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Preface

The theory of relation algebras is an abstract, finitely axiomatizable version of the
calculus of relations, which in turn is an algebraic theory of binary relations dating
back in origins to the second half of the nineteenth century. The theory was cre-
ated by Alfred Tarski in 1941 and initially developed by Tarski and his students,
J. C. C. McKinsey, Bjarni Jónsson, Roger Lyndon, and Donald Monk.

One of the important results of the theory is that every relation algebra is a sub-
direct product of relation algebras that are simple in the classic sense of the word,
that is to say, they have exactly two ideals, the improper ideal and the trivial ideal.
In analogy with the program of classifying the finite simple groups, the program
suggests itself of attempting to classify the simple relation algebras, or at least the
finite, simple relation algebras. The purpose of this book is to give an exposition of
several different methods for constructing simple relation algebras—some of them
older, but most of them new with this book—and, in particular, to demonstrate that
these seemingly different methods are really all different aspects of one general ap-
proach to constructing simple relation algebras. Several different applications of the
method are given. A broad sketch of the method and its applications is given in the
Introduction.

Intended audience

The book will be of interest not only to mathematicians, in particular those interested
in logic, algebraic logic, or universal algebra, but also to philosophers and theoreti-
cal computer scientists working in fields that use mathematics. For that reason, it has
been written in a careful and detailed style so as to make the material accessible to
as broad an audience as possible. In particular, the background in relation algebras
that is needed to read this book is given in an appendix.

The book contains more than 400 exercises, some of them routine to help the
reader grasp the material, others quite difficult. Hints and solutions to some of more
challenging exercises are given in an appendix.

vii



viii Preface

Acknowledgements

The first author learned the theory of relation algebras from Alfred Tarski in an
inspiring course given in 1970 at the University of California at Berkeley, and
through later collaboration with Tarski over a period of ten years. The work of Bjarni
Jónsson, his great interest in relation algebras and, more generally, universal alge-
bra, and his open and stimulating discussions with the authors have motivated a
number of the results in this book. Most of the results in Chapter 3 (though not the
particular development and presentation adopted there) are due to him, and discus-
sions with him led the first author to the discovery of the results in Chapter 5. Roger
Maddux’s work has also had a significant impact on the development of some of
the material in the book. In particular, one of his papers was the original stimulus
for the research that culminated in the definitions and theorems in Chapter 8 and
the first half of Chapter 9. It was Maddux who called our attention to the thesis of
Mohamed El Bachraoui [13], and this thesis was the direct inspiration for the results
in Chapter 6. The authors are deeply indebted to all these individuals.

We would also like to express our indebtedness to Loretta Bartolini and her entire
production team at Springer for pulling out all stops, and doing the best possible job
in the fastest possible way, to produce this volume. Loretta served as the editor of
this volume, and her constant encouragement, help, and support made the process
of publishing this book much, much easier than it might have otherwise been. Any
errors or flaws that remain in the volumes are, of course, our own responsibility.

Finally, we would like to acknowledge the mutual interests, support, and years
of devoted friendship that the authors have shared with each other and with István
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Introduction

The calculus of relations is a mathematical theory of binary relations that is over one
hundred and fifty years old, dating back to the middle of the nineteenth century. The
first paper on the subject was written by De Morgan [11]. A proper foundation for
the theory was formulated by Peirce in [45], after several earlier attempts. Schröder
systematically developed Peirce’s theory in the extensive monograph [50]. In 1903,
Russell [48] could write

The subject of symbolic logic is formed by three parts: the calculus of propositions, the
calculus of classes, and the calculus of relations.

The objects of study of the calculus of relations are algebras of binary relations,
consisting of a universe of binary relations on some base set, together with the opera-
tions of union, intersection, complement, relational composition, relational addition
(the dual of relational composition), and relational inverse (or converse). There are
also distinguished constants: the empty relation, the universal relation, the identity
relation, and the diversity relation on the base set. (Some of these operations and
constants—for instance, the operation of relational addition—are definable in terms
of the others and may therefore not be included in the list of primitive notions.)

The calculus of relations was given an axiomatic foundation by Tarski, in the
spirit of general algebra, starting with the 1941 paper [55]. The original axioma-
tization was not equational, but Tarski realized that an equational axiomatization
was possible (see the remark at the top of p. 87 in op. cit.). Within a short time he
produced a very elegant one (the one used in [58]) and succeeded in showing (some-
time in the period 1942–44) that this simple, finitely axiomatized, equational theory
provides a sufficiently rich formalism for the development of all of classical mathe-
matics. (This theorem and its consequences were eventually published in [58].)

Tarski posed two fundamental questions in [55] regarding his foundation of the
calculus of relations (or the theory of relation algebras, as it eventually came to be
called). The first concerned completeness: is every true equation derivable from the
set of axioms? The second concerned the existence of a general representation theo-
rem: is every abstract model of the theory isomorphic to a concrete model of binary
relations? Success eluded him in his pursuit of the answers to these questions, but
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x Introduction

along the way he and his collaborators McKinsey and Jónsson were able to establish
some important algebraic properties of relation algebras. First of all, every relation
algebra is semi-simple in the sense that it is a subdirect product of simple relation
algebras (see [29] and Theorems 4.10 and 4.14 in [31] for statements of closely re-
lated results). Second, every relation algebra can be extended to a complete atomic
relation algebra, and the extension is simple or integral just in case the original alge-
bra is simple or integral (see Theorem 4.21 in [31]). (A relation algebra is said to be
integral if the composition of two non-zero elements is always non-zero.) These two
theorems provided the foundation for future algebraic investigations. They indicate
clearly the important role that simple relation algebras, particularly those that are
complete and atomic, play in the theory.

