Intelligent Systems, Control and Automation: Science and Engineering 90

Spyros G. Tzafestas

Energy, Information, Feedback, Adaptation, and Self-organization

The Fundamental Elements of Life and Society

Intelligent Systems, Control and Automation: Science and Engineering

Volume 90

Series editor

Professor Spyros G. Tzafestas, National Technical University of Athens, Greece

Editorial Advisory Board

Professor P. Antsaklis, University of Notre Dame, IN, USA

- Professor P. Borne, Ecole Centrale de Lille, France
- Professor R. Carelli, Universidad Nacional de San Juan, Argentina
- Professor T. Fukuda, Nagoya University, Japan
- Professor N. R. Gans, The University of Texas at Dallas, Richardson, TX, USA
- Professor F. Harashima, University of Tokyo, Japan
- Professor P. Martinet, Ecole Centrale de Nantes, France
- Professor S. Monaco, University La Sapienza, Rome, Italy
- Professor R. R. Negenborn, Delft University of Technology, The Netherlands
- Professor A. M. Pascoal, Institute for Systems and Robotics, Lisbon, Portugal
- Professor G. Schmidt, Technical University of Munich, Germany
- Professor T. M. Sobh, University of Bridgeport, CT, USA
- Professor C. Tzafestas, National Technical University of Athens, Greece
- Professor K. Valavanis, University of Denver, Colorado, USA

More information about this series at http://www.springer.com/series/6259

Spyros G. Tzafestas

Energy, Information, Feedback, Adaptation, and Self-organization

The Fundamental Elements of Life and Society

Spyros G. Tzafestas School of Electrical and Computer Engineering National Technical University of Athens Athens Greece

ISSN 2213-8986ISSN 2213-8994 (electronic)Intelligent Systems, Control and Automation: Science and EngineeringISBN 978-3-319-66998-4ISBN 978-3-319-66998-4ISBN 978-3-319-66999-1(eBook)https://doi.org/10.1007/978-3-319-66999-1

Library of Congress Control Number: 2017956737

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Society is well governed when its people obey the magistrates, and the magistrates obey the law.

Solon

I cannot teach anybody anything. I can only make them think. Socrates

Science is the creator of prosperity.

Plato

Freedom is the sure possession of those alone who have the courage to defend it.

Pericles

Wealth consists not in having great possessions, but in having few wants.

Epicurus

The aim of this book is to provide a comprehensive conceptual account of the five fundamental elements of life and society, *viz.*, energy, information, feedback, adaptation, and self-organization. These elements inherently support any living organism, human society, or man-made system.

Energy is the cornerstone of everything. *Information* is included in the "program" (organized plan) of any living organism, to function over time, which is implemented by the DNA that encodes the genes and is transferred from generation to generation. It is one of the main factors of the progress of modern society which is characterized as the "*information society*". *Feedback* (control) is a "must" for any kind of system, biological, natural, or technological, to be stable and operate according to its purpose. *Adaptation* is the capability of living organisms, species, and societies to adapt to changes that occur in their environment so as to fit to it. It

is the principle that lies behind the natural selection and evolution. *Self-organization* has many interpretations, the predominant of which is the "tendency" of natural systems to become more organized by their own, and shows more structure or order or pattern without the help or intervention of any external agent. This means that spontaneous emergence of global complex structure occurs out of local interactions.

All the above aspects of life and society have been of principal concern to humans over time, and a plethora of concepts and scientific or technological methodologies were developed and studied. The topics addressed in this book are the subject matter in a vast number of sources in the literature and the web. The book gives a collective and cohesive presentation of the fundamental issues, concepts, principles, and methods drawn from the literature, including modern applications and short historical notes of each field. The presentation is kept at a level sufficient for a clear understanding of the concepts and principles by the general scientific reader. In many cases, viz., thermodynamics, communication systems, information theory, and feedback control, the discussion includes the basic mathematical analysis aspects in some more detail which are deemed to be necessary and useful for the nonprofessionals. Unavoidably, the material provided in the book does not exhaust all the results and views available in the literature. However, it is considered to be over sufficient for disseminating the fundamental concepts and issues. The views and opinions/quotations on the delicate aspects of life and society, presented in the book, are those coined and published by the referenced authors. No attempt was made to modify or speculate them in any way.

