
Edited by
Guillaume Lambotte • Jonghyun Lee
Antoine Allanore • Samuel Wagstaff

Materials
Processing
FUNDAMENTALS 2018



The Minerals, Metals & Materials Series



Guillaume Lambotte • Jonghyun Lee
Antoine Allanore • Samuel Wagstaff
Editors

Materials Processing
Fundamentals 2018

123



Editors
Guillaume Lambotte
Boston Electrometallurgical Corporation
Woburn, MA
USA

Jonghyun Lee
Iowa State University
Ames, IA
USA

Antoine Allanore
Massachusetts Institute of Technology
Cambridge, MA
USA

Samuel Wagstaff
Novelis
Sierre
Switzerland

ISSN 2367-1181 ISSN 2367-1696 (electronic)
The Minerals, Metals & Materials Series
ISBN 978-3-319-72130-9 ISBN 978-3-319-72131-6 (eBook)
https://doi.org/10.1007/978-3-319-72131-6

Library of Congress Control Number: 2017960289

© The Minerals, Metals & Materials Society 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The symposium Materials Processing Fundamentals is hosted at the annual meeting
of The Minerals, Metals & Materials Society (TMS) as the flagship symposium
of the Process Technology and Modeling Committee. It is a unique opportunity for
interdisciplinary presentations and discussions about, among others, processing,
sensing, modeling, multi-physics, computational fluid dynamics, and
thermodynamics.

The materials covered include ferrous and nonferrous elements, and the pro-
cesses range from mining unit operations to joining and surface finishing of
materials. Acknowledging that modern processes involve multi-physics, the sym-
posium and its proceedings allow the reader to learn the methods and outcome of
other fields modeling practices, often enabling the development of practical solu-
tions to common problems. Modeling of basic thermodynamic and physical
properties play a key role, along with computer fluid dynamics and multiphase
transport and interface modeling.

Contributions to the proceedings include applications such as steel processing,
modeling of steel and nonferrous alloys treatments for properties control,
multi-physics, and computational fluid dynamics modeling for molten metal pro-
cesses and properties measurement. Extractive, recovery, and recycling process
modeling are also presented, completing a broad view of the field and practices of
modeling in materials processing.

The engagement of TMS and committee members to chair sessions, review
manuscript, and help TMS present current practices, makes this symposium and its
proceedings possible. The editor and its coeditors acknowledge the invaluable
support and contribution of these volunteers as well as TMS staff members, in
particular, Patricia Warren, Trudi Dunlap, Carol Matty, and Matt Baker.

Guillaume Lambotte
Jonghyun Lee

Antoine Allanore
Samuel Wagstaff
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Part I
Steelmaking—Processing



The Effect of a Sulfur Addition
on the Formation and Behavior of CaS
Inclusions During a Secondary Refining
Process Without Using a Ca-Treatment

Takanori Yoshioka, Yuta Shimamura, Andrey Karasev,
Yasuhide Ohba and Pär Göran Jönsson

Abstract This study aimed to elucidate the effect of a sulfur addition on the
formation and behavior of CaS inclusions in steel melts during a secondary refining
process without a Ca-treatment. Samples were taken during production for two
different steel grades, namely a low-S steel (S = 0.005%) and a high-S steel
(S = 0.055%). Thereafter, the inclusion characteristics were determined using an
SEM combined with an EDS. The results show that the CaO content in the
inclusions decreased and the CaS content increased after a sulfur addition during an
RH process for the high-S steel. Furthermore, CaS-covered inclusions were fre-
quently detected in the high-S steel samples after the S addition. Thermodynamic
calculations were also performed to compare the CaS formation behavior in the two
steels. The results showed that a CaS phase can thermodynamically be formed in
the high-S steel melt even without a Ca-treatment. Also, it was indicated that a CaS
phase can be formed in two ways, namely a reaction between Ca and S and a
reaction between CaO in inclusions and S. From the viewpoint of interfacial fea-
tures, inclusions covered by a CaS phase are thought to possess low contact angles
to steel melts. Therefore, CaS-covered inclusions tend to remain in a steel melt.
According to the results of this study, CaS inclusions can be formed and deteriorate
the castability of high-S containing steels even without a Ca-treatment.