In 1950, Lyndon [33] proved that the answer to both of Tarski’s questions is
negative. He gave an example of a true equation that is not derivable from Tarski’s
axioms, and he gave an example of a finite relation algebra that is not representable
as an algebra of binary relations. This original example of a non-representable rela-
tion algebra was not easy to understand. In [35], building on earlier work of Jónsson
[26], Lyndon showed how to construct relation algebras as complex algebras (alge-
bras of all subsets, or complexes) of arbitrary projective geometries, and proved that
many of the algebras constructed from projective lines are not representable. Monk
used these algebras in [41] to demonstrate that no finite set of postulates is sufficient
to axiomatize the class of representable relation algebras. As a consequence, no fi-
nite set of postulates is strong enough to derive all true equations in the calculus of
relations.

Before the negative results of Lyndon were discovered, Tarski established a par-
tial representation theorem for the class of all relation algebras, and some full rep-
resentation theorems for restricted classes of relation algebras. For instance, in The-
orem 4.29 of [31] it is shown that every atomic relation algebra with functional
atoms—atoms that satisfy a certain characteristic equational property of functions—
is representable. A number of other such theorems have appeared over the years, for
instance in [31, 58, 27, 37, 49, 14], and [12]. Tarski several times expressed the
opinion that the negative results of Lyndon enhanced the interest of representation
theorems for specialized classes of relation algebras.

Through the work of Tarski, Jónsson, Lyndon, Monk, and others (including a
number of their students), there has gradually arisen a general algebraic theory of
relation algebras, similar in spirit to group theory and the theory of Boolean al-
gebras, with many applications to logic, computer science, and other domains of
inquiry (see [24, 38], or [18] and [19]).

Simple relation algebras

One of the fundamental problems of any algebraic theory is the analysis of its mod-
els, and in particular the analysis of the basic algebras that form the building blocks
for the models of the theory. In group theory, for instance, manifestations of this
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analysis include the classification of finite, simple groups and the classification of
finite abelian groups. In Boolean algebra, one might mention the theorem that every
Boolean algebra is a subdirect product of the two-element Boolean algebra (which
is the only simple Boolean algebra), and every finite Boolean algebra is a direct
product of the two-element Boolean algebra. The basic building blocks of relation
algebras are simple relation algebras, particularly atomic ones. Several quite inter-
esting classes of simple, atomic relation algebras have been studied over the years.
For example, McKinsey showed that the complex algebra of a group is always a
simple, atomic, representable relation algebra (see [29] and [31]). As was already
mentioned, Lyndon showed that the complex algebra of a projective geometry is a
simple, atomic relation algebra (see [26] and [35]). Maddux [36] proved that the
complex algebra of a modular lattice with zero is a simple, atomic relation algebra.

In analogy with group theory, the program naturally suggests itself of classifying
all simple relation algebras, or at least all finite, simple relation algebras. This pro-
gram might be interpreted in several different ways, but the goal is to come up with
a well-defined class of “basic” simple relation algebras, and a finite list of construc-
tion techniques such that every finite, simple relation algebra is obtainable from the
basic examples by applying one or more of the construction techniques, perhaps
in some specific order. As a concrete example of an interpretation of this program,
consider the class of finite, integral relation algebras, that is to say, relation algebras
of finite cardinality greater than one, such that the relative product of two elements
is zero if and only if one of the elements is zero. All such algebras are known to
be simple. One may ask if there is a list of finitely many construction techniques so
that every finite, simple relation algebra can be constructed from the class of finite
integral relation algebras using one or more of these techniques. In other words,
the program may be viewed as reducing the problem of constructing and analyzing
all finite, simple relation algebras to that of constructing and analyzing all finite,
integral relation algebras.

This book can be viewed as a contribution to this program. It presents a fairly
general method for developing tools to construct and analyze simple relation alge-
bras, it gives some examples of how this general method can lead to constructions
that are interesting, beautiful, and useful, and how these constructions can, in turn,
be used to prove significant theorems. In each of these theorems, the method is
indeed used to reduce the result for simple relation algebras to the corresponding
result for integral relation algebras.

The intuitive idea behind the method is rather easy to understand from the per-
spective of analyzing simple relation algebras. Suppose the Boolean part of a simple
relation algebra—the universe of the algebra together with the Boolean operations—
has been decomposed into the direct product of component (or factor) Boolean al-
gebras. The extra-Boolean operations of converse and relative multiplication are
distributive, in each coordinate, over arbitrary Boolean sums. Therefore, their be-
havior on the whole universe is completely determined by their behavior on and be-
tween the individual components of the Boolean decomposition. Such a semiproduct
decomposition—a Boolean direct product decomposition, together with completely
distributive extra-Boolean operators (of converse and relative multiplication)—is
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useful when it is possible to describe the extra-Boolean operations in an illuminat-
ing manner in terms of the components of the decomposition. In other words, when
the extra-Boolean operations are well behaved with respect to the Boolean compo-
nents of the decomposition, it is possible to get a global description of the behavior
of the operations (and of the elements) of the given simple relation algebra in terms
of their local behavior on components.

Each such semiproduct construction involves four basic concepts. The first is
a notion of a subalgebra system in a given simple relation algebra. Often, such a
system consists of base algebras, together with some auxiliary elements, or sets of
elements, or functions on the base algebras. The second notion is that of an isomor-
phism system between subalgebra systems. The third is the notion of a semiproduct
system—the basic ingredients needed to construct a simple relation algebra of a
given type. Again, such a system usually consists of base algebras, together with
auxiliary elements, or sets of elements, or functions on the algebras. The last notion
is that of the semiproduct of a semiproduct system—the simple algebra that is the
result of the construction.

Parallel to the basic notions are a series of theorems and lemmas that are common
to all semiproduct constructions. First, there is a subalgebra theorem that describes
the elements and operations of the subalgebra generated by a subalgebra system. As
a consequence, one may be able to show that the subalgebra generated by such a
system is atomic, complete, finite, or integral just in case the base algebras of the
system possess the same property. Second, there is an isomorphism theorem stating
that an isomorphism system between two subalgebra systems can be extended in one
and only one way to an isomorphism between the generated subalgebras. Its proof
depends on the description of the elements and operations given in the subalgebra
theorem.