The writing of this book was inspired by the need of a concise, cohesive, and complete presentation of the five life-and-society fundamental elements (pillars): energy, information, feedback, adaptation, and self-organization in a unique volume. Surely, besides the general reader, this book will be valuable as a source for introductory or complementary material in relevant science and engineering academic programs.

The book involves 13 chapters. Chapter 1 provides an introduction to the book presenting the background concepts of life and society, and outlining the five fundamental elements of life and society considered in the book.

Chapters 2 and 3 are devoted to the *energy*. Chapter 2 presents the basic issues of energy (historical landmarks, types, sources, and environmental impact), and Chap. 3 is devoted to thermodynamics (basic concepts, laws of thermodynamics, entropy, exergy, branches of thermodynamics, and entropy interpretations).

Chapters 4 and 5 are concerned with the *information* element. Chapter 4 introduces the concept of information and reviews the communication systems and information theory. Chapter 5 discusses information science, information technology, and information systems in enterprises and organizations.

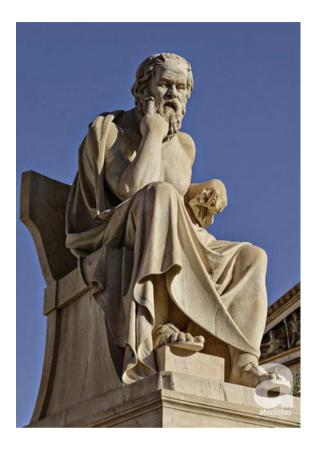
Chapters 6 and 7 are devoted to the *feedback element*. Chapter 6 presents the concept of feedback and control, the history of its study, and the methods for linear and nonlinear control systems analysis and design developed between about 1935 and 1950 (classical control). Chapter 7 reviews the modern control techniques which are based on the state-space model, namely, Lyapunov stability,

state-feedback (eigenvalue/model matching) control, and optimal control (deterministic and stochastic). The classes of adaptive, predictive, robust, nonlinear, and intelligent control are also discussed.

Chapter 8 is concerned with the *adaptation* in biology and society including the related scientific fields of complexity and complex adaptive systems.

Chapter 9 is devoted to the final fundamental element studied in the book, i.e., the *self-organization* of natural and societal systems. The four self-organization mechanisms observed in nature are first reviewed, and the concept of self-organized criticality (edge of chaos) is then discussed. The role of *cybernetics* in the study of self-organization is also examined.

Chapters 10 through 13 are concerned with the role and impact of the five fundamental elements studied in the book on life and society discussing major issues and a variety of examples. Chapter 10 discusses the fundamental role that energy plays in life and society, starting with an examination of the three basic biochemical pathways of energy in life (photosynthesis, respiration, and metabolism) and going to the energy flow in ecosystems. The evolution of energy resources, the thermoeconomy, and the saving of energy in the human society are then investigated.


Chapter 11 deals with a number of issues that refer to the role of information in life and society. These include the substantiative and transmission roles of information in biology, and the information technology applications in modern society, such as office automation, power generation /distribution, computer-assisted manufacturing, robotics, business/e-commerce, education, medicine, and transportation.

Chapter 12 reviews the role and impact of feedback in both living organisms and societal systems. Representative examples that best show the operation of negative and positive feedback in biology and society are provided. These include temperature, water, sugar, and hydrogen ion (pH) regulation, autocatalytic (autoreproduction) reactions, enzyme operation, cardiovascular–respiratory system, process control, manufacturing control, air flight and traffic control, robot control, management control, and economic control systems.

Finally, Chap. 13 provides a number of adaptation and self-organization examples and applications in life and society. These examples are adaptations of animals, ecosystems, climate change, immune systems, social–ecological systems, capital /stock market, general society system, knowledge management, and man-made self-organizing systems.

