Tibetan Plateau (Pang et al. 2014).

1.1 Indian Summer Monsoon (ISM) Variability

It is shown that the ISM rainfall over India occurs in intermittent spells of active
and break cycles (Ramamurthy 1969; Sikka and Gadgil 1980; Krishnamurthy
and Kinter 2003).



1.1 Indian Summer Monsoon (ISM) Variability 3

Fig. 1.2 Advance of the ISM within 15 days in the year 2013

The break spells or intervals of droughts (Sikka 1980) are described as inter-
ruption of several days in the peak ISM months. The active spells are defined as
development of the ISM disturbances (wet and flood periods) in a short period
(Murakami 1976). The ISM intensity depends on many parameters, e.g., coupled
heating-cooling between land and sea, Inter-Tropical Convergence Zone (ITCZ),
El Niño-Southern Oscillations (ENSO), North Atlantic Oscillations (NAO) etc. For
example, the ISM covered the entire country before 15 days from regular schedule
in the year 2013 (Fig. 1.2), during which several parts of North India (Uttarakhand)
and NE India witnessed floods. It was an El Niňo year (Weaker monsoon year) but
the amount of precipitation in June was totally different. Thus, it is very much dif-
ficult to predict the behaviour and intensity of monsoon. Some other examples are
floods in Mumbai (2005), Uttarakhand (2013), Kashmir (2014) (Singh et al. 2014)
and the droughts in NE India, Bihar and Jharkhand in 2013 (Indian Meteorological
Department report 2013).