Two lemmas connect the notion of a subalgebra system with that of a semi-
product system. The semiproduct-to-subalgebra (or “semi-to-sub”) lemma says that
every semiproduct system is, or gives rise to, a subalgebra system in its semi-
product, and this subalgebra system generates the semiproduct. The subalgebra-
to-semiproduct (or “sub-to-semi”) lemma says that every subalgebra system is, or
gives rise to, a semiproduct system, and the semiproduct of that semiproduct sys-
tem is just the subalgebra generated by the subalgebra system. The lemmas pave the
way for three basic theorems about semiproducts. The uniqueness theorem states
that a semiproduct of a semiproduct system is unique up to isomorphisms leaving
the base algebras fixed. Thus, one may speak of the semiproduct of the system. The
theorem is a rather direct consequence of the isomorphism theorem and the lemmas
just mentioned. The existence theorem states that the semiproduct of a semiproduct
system always exists. The proof usually involves the construction of an algebra out
of the component pieces of the semiproduct system following the prescriptions laid
down by the descriptions of elements and operations from the subalgebra theorem.
There then follows a step-by-step verification that the relation algebraic postulates
and a condition guaranteeing simplicity all hold in the constructed algebra. The de-
composition theorem says that a simple relation algebra is decomposable into (or
may be written as) the semiproduct of a semiproduct system just in case it satisfies
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certain conditions. The proof depends on the lemmas mentioned above and on the
structural description given in the subalgebra theorem. There may also be represen-
tation theorems asserting that every semiproduct of a certain type is representable
whenever the base algebras are representable. Indeed, it may be possible to describe
all possible representations of the semiproduct in terms of representations of the
base algebras. However, such representation theorems are highly dependent on the
specific nature of the semiproduct construction under discussion.

Three applications of a theory of semiproducts are immediately apparent. The
first is the investigation of specialized classes of relation algebras that have been
studied in the literature, for instance in connection with representation theorems.
The existence and decomposition theorems can be used to give a complete descrip-
tion of the algebras in the class, one that makes the structure of the algebras easy to
visualize. In connection with representation theorems, this approach not only offers
an alternate proof of representability but also gives a better feeling for the extent
of the class to which the representation theorem applies. The second application is
the construction of (classes of) new, interesting simple relation algebras using, as
“pieces,” component algebras that are comparatively better understood, for instance
complex algebras of groups, projective geometries, or modular lattices. The third
application is the establishment of representation and non-representation theorems
for broader classes of relation algebras.

History of the method

The historical roots of semiproducts go back to the paper [27] of Jónsson. The paper
was motivated by an earlier work of Olivier and Serrato, [44], in which the notion
of a Schröder category was introduced in order to give certain results about rela-
tion algebras a category-theoretic and seemingly more general formulation. Jónsson
showed that the apparent greater generality is illusory: every Schröder category can
be used to build a simple relation algebra whose elements are systems of morphisms
from the category (see Theorem 3.3 in [27]). Using this theorem, Jónsson went on to
prove that, for every finite sequence of simple relation algebras (disjoint except for
a common zero element), there is a unique simple relation algebra that contains the
members of the sequence as relativizations (along the diagonal, covering the iden-
tity element) and is minimal in the sense that it is generated (as an algebra) by the
union of the relativizations. (A relativization of a relation algebra is a localization
of the algebra: a restriction of the universe and the operations to the set of elements
below a given element e. When e has properties analogous to those of symmetry
and transitivity for equivalence relations, the relativization of the relation algebra to
e is again a relation algebra, one that is smaller, and hopefully easier to understand,
than the original algebra.) Jónsson called his construction a semiproduct. He used
it to analyze relation algebras generated by a single equivalence element, and in
particular to prove that any such algebra is finite and representable.
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Motivated by Jónsson’s paper, Givant [14] attacked the more general problem
of describing the subalgebra of a relation algebra generated by any relativization
(or sequence of relativizations). The structure of the subalgebra was analyzed in
terms of the structure of the relativization(s). On the basis of this analysis, it was
shown that every relation algebra A may actually be written as a relativization of
some simple relation algebra, called a simple closure of A. Consequently, simple
relation algebras are in reality just as complicated as arbitrary relation algebras.
Simple closures are not unique, but the isomorphism type of a simple closure can be
characterized by certain measure-theoretic invariants. If the original relation algebra
is finite, atomic, integral, or representable, then so are its simple closures. These
results were used to analyze relation algebras generated by trees of equivalence
elements, and to show that such algebras are always representable and are finite
whenever the tree is finite.

A separate line of development was motivated by the paper [37] of Maddux, in
which a representation theorem was established for all pair-dense relation algebras,
that is to say, all relation algebras in which the identity element is a sum of elements
satisfying a certain equationally expressible property characteristic of relations with
at most two pairs. An analysis of Maddux’s theorem led Givant in 1988 to a gen-
eralization of McKinsey’s group complex algebra construction: instead of a single
group, one uses a system of groups, together with a family of “coordinating” iso-
morphisms between quotients of the groups (see Theorem 1 in [20]).

The final factor influencing the development of the notion of a semiproduct was
the paper [12] of El Bachraoui, in which a representation theorem for (strictly) ele-
mentary relation algebras was given. An analysis of El Bachraoui’s theorem led Gi-
vant to a common generalization of the representation theorems of Jónsson-Tarski,
Maddux, and El Bachraoui. The description of the class of algebras to which the
generalization applies involves the notion of a semipower of a relation algebra
(treated in Part II of this work).

Eventually, it was realized that all four constructions—the construction of Jónsson,
the simple closure construction, the construction of relation algebras from systems
of groups and quotient isomorphisms, and the semipower construction—are special
cases of a much broader phenomenon, and this gave rise to the general notion of a
semiproduct.