Keywords CaS inclusion � High-S � Ca-treatment � Castability
Thermodynamics � Contact angle
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Introduction

Inclusions can be detrimental to a stable casting when they exist in a solid phase at
steelmaking temperatures [1]. Generally, solid oxide inclusions have high interfa-
cial energies to steel melts [2]. Therefore, they tend to accumulate on a nozzle wall
which can cause a nozzle clogging [1, 3, 4]. In addition to solid oxide inclusions,
CaS inclusions are also recognized as being harmful for a high castability since they
also exist as a solid phase at steelmaking temperatures [1, 3, 4]. Therefore, the
activities of steel components such as Ca, S, and Al should be controlled carefully
when a Ca-treatment is performed [1, 3, 4]. However, a high-S content in a steel
product is sometimes required to possess a high machinability. This high-S content
leads to a high activity of S, which can react with Ca or a CaO phase in a steel melt
and generate a CaS phase. However, there are still few discussions on the formation
and behavior of CaS inclusions without using a Ca-treatment. From this standpoint,
this study aimed to clarify the formation and behavior of CaS inclusions in steel
melts without using a Ca-treatment. In practice, steel samples were taken from the
ladle during a secondary refining process. Thereafter, the CaS formation and its
behavior in a steel melt were discussed.

Experimental Procedures

The procedure of the melt shop is an EAF ! LF ! RH ! CC line. Two steel
grades were subject to this study, namely steel A (0.20%C–0.26%Si–0.83%Mn–
0.005%S) and steel B (0.36%C–0.76%Si–1.33%Mn–0.055%S) to investigate the
effect of the S content on the formation behavior of CaS inclusions in a steel melt.
These two steels are manufactured with high basicity slags, which had a compo-
sition saturated with both CaO and MgO. During the production of steel B, its high
S content was adjusted during an RH treatment since slag/metal reactions are not
active during the process. Steel samples were taken at the end of the LF refining
(45 min) and the RH treatment (25 min). These samples were named “LF end” and
“RH end”, respectively. The compositions of inclusions on the polished cross
section of each steel sample were analyzed using an SEM/EDS inclusion analyzer.
The scanned area was 100 mm2. To calculate the content of CaO in the inclusions,
the measured small amount of Mn was allotted to an MnS phase and the remaining
S was considered to be bound as a CaS phase. After this procedure, the rest of the
Ca content was allotted to a CaO phase [5, 6]. The methods for quantitative
analyses of steel compositions were the same as presented in the previous work [6].
To discuss variations of inclusion compositions, the Ca content in each steel sample
was calculated based on the information of the average inclusion composition and
insoluble oxygen content (T.O - Ocalc) at each sampling time. A detailed expla-
nation of this calculation is described in previous papers [7, 8].

4 T. Yoshioka et al.



Results

Variations of Compositions in the Steel Melts

The variations of the steel compositions during the processes are shown in Fig. 1.
The sulfur contents in both steels were reduced below 0.005 mass% at the end of
the LF refining process. Thereafter, FeS was added into the steel melts to enable
their products to possess designed steel properties. The increase in Al in steel B is a
result of an Al addition which aimed to compensate Al consumption during an RH
treatment [6, 9]. The Ca contents in the steel melts were around 5 ppm at the end of
the LF refining and thereafter decreased below 1 ppm after the following RH
treatment. This decrease can be due to vaporization of Ca into a gas phase [10], or
reactions between Ca and other elements during the RH treatment.

Variations of Inclusion Compositions

The variations of the inclusion compositions in each steel are shown in Fig. 2. The
compositions of inclusions are plotted in two diagrams: a CaO–MgO–Al2O3 ternary
diagram and a CaO–CaS–Al2O3 ternary diagram. The open circles in these figures
represent the number-averaged composition at each step. At the end of the LF
refining, the inclusion compositions were placed on the tie-line connecting the areas
of MgO ⋅ Al2O3 and CaO–Al2O3liq (CaO–Al2O3liq: mass%CaO = 36–58 at
1873 K [11]) in both steels. This result is consistent with the result which has been
reported by Yoshioka et al. [6]. The results also showed that some of the inclusions
already contained various amounts of CaS at this stage of the LF treatment.
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Fig. 1 Variations of the steel compositions in steel A and steel B during the LF-RH process
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The difference in the CaS contents in inclusions between the two grades might be
due to the difference in the Ca and S contents during the LF refining process. After
the RH treatment, the inclusions in steel A mainly consisted of three phases, namely
Al2O3, CaO–Al2O3liq, and CaS. On the other hand, the inclusions mainly consisted
of two phases, Al2O3 and CaS in steel B. In addition to this difference, the CaS
contents in the inclusions in steel B were much higher (steel A: 6.9 mass%, steel B:
42.9 mass% in the average composition normalized in the CaO–MgO–Al2O3–CaS
quarterly system) than those in steel A. Overall, the inclusion compositions were
not significantly different between the two steels at the end of the LF refining.
However, at the end of the RH treatment, the inclusion compositions were quite
different between the two steels with respect to the CaO and CaS contents.