In overall, the book provides a cohesive and complete picture of the five fundamental elements: energy, information, feedback, adaptation, and self-organization, and the role they play in sustained life and society, including selected modern applications.

Athens, Greece June 2016 Spyros G. Tzafestas

Only one thing I know, that I know nothing. Only Absolute Truth is that there are No Absolute Truths.

Socrates, Athens, 470-399 B.C.

Footnote: Statue of Socrates in front of Athens Academy

(Sculptor: Leonidas Droses/1885. Photographer: Elias Georgouleas/2014, "atenistas":

www.athenssculptures.com).

Picture taken from www.athenssculptures.com by courtesy of "athens sculptures atenistas"

Humans and Society: Synergy, hierarchy of society, social life. *Sources* http://crossfitlando.com/wp-content/uploads/2013/04/earth-day.jpeg, http://thesocialworkexam.com/wp-content/uploads/2011/03/Human-Behavior-Hierarchy.jpg, http://www.urbansplash.co.uk/images/ABOUTUS_SOCIETY.jpg

Contents

1	Life a	nd Human Society: The Five Fundamental Elements	1			
	1.1	Introduction	1			
	1.2	What Is Life?	2			
		1.2.1 General Issues	2			
		1.2.2 The Living Cell	3			
		1.2.3 DNA, Nucleotides, and Protein Formation	5			
		1.2.4 Historical Landmarks of DNA and RNA				
		Discoveries	10			
		1.2.5 Koshland's Definition of Life	11			
	1.3	The Meaning of Society	13			
	1.4	Evolution of Life and Human Society	16			
		1.4.1 Origin and Evolution of Life	16			
		1.4.2 Evolution and the Development of Human Society	21			
	1.5	Fundamental Elements of Some Specific Societal Aspects	28			
		1.5.1 Pillars of Democracy	28			
		1.5.2 Pillars of Fulfilled Living	29			
		1.5.3 Pillars of Sustainable Development	30			
	1.6	The Five Fundamental Elements of This Book 3				
	1.7	Concluding Remarks	34			
	Refere	ences	35			
2	Energ	y I: General Issues	39			
	2.1	Introduction	39			
	2.2	What is Energy?	40			
	2.3	Historical Landmarks				
	2.4	Energy Types	45			
		2.4.1 Mechanical Energy	46			
		2.4.2 Forms of Potential Energy	47			
		2.4.3 Internal Energy in Thermodynamics	48			
		2.4.4 Evidence of Energy	50			

	2.5	Energy Sources
		2.5.1 Exhaustible Sources
		2.5.2 Renewable Sources
		2.5.3 Alternative Energy Sources
	2.6	Environmental Impact of Energy
		2.6.1 Impact of Exhaustible Sources
		2.6.2 Impact of Renewable Sources
	2.7	Violent Manifestations of Earth's Energy
		2.7.1 Earthquakes and Volcanoes
		2.7.2 Tornadoes and Hurricanes
		2.7.3 Tsunamis
	2.8	Concluding Remarks
		nces
_		
3		y II: Thermodynamics 73
	3.1	Introduction
	3.2	Basic Concepts of Thermodynamics
		3.2.1 Intensive and Extensive Properties
		3.2.2 System and Universe
		3.2.3 System State 77
		3.2.4 Thermodynamic Equilibrium
		3.2.5 Temperature and Pressure
		3.2.6 Heat and Specific Heat
		3.2.7 Reversible and Irreversible Process
		3.2.8 Categories of Thermodynamic Processes 80
		3.2.9 Basic Concepts of Non-statistical General Physics 82
	3.3	The Zeroth Law of Thermodynamics
	3.4	The First Law of Thermodynamics
		3.4.1 Formulation of the Law 84
		3.4.2 The Thermodynamic Identity: Energy Balance 86
	3.5	The Entropy Concept 88
		3.5.1 The Classical Macroscopic Entropy 89
		3.5.2 The Statistical Concept of Entropy 92
		3.5.3 The Von Neumann Quantum-Mechanics Entropy
		Concept
		3.5.4 The Non-statistical General Physics Entropy
		Concept
		3.5.5 Rényi Entropy, Tsallis