The notions and theorems of Chapters 1, 4, and 6 were developed by Givant
in January and February of 2002. He then prepared a first draft of the material now
contained in Parts I and II. In mid-March, Hajnal Andréka read the draft and became
interested in the work. She posed several problems, and there ensued a stimulating
exchange of ideas between the two authors. The contributions of each of the authors
are described in the various chapter introductions and also in the text itself. The
notions and theorems of Chapters 7 and 8 are a result of this exchange, and date to
March and April of 2002. Some of the theorems of Chapter 9 also date to this period.
The remainder were found in July and August of 2002. The results of Chapter 11
are also a result of the exchange and were obtained in May of 2002. The results of
Chapter 10 date to November and December of that year.
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The structure of the book

The book consists of four parts. The first part of the book lays the groundwork for
the subsequent parts. Two general types of subalgebra and semiproduct systems are
discussed as examples: rectangular systems in Chapter 1 and equivalence systems
in Chapter 2. In each case, the formulations of the basic notions and results sub-
stantially simplify the presentation in later parts of the book. For example, general
necessary and sufficient conditions are given for verifying that a given system is a
subalgebra system, an isomorphism system, or the semiproduct of a semiproduct
system. Rectangular systems arise from families of disjoint rectangles with sides
from a given partition of the identity element. Examples include the diagonal
semiproduct systems of Chapter 3, the bijection semipower and semiproduct systems
of Chapter 4, and the quotient semiproduct systems of Chapter 8. Equivalence
systems arise from reflexive equivalence elements and their complements.
(A reflexive equivalence element is an abstraction of the notion of an equiva-
lence relation.) Examples include the simple closure systems of Chapter 5 and the
insertion semiproduct systems of Chapter 10. Readers acquainted with the theory of
Boolean algebras with operators (see [30] and [31]) will recognize that many of the
results of Chapter 1 can be formulated and proved in that more general setting. We
have refrained from doing so in order to keep the exposition as simple and direct
as possible.

The second part of the book contains an exposition of the various notions of
semiproducts that play a role in the formulation and proof of a representation theo-
rem for quasi-bijective relation algebras in Chapter 6. Jónsson’s construction from
[27] is given in Chapter 3, under the name diagonal semiproducts. The presen-
tation is in terms of the framework developed in Chapter 1, namely rectangular
semiproduct systems. A diagonal semiproduct system is essentially a finite sequence
of simple relation algebras—the base algebras—that are disjoint (except for a com-
mon zero element). The semiproduct of such a system is the smallest simple relation
algebra that contains each of the base algebras as a relativization along the diag-
onal. Diagonal semiproducts provide a simple paradigm for later, more involved
constructions that are discussed at the ends of Chapters 4 and 5. It is hoped that
the presentation in Chapter 3 will make Jónsson’s useful construction known to a
broader audience of algebraists and logicians.

The simple closure construction from [14] is given in Chapter 5. The presen-
tation is in terms of the framework developed in Chapter 2, namely equivalence
semiproduct systems. A simple closure system consists of an arbitrary relation
algebra—the base algebra—together with a four-valued measure on certain spe-
cial elements—the ideal elements—of the base algebra. (Ideal elements are closely
connected with the algebraic ideals in the base algebra.) The measure specifies an
abstract “size” of each ideal element, and these “sizes” determine the isomorphism
type of a semiproduct. The simple closure of the system—which is the name given
to the semiproduct—is the smallest simple relation algebra A that contains the base
algebra as a relativization along the diagonal and such that the abstract measure of
the ideal elements coincides with an intrinsically defined notion of the size of the
ideal elements.
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A (bijection) semipower construction is taken up in Chapter 4. A single, simple
relation algebra—the base algebra—and a finite index set—the power—are given.
A sequence of bijections (indexed by elements of the index set) is used to make
copies of the base algebra in all of the (rectangular) components of the semiproduct
of the system. A more general conception of a bijection semiproduct, discussed
briefly at the end of the chapter, allows a finite sequence of simple base algebras,
instead of a single base algebra, and a corresponding finite sequence of powers. The
most general conception of a bijection semiproduct is discussed briefly near the end
of Chapter 5. The requirement that the base algebras be simple is dropped. One first
passes to a simple closure of each base algebra, and then forms the semiproduct
discussed at the end of Chapter 4. Consequently, a four-valued measure on ideal
elements must be associated with each base algebra of the semiproduct system.
(This involves the notions and results of Chapter 5.)

Chapter 6 establishes a common generalization of several representation theo-
rems from the literature. Call a relation algebra quasi-bijective if it is atomic, and
if below each rectangle with atomic sides there is at most one non-bijective atom—
at most one atom that does not satisfy a certain characteristic equational property
of set-theoretic bijections. Examples of quasi-bijective relation algebras include
atomic relation algebras with functional atoms, shown to be representable in [31],
atomic pair-dense relation algebras (including all simple, pair-dense relation alge-
bras), shown to be representable in [37], strictly elementary relation algebras, shown
to be representable in [12], and elementary relation algebras, independently shown
to be representable by Givant and El Bachraoui (see [13], where a different terminol-
ogy is used). Chapter 6 gives a structural description of all quasi-bijective relation
algebras. The formulation and proof of this structure theorem draws on the results
from Chapters 3–5.

One consequence of this theorem is that every quasi-bijective relation algebra is
completely representable. This gives the common generalization of the representa-
tion theorems cited above. Another consequence is a structural description of the
classes of relation algebras to which the cited representation theorems apply. For
example, atomic relation algebras with functional atoms are essentially just direct
products of semipowers of complex algebras of groups. Atomic pair-dense relation
algebras are essentially just direct products of diagonal semiproducts of semipowers
of the complex algebras of one-element and two-element groups. Strictly elemen-
tary relation algebras are essentially just direct products of diagonal semiproducts
of semipowers of minimal simple set relation algebras on one-element and three-
element sets. Elementary relation algebras are essentially just direct products of
diagonal semiproducts of semipowers of minimal simple set relation algebras on
one-element, two-element, and three-element sets.