Figure 3 shows the results of SEM observations of the typical inclusion found in
each sample. In the samples taken at the end of the LF treatment in both steel
grades, the inclusions consisted of two phases, namely a CaO–Al2O3 phase and an
MgO ⋅ Al2O3 phase (Fig. 3a, c). At the end of the RH treatment, Al2O3 inclusions
were observed in the sample of steel A (Fig. 3b). In the sample of steel B, inclu-
sions surrounded by a CaS phase were frequently observed after the RH treatment
(Fig. 3d). These observed results agree with the variations of the inclusion com-
positions shown in Fig. 2.

Fig. 2 Inclusion compositions in each sample: a LF end of steel A, b RH end of steel A, c LF end
of steel B, d RH end of steel B

6 T. Yoshioka et al.



Discussion

Thermodynamic Consideration

As mentioned above, CaS inclusions were observed in the sample of steel B at the
end of the RH treatment although no Ca-treatment was used. In the following
section, the possible reasons for the CaS formation are discussed from a thermo-
dynamic viewpoint.

CaS Formation by a Reaction Between Ca and S in a Steel Melt

One way to form a CaS phase is due to a reaction between Ca and S in a steel melt.
This reaction is expressed in Eq. (1) [12].

Caþ S ¼ CaS sð Þ DG0
1 ¼ �530000þ 115:6T ½J=mol� ð1Þ

A CaS stability diagram was calculated at 1873 and 1823 K, which represent the
operation temperatures of the LF refining and the RH treatment, respectively. In this
calculation, the interaction parameters shown in Table 1 were used [12–14]. The
activities of Ca (aCa) and S (aS) were calculated with the following Eqs. (2) and (3),
where fi is the activity coefficient of element i in a steel melt.

Fig. 3 SEM observations of a typical inclusion found at each stage of the ladle treatment: a LF
end of steel A, b RH end of steel A, c LF end of steel B, d RH end of steel B

Table 1 Interaction parameters (eji) of the main elements in the steel melt used in the present
study*

j C Si Mn Al Ca O

i

Ca −0.34 −0.096 −0.0156 −0.072 −0.002 −9000 [14]

Al 0.091 0.056 −0.004 0.043 −0.047 −6.6 [12]

O −0.45 −0.131 −0.021 −3.9 [12] −3600 [14] −0.17

S 0.11 – −0.026 0.041 −269 [12] −0.27

*(All data without notation were taken from Ref. [13])

The Effect of a Sulfur Addition on the Formation and Behavior … 7



ai ¼ fi � ½mass% i� ð2Þ

logfi ¼
X

e ji � ½mass% j� ð3Þ

Moreover, the activity of the CaS phase was taken as unity due to its small
solubility in CaO–Al2O3 phases [15]. Figure 4 shows the obtained relationships
between the CaS stability and the activities of Ca and S in steel melts. The symbols
in the figure correspond to the Ca and S activities at each sample.

According to this result, Ca and S cannot thermodynamically react to form a CaS
phase at the end of the LF refining in any of the two studied steels. Furthermore,
CaS cannot be formed in steel A during the RH treatment due to the low Ca and S
activities. On the other hand, CaS can be formed in steel B due to the high S
activity.

CaS Formation Due to a Reaction Between CaO in Inclusions
and S in a Steel Melt

Another way to form a CaS phase in a steel melt is due to a reaction between CaO
in inclusions and S. This reaction can be expressed as shown in Eq. (5), which was
derived by combining Eqs. (1) and (4) [12].