The third part of the book was motivated by the construction in [20] of simple
relation algebras from systems of groups and quotient isomorphisms (see Theo-
rem 1 of that paper, and see also Chapter 9 of the present monograph). There are
two important auxiliary concepts, studied in Chapter 7, that underlie the construc-
tion. The first is a notion introduced in [39] of the quotient of a relation algebra by
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an equivalence element. This is not the same as the quotient of a relation algebra
by a congruence relation (or an ideal). In other words, it is not the relation alge-
braic analogue of a quotient group or a quotient ring. Rather, the construction uses
an equivalence element of the algebra (as opposed to a congruence relation or an
ideal) to collapse, or glue, elements together. A quotient relation algebra (in this
sense of the word) inherits many properties from its parent. For instance, if the par-
ent algebra is simple, integral, finite, atomic, complete, or representable, then so
are its non-degenerate quotients. Normal equivalence elements—equivalence ele-
ments that commute with every element of the parent algebra—play a particularly
important role in the formation of quotients.

The second auxiliary concept that plays a critical role is that of an equivalence
bijection, or an equijection for short. In set-theoretical contexts, an equijection is a
binary relation that, roughly speaking, determines a bijection between the equiva-
lence classes of two equivalence relations. Such relations were apparently first stud-
ied by Riguet in [46] under the name difunctional relations. Rather surprisingly, an
abstract version of this notion can be defined by a very simple equation in the theory
of relation algebras. Abstract equijections possess some of the important properties
associated with bijections. For instance, relative multiplication by an equijection is
distributive over Boolean products of certain types of elements. Most importantly,
each equijection is associated with a domain and a range equivalence element, and
induces an isomorphism between the corresponding quotient relation algebras. The
isomorphism is similar in character to the inner automorphism of a group induced
by a group element.

The notion of a quotient semiproduct is developed in Chapter 8 in a manner
parallel to the development of the notion of a semipower in Chapter 4, and to the
generalization of this notion to bijection semiproducts at the end of the chapter. In-
stead of using bijections to copy a single, simple base algebra to all components of
a semiproduct, as is done in Chapter 4, the quotient semiproduct construction uses
coordinating equijections (or the induced coordinating quotient isomorphisms) to
copy quotients of a family of simple base algebras to components of a semiproduct.
Actually, the semipower construction may be viewed as a special case of the quo-
tient semiproduct construction, namely the case when the equivalence elements used
to form the quotients are the identity elements of the base algebras, the equijections
are actually bijections, and the base algebras are all isomorphic. Moreover, the di-
agonal semiproduct construction may also be viewed as a special kind of quotient
semiproduct construction, at least in the atomic case. Generalizations of the quotient
semiproduct construction, similar in spirit to the generalizations of the semipower
construction (mentioned at the end of Chapters 4 and 5), are discussed near the end
of Chapter 8.

Chapter 9, the final chapter in Part III, presents two extended examples of
the quotient semiproduct construction. The base algebras in the first example are
complex algebras of groups. It is shown that, in this case, a given system of
group complex algebras with coordinating isomorphisms between the quotient re-
lation algebras may always be replaced by a corresponding system of groups with
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coordinating isomorphisms between quotient groups. The principal theorem of the
chapter says that every quotient semiproduct constructed with complex algebras of
groups is representable.

The base algebras in the second example are complex algebras of projective ge-
ometries. Just as in the example with group complex algebras, a given system of
geometric complex algebras with coordinating isomorphisms between quotient re-
lation algebras may always be replaced by a system of projective geometries with
coordinating isomorphisms between quotient geometries. However, it is no longer
true that every quotient semiproduct with geometric complex algebras as base alge-
bras is representable, and a concrete example of such a non-representable algebra is
given. On the other hand, it is possible to characterize when a quotient semiproduct
of geometric complex algebras is representable. The statement of this characteri-
zation is reminiscent of Lyndon’s characterization of representability for geometric
complex algebras (see [35]). Its proof requires a number of algebraic constructions
from higher dimensional projective geometry. Because some readers may not be fa-
miliar with projective geometry, an introduction to the subject, with statements and
proofs of the required results, is provided in an appendix.

The fourth part of the book is concerned with a semiproduct construction that
uses both quotients and relativizations. Thus, some familiarity with the initial sec-
tions of Chapter 7 is helpful. The key idea is the following. Suppose a local part
of a simple relation algebra B—that is to say, a relativization of B—looks like a
collapsed (and hence simplified) version of a relation algebra C—that is to say, it
looks like a quotient of C. The complicated structure of algebra C may then be in-
serted into B as a replacement for the simplified local part—the relativization of
B—to create a more complex algebra. The resulting simple relation algebra, which
is called an insertion semiproduct, is studied in Chapter 10. At the end of the chap-
ter, more general versions of this construction are considered. A finite sequence B0,
. . . , Bn−1 of local parts of B are given that look like collapsed versions of a cor-
responding sequence C0, . . . , Cn−1 of more complicated relation algebras. For each
index i, the complicated structure of Ci may be inserted into B as a replacement for
the local part Bi.

The representation theorem in Chapter 6 for quasi-bijective relation algebras sug-
gests a natural extension to 2-quasi-bijective relation algebras—atomic relation al-
gebras in which every rectangle with atomic sides is above at most two non-bijective
atoms. It turns out that such algebras are not always representable. A counterexam-
ple is given at the beginning of Chapter 11. (The example comes from [3], where
it is used for other purposes.) If attention is restricted to the integral case, however,
the situation changes. An integral relation algebra has just one non-zero rectangle,
namely the Boolean unit. Therefore, such an algebra is 2-quasi-bijective just in case
it is atomic with at most two non-bijective atoms in the whole algebra. These 2-
non-bijective relation algebras, as they are called, form a narrow subclass of the
2-quasi-bijective relation algebras, and they are always representable. In fact, it is
possible to give a complete structural description of the algebras in this class.
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Chapter interdependence

Parts II–IV of the book are intended to be more or less independent of one another.
In order to achieve this goal, definitions are occasionally repeated, as are a few con-
structions. A diagram illustrating the various chapter dependencies is given in Fig-
ure 1. All parts of the book require various bits and pieces of the relation algebraic
background that is provided in Appendix A. After perusing the first two sections
of that appendix to get sense of the basic definitions and laws that govern the the-
ory, the reader may prefer to refer back to the appendix on an “as needed” basis.
Parts II–IV also require a familiarity with those definitions and theorems in Part I
that concern either rectangular systems or equivalence systems. For instance, the
systems of Chapters 3, 4, and 8 are all rectangular systems, whereas those of Chap-
ters 5 and 10 are equivalence systems.

Chapters 3, 4, and 5 in Part II are essentially independent of one another. Chap-
ter 6 refers to the notions and results from Chapters 3–5. Chapter 7 can be read
independently of all earlier chapters, while Chapter 8 depends only on Chapter 7
and the material on rectangular systems from Chapter 1. The results in Chapter 9
are intended as illustrations of the ideas and results presented in Chapters 7 and 8, so
they require some familiarity with those two chapters. The second half of Chapter 9
also requires some knowledge of affine and projective geometry and the connections
between the two. The necessary background is provided in Appendix B.

Part IV uses the notion of a quotient algebra, so it requires some information
from the first third of Chapter 7. Otherwise, it is more or less independent of the
earlier material. In particular, Chapter 10 makes no use of the material in Parts II
and III (except for the material mentioned in Chapter 7). It does use the notions and
results on equivalence systems from Chapter 2. Chapter 11 is based on the ideas
of Chapter 10 and also contains occasional references to some results in Chapter 6.

Chapter 7

Chapter 5

Chapter 11

Chapter 10

Chapter 9

Chapter 8

Chapter 6

Chapter 3 Chapter 4

Chapter 1
Rectangular systems

Chapter 2
Equivalence systems

Fig. 1 Chapter dependence diagram.
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Part I
Rectangular and Equivalence

Semiproducts

Steven Givant



Chapter 1
Rectangular Semiproducts

An important technique for analyzing the structure of a subalgebra of a simple
relation algebra is to break that structure into smaller pieces, analyze those pieces,
and then describe how the overall structure of the algebra—its elements and
operations—can be recovered from the pieces. This chapter provides a framework
for a method of breaking the structure into smaller pieces using rectangles. A
different method that uses equivalence elements is described in the next chapter.

1.1 Subalgebra systems

Consider a simple relation algebra S. Its universe is a non-empty set S, its opera-
tions are Boolean addition (join) + , complement − , relative multiplication ; , and
converse �, and its distinguished element is the identity (that is to say, the identity
element) 1’. Other distinguished elements such as zero 0, the unit 1, and diversity
0’, and other operations such as Boolean multiplication (meet) · are defined in the
usual manner. The discussion in this and the next section takes place inside of S.

The analysis of subalgebras of S begins with a partition of the identity of S into
subelements called local identities. More precisely, a partition of identity (in S) is a
system (1’i : i ∈ I) of non-zero, mutually disjoint elements that sum to the identity of
S. The partition is said to be finite if the index set I is finite. A partition of identity
induces a corresponding partition of the unit of S into rectangles whose sides are
the local identities. In more detail, the corresponding partition of unity is the system
(1i j : i, j ∈ I) of rectangles, or local units, defined by

1i j = 1’i ; 1 ; 1’j.

These rectangles are non-zero, mutually disjoint, and sum to the unit of S. The terms
of these two partitions have a number of important properties that are summarized
in the following lemma.
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4 1 Rectangular Semiproducts

Lemma 1.1. Suppose (1’i : i ∈ I) is a partition of identity (in a simple relation alge-
bra).

(i) 1i j �= 0.
(ii) ∑i j 1i j = 1.

(iii) 1i j ·1k� = 0 if i �= k or j �= �.
(iv) 1’i = 1’ ·1ii ≤ 1ii.
(v) 1’ ·1i j = 0 if i �= j.

(vi) 1�i j = 1ji.
(vii) 1i j ; 1k� = 0 if j �= k.

(viii) 1i j ; 1jk = 1ik .
(ix) 1i j ; 1 ; 1k� = 1i�.
(x) 1’i ; 1i j = 1i j ; 1’j = 1i j .

(xi) 1i j ; 1 = 1’i ; 1.

The preceding laws are all easy consequences of the laws about rectangles given
in Rectangle Lemma A.7. The first three laws say that the system of local units
really is a partition of unity in the sense described above. The fourth and fifth laws
imply that a local identity 1’i is either below or disjoint from a local unit 1k�, and it is
below it just in case i = k = �. The sixth, seventh, eighth, and tenth laws say that the
operations of converse and relative multiplication on the rectangles 1i j and 1k�, and
on the local identity elements 1’i and 1’j, behave just as the set-theoretic operations
of converse and relative multiplication behave on the singleton relations {(i, j)} and
{(k, �)}, and {(i, i)} and {( j, j)}. Finally, the ninth and eleventh laws imply that the
rectangles formed using the local units as sides coincide with the rectangles formed
using the local identities as sides.

Figure 1.1 illustrates a partition of identity into three local identities, and the cor-
responding partition of unity into nine local units. (The local diversity elements 0’i
are defined by 0’i = 1ii −1’i.)
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Fig. 1.1 A partition of identity and the induced partition of unity.
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The pieces into which a subalgebra of S is broken are defined in terms of the
local units and local identities in the following manner.

Definition 1.2. A rectangular subalgebra system for a given finite partition of iden-
tity (1’i : i ∈ I) is a system

(Ai j : i, j ∈ I)

of subsets of (the universe of) S with the following properties for all i, j, and k in I.