CaþO ¼ CaO sð Þ DG0
2 ¼ �644000þ 148:1T ½J=mol� ð4Þ

CaO sð Þþ Sþ 2
3
Al ¼ CaS sð Þþ 1

3
Al2O3 DG0

3 ¼ �294500þ 98:8T ½J=mol� ð5Þ
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Fig. 4 Stability diagram of CaS formed by a reaction between Ca and S in steel melts
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As can be seen in Eq. (5), the progress of this reaction also depends on the
activities of CaO and Al2O3 in the inclusions. This reaction can easily occur when
the CaO activity is high and the Al2O3 activity is low. Table 2 shows the activities
of CaO and Al2O3 at each boundary of the CaO–Al2O3 system which was calcu-
lated using the thermodynamic software Factsage [6]. These activity data were
substituted into Eq. (5) to identify the effect of the inclusion phases. Here, the
activity of CaS was set as unity in this calculation.

Figure 5 shows the calculated relationships between the activities of Al and S to
form a CaS phase by the reaction of Eq. (5). The plots in the figure correspond to
the Al and S activities at each sample. As has been frequently reported, a CaO–
Al2O3liq phase is the most stable oxide in an Al-killed steel melt [6, 16–18]. Based
on the result shown in Fig. 5, the CaO–Al2O3liq phase can coexist with a CaS phase
under a low S activity condition. In the current study, this condition prevails at the
end of the LF treatment for both steels and at the end of the RH treatment for
steel A. At the end of the RH treatment in steel B, the activity of S is greatly
increased from 0.004 to 0.05 by the FeS addition. Therefore, the modified
CaO–Al2O3 phases, such as CaO ⋅ Al2O3 and CaO–Al2O3liq, can react with S to
form a CaS phase. This reaction contributes to both a decrease in the CaO contents
and an increase in the CaS contents in inclusions in a steel melt, which were seen in
Figs. 2c, d.

Table 2 Activities of CaO
and Al2O3 in various
boundaries of a CaO–Al2O3

system at 1873 K [6]

Boundary aAl2O3 aCaO
Al2O3(s)/CaO�6Al2O3(s) 1.0 0.0049

CaO�6Al2O3(s)/CaO�2Al2O3(s) 0.88 0.010

CaO�2Al2O3(s)/CaO�Al2O3(s) 0.29 0.10

CaO�Al2O3(s)/CaO–Al2O3(l) 0.18 0.17

CaO–Al2O3(l)/CaO(s) 0.0089 0.99
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Fig. 5 Relationships between the activities of Al and S to form a CaS phase by a reaction between
CaO in various CaO–Al2O3 phases and S in steel melts at a 1873 K and b 1823 K. (C: CaO, A:
Al2O3)
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Overall, the results in this study indicate that a CaS phase can be formed in a
steel melt even when a Ca-treatment has not been used. The reactions for this CaS
formation can progress in two manners, namely due to a reaction between Ca and
S and due to a reaction between CaO in inclusions and S. These reactions are
thought to progress at the inclusion/metal interface. This is the explanation to why
the inclusions in the production of steel B were covered by a CaS phase after the
FeS addition.

Behavior of CaS Inclusions in a Steel Melt

The removal tendency of an inclusion from a steel melt is greatly affected by an
interfacial property, namely the contact angle between an inclusion and a steel melt
[19–21]. Arai et al. have clearly elucidated the effect of contact angles on the
removal behavior of particles in a liquid [19]. According to their work, the removal
tendency steeply decreases when the contact angle between an inclusion and a steel
becomes lower than 90˚. Generally, solid oxides such as Al2O3, CaO–Al2O3 with
low CaO contents, and MgO ⋅ Al2O3 have large contact angles in contact to steel
melts (>90˚) [2]. This information means that solid oxides are easy to remove from
a melt. On the other hand, liquid oxides, such as CaO–Al2O3liq, have small contact
angles (50°–60° [2]), so they are difficult to remove from a steel melt. The contact
angle of a CaS phase to a steel melt has been reported as 87° [22]. The S content,
mentioned in ref. [22], in the steel melt is 0.01 mass%. Sulfur is well-known to be a
surface active element, which can decrease the interfacial energies of slag/metal and
inclusion/metal interfaces [23, 24]. By considering the sulfur content of high-S
steels (around 0.05 mass% as shown in Fig. 1), the contact angles of a CaS phase to
the steel melts are thought to be 87° or less. Therefore, it can be implied that
CaS-covered inclusions, which were identified in Figs. 2d and 3d, are difficult to
remove, and they tend to remain in a steel melt even after the completion of an RH
treatment.