(i) The set Ai j is a subuniverse of the Boolean relativization of S to 1i j. In other
words, the local unit 1i j is in Ai j, each element in Ai j is below 1i j, and if r and
s are in Ai j , then so are r+ s and 1i j − r.

(ii) The local identity 1’i is in Aii.
(iii) If r is in Ai j , then r� is in A ji.
(iv) If r is in Ai j and s is in A jk , then r ; s is in Aik .

The sets Ai j are called the components of the system, while the properties are called
the Boolean condition, the identity condition, the converse condition, and the prod-
uct condition respectively. ��

Notice that the given partition of identity is required to be finite. Condition (i)
says, in particular, that Ai j is a Boolean algebra. Conditions (i)–(iv) together imply
that Aii is a relation algebra, and in fact it is a subalgebra of the relation algebraic
relativization of S to the local unit 1ii.

In order to avoid constantly repeating unwieldy phrases, we shall often use such
abbreviations as “subalgebra system” or “rectangular system” to refer to a rectan-
gular subalgebra system, and we employ similar terminology in other, related situa-
tions. When such abbreviations are employed, the context should make the intended
meaning clear; for instance, that a given subalgebra system is intended to be rectan-
gular, or that a given rectangular system is intended to be a subalgebra system.

Each subalgebra of S that contains a given partition of identity (in the sense that
it contains each term of the partition) induces a subalgebra system in a natural way.

Lemma 1.3. If A is any subalgebra of S that contains a given finite partition of
identity, then the sets

Ai j = A(1i j) = {r ∈ A : r ≤ 1i j}

form a rectangular subalgebra system for the partition of identity.

Proof. The proof of the lemma uses the laws formulated in Lemma 1.1. As ex-
amples, we verify the first part of condition (i), and conditions (iii) and (v), in the
definition of a rectangular system. The subalgebra A is assumed to contain the terms
of the partition of identity. It contains the unit of S and it is closed under relative
multiplication, by the definition of a subalgebra, so it must contain the local units

1i j = 1’i ; 1 ; 1’j.

Consequently, the component Ai j contains the local unit 1i j, and each element in
this component is below this local unit, by the definition of the components. The
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local identity 1’i is in A, by assumption, and it is below 1ii by Lemma 1.1(iv), so it
belongs to Aii. Finally, if r is in Ai j, and s in A jk, then both elements are in A, by
definition, and

r ; s ≤ 1i j ; 1jk = 1ik,

by the monotony law for relative multiplication and Lemma 1.1(viii). Consequently,
r ; s belongs to the set Aik, by the definition of that set. ��

We shall refer to the subalgebra system defined in the preceding lemma as the
subalgebra system determined by, or corresponding to, or associated with, the
subalgebra A. In particular, the subalgebra system determined by S itself is just
(S(1i j) : i, j ∈ I).

There is a kind of converse to the preceding lemma: every rectangular system
in S generates a subalgebra of which it is the corresponding subalgebra system. To
formulate this converse more precisely, it is helpful to introduce a bit of terminology.
An element system in a subalgebra system (Ai j : i, j ∈ I) is a system (ri j : i, j ∈ I),
where ri j is an element in Ai j for each i and j in I. In other words, element systems
are just elements of the (set-theoretic) direct product ∏i j Ai j of the components.

Theorem 1.4 (Subalgebra Theorem). Suppose (Ai j : i, j ∈ I) is a rectangular sub-
algebra system for a finite partition of identity, and A is the set of sums of element
systems:

A = {∑i j ri j : (ri j : i, j ∈ I) is an element system}.
(i) A is a subuniverse of S.

(ii) Every element in A can be written in just one way as the sum of an element
system.

(iii) The distinguished constants and operations of A satisfy the following identities
for all r, s, and t in A:

1 = t, where ti j = 1i j for all i, j ∈ I; (1)

0 = t, where ti j = 0 for all i, j ∈ I; (2)

1’ = t, where ti j =

{
1’i if i = j,

0 if i �= j,
for all i, j ∈ I; (3)

0’ = t, where ti j =

{
1ii −1’i if i = j,

1i j if i �= j,
for all i, j ∈ I; (4)

r+ s = t, where ti j = ri j + si j for all i, j ∈ I; (5)

r · s = t, where ti j = ri j · si j for all i, j ∈ I; (6)

−r = t, where ti j = 1i j − ri j for all i, j ∈ I; (7)

r ; s = t, where ti j = ∑k rik ; sk j for all i, j ∈ I; (8)

r� = t, where ti j = r�ji for all i, j ∈ I. (9)

(iv) Ai j = A(1i j) for all i, j ∈ I.
(v) The union of the subalgebra system generates A.
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Proof. The proof of (ii) is straightforward. Suppose

r = ∑k� rk� = ∑k� sk�,

where rk� and sk� are in Ak�. If k �= i or � �= j, then

rk� ·1i j ≤ 1k� ·1i j = 0, and ri j ·1i j = ri j,

by the monotony law for Boolean multiplications, Lemma 1.1(iii), and Defini-
tion 1.2(i). Therefore,

r ·1i j = (∑k� rk�) ·1i j = ∑k�(rk� ·1i j) = ri j.

A similar argument shows that r ·1i j = si j, so ri j = si j for all i and j.
Turn now to the proofs of (i) and (iii). Notice first that if a term ti j is determined

by the right side of one of (1)–(9), then ti j belongs to Ai j, by the definition of a
subalgebra system. Consider, for a concrete example, the case when

ti j = ∑k rik ; sk j.

The elements rik and sk j belong to Aik and Ak j respectively, for each k, by assump-
tion. Consequently, rik ; sk j is in Ai j, by Definition 1.2(iv). Since Ai j is closed under
finite sums, by Definition 1.2(i), it follows that ti j must belong to Ai j, as claimed.