As mentioned above, liquid inclusions and CaS inclusions are difficult to remove
from a steel melt. However, liquid inclusions rarely cause a nozzle clogging even if
they remain in a steel melt after refining processes. On the other hand, CaS inclu-
sions are well-known to deteriorate the castability since they exist as solid inclusions
in a steel melt (melting point � 2800 K) [1, 3, 4, 11]. Thus, CaS inclusions have
quite undesirable characteristics such as a tendency to remain in a steel melt and a
tendency to accumulate on a nozzle wall, which can causes a nozzle clogging.
Table 3 summarizes the results of this discussion.

A deposition on a nozzle wall of a ladle after casting steel B was investigated
using an SEM in combination with an EDS. The result is shown in Fig. 6. As seen,
sulfides were frequently detected in the deposition. Thus, CaS inclusions can cause
a clogging in production of high-S steels even for cases where a Ca-treatment has
not been used.
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Conclusion

Plant experiments were carried out to study the formation and behavior of CaS
inclusions in a steel melt during a secondary refining process without using a
Ca-treatment. The inclusion characteristics in the steel samples taken at the end of
an LF treatment and an RH treatment were determined using an SEM in combi-
nation with an EDS. Furthermore, thermodynamic calculations were performed to
discuss the possibilities of forming CaS inclusions in steels without a Ca-treatment.
Also, the influence of the interfacial properties between the inclusions and steel
melts on the behavior of the observed inclusions in the steel melts was discussed.
Based on the results of this study, the following conclusions can be drawn.

In a high-S steel melt, a CaS phase can be formed even when a Ca-treatment has
not been used. Specifically, this can take place in two manners: a reaction between
Ca and S, and a reaction between CaO in inclusions and S.

Due to the formation of a CaS phase, inclusions in high-S containing steel melts
are covered by a CaS layer, which is difficult to remove from the melts. Therefore,
the castability of high-S containing steels can be deteriorated by a deposition of CaS
inclusions even without a Ca-treatment.

Table 3 Dominant inclusion types and their behavior in low-S steel melts and in high-S steel
melts

Inclusion
type

Removal
from a melt

Clogging In low-S steels without
a Ca-treatment

In high-S steels without
a Ca-treatment

Solid
oxide*

Preferable
(easy)

Unpreferable
(can cause)

Dominant (Clogging
cannot occur if solid
inclusions are properly
removed)

–

Liquid
oxide*

Unpreferable
(difficult)

Preferable
(cannot
cause)

CaS
inclusion

Unpreferable
(difficult)

Unpreferable
(can cause)

– dominant (CaS
inclusions tend to
remain in steel melts
and cause cloggings)

*At a steelmaking temperature

5μm

Fig. 6 Element mappings of a deposition on a ladle nozzle in the production of steel B
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Desulfurization of Copper-Iron Reduced
from Copper Slag

Bao-jing Zhang, Ting-an Zhang, Li-ping Niu, Zhi-he Dou,
Zhi-qiang Li and Dong-liang Zhang

Abstract In order to maximize the use of copper slag, a new idea that copper slag
is reduced to smelt copper-containing antimicrobial stainless steel was proposed.
But copper-iron reduced from copper slag contains a large number of copper matte,
making sulfur content high. In this article, desulfurization of copper-iron was
studied. The Fact-Sage software was used to calculate DG of the desulfurization
reaction. Calcium oxide, calcium carbide and ferromanganese were used as
desulfurization agent. The results show that desulfurization capacity of calcium
oxide is poor, but with addition of carbon, desulfurization effect of calcium oxide
will be enhanced. Calcium carbide and ferromanganese have good desulfurization
effect.

Keywords Desulfurization � Copper-iron � Calcium oxide � Calcium carbide
Ferromanganese

Introduction

With the development of copper smelting process, strong oxidation process is put
into practice. Copper matte grade is higher, and copper element in smelting slag is
also higher [1]. At present, the most common use of copper slag is that copper slag
is diluted to obtain copper matte and tailings. Matte is back to copper smelting
process, and tailings are made into cement, which make copper slag used with low
value [2–7]. Based on this, our group proposed a new technology that copper slag is
reduced to smelt copper containing antimicrobial stainless steel. That is, copper slag
is directly reduced to obtain copper-containing molten iron, and then by a series of
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