If, now, r and s are elements in A, say,

r = ∑i j ri j and s = ∑i j si j,

then

r ; s = (∑i j ri j) ; (∑i j si j)

= ∑i, j,k,�(ri j ; sk�)

= ∑i,k,�(rik ; sk�)

= ∑i, j,k(rik ; sk j).

The second equality uses the distributive law for relative multiplication over addi-
tion. The third equality depends on the fact that ri j ; sk� is zero when j �= k, since in
this case

ri j ; sk� ≤ 1i j ; 1k� = 0,

by the monotony law for relative multiplication and Lemma 1.1(vii). The fourth sum
is just a reindexing of the third sum, so the final equality is trivial. The equality of
the first and last terms immediately implies (8). The proofs of (1)–(7) and (9) are
similar, but easier.

The term ti j = ∑k rik ; sk j belongs to Ai j, by the argument in the second paragraph
of the proof, so the sum t = ∑i j ti j belongs to A, by the definition of A. Since this
sum coincides with r ; s, by (8), it follows that A is closed under relative multiplica-
tion. The proofs that A contains the distinguished constants and is closed under the
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Boolean operations and under converse are entirely analogous. This completes the
proofs of parts (i) and (iii) of the theorem.

Turn now to the proof of (iv). If r is any element in Ai j, then r is below 1i j and
r = ∑k� rk�, where

rk� =

{
r if k = i and �= j ,

0 if k �= i or � �= j ,

so r is in A, by the definition of A, and therefore also in A(1i j). Thus, Ai j is included
in A(1i j). To establish the reverse inclusion, suppose r belongs to A(1i j). Since r
belongs to A, it has the form r = ∑k� rk�, where rk� is in Ak� for all k and �. In
particular, rk� is below 1k�, by Definition 1.2(i). Also, r is below 1i j, by assumption,
and therefore so is rk�. It follows that if k �= i or � �= j, then

rk� ≤ 1i j ·1k� = 0,

by monotony and Lemma 1.1(iii), so that rk� = 0. Consequently, r = ri j. The element
ri j belongs to Ai j, by assumption, so r belongs to Ai j, as desired.

The assertion in part (v) of the theorem is an easy consequence of the defini-
tion of A and the assumption that the index set I is finite. Every component Ai j is
included in A, by part (iv), so the subuniverse generated by the union of these com-
ponents is certainly included in A, by part (i). On the other hand, every element in A
is, by definition, a finite sum of elements from the various components, and there-
fore belongs to the subuniverse generated by the union of the components. Thus, A
coincides with the subuniverse generated by the subalgebra system. ��

In view of the preceding theorem, it is reasonable to say that the subalgebra
system in the theorem generates, or determines, or corresponds to, the subalgebra
with universe A.

Corollary 1.5. If A is a subalgebra (of S) that contains a given finite partition of
identity, and if

(Ai j : i, j ∈ I) (i)

is the rectangular system determined by A, then the subalgebra determined by (i)
is just A. Conversely, if (i) is a rectangular system for the partition of identity, and
if A is the subalgebra determined by (i), then the rectangular system determined
by A is just (i).

Proof. Start with a subalgebra A of S that contains the given partition of identity.
The rectangular system (i) determined by A is defined by

Ai j = A(1i j) (1)

for all i and j in I (see Lemma 1.3). Let B be the subalgebra of S generated by this
system. Since Ai j is included in A for each i and j, by (1), the set of generators of B
is included in A, and therefore B is included in A. On the other hand, for any element
r in A, write
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ri j = r ·1i j.

The element ri j belongs to Ai j, by (1), and

∑i j ri j = ∑i j(r ·1i j) = r ·∑i j 1i j = r ·1 = r,

by the definition of ri j, the distributive law for Boolean multiplication over addition,
and Lemma 1.1(ii), so r is generated by elements from the components. In other
words, r is in B. It follows that B is included in A, so the subalgebras A and B are
equal.

Now consider an arbitrary rectangular system (i) for the given partition of iden-
tity, and let A be the subalgebra of S that it generates. Equation (1) holds, by part
(iv) of the Subalgebra Theorem, so (i) is the rectangular system determined by A,
by the definition of that system. ��

One consequence of the corollary is that, for a given partition of identity, the cor-
respondence that takes each rectangular system for that partition to the subalgebra
it generates is a bijection from the set of rectangular systems for the partition to
the set of subalgebras of S that contain the partition. Another way of phrasing the
corollary is as follows.

Corollary 1.6. If A is a subalgebra that contains a given finite partition of identity,
then a rectangular system (Ai j : i, j ∈ I) for the partition generates A if and only if
A(1i j) = Ai j for all i and j.

In the setting of arbitrary relation algebras, the structure of the subalgebra gen-
erated by a set X is extremely complicated. One defines inductively a sequence
(Xn : n ∈ N) of subsets of the universe, indexed by the set N of natural numbers:
X0 = X ∪{1’}, and if Xk is defined for each k < n, then Xn is defined to be the set of
values

x+ y , −x , x ; y , x�,

where x and y belong to the union of the sets Xk for k < n. The subalgebra generated
by X is the union of the sets Xk for k in N. This level-by-level construction of the
generated subalgebra is analogous to the level-by-level construction of first-order
formulas from the set of atomic formulas, using the operators associated with con-
junction, disjunction, negation, and existential and universal quantification. In the
case of subalgebra systems, the level-by-level construction of the generated subal-
gebra is reduced to an especially simple form of Boolean generation: it is the set
of sums of element systems. Thus, the Subalgebra Theorem may be viewed as an
algebraic analogue of a quantifier elimination theorem in logic.

In the setting of arbitrary relation algebras, questions regarding a generated sub-
algebra, such as its finiteness, or atomicity, or completeness, are quite difficult to
answer. In the setting of subalgebra systems, these questions become much easier,
since the analysis of the generated subalgebra reduces to the analysis of the corre-
sponding subalgebra system, by parts (i) and (ii) of the Subalgebra Theorem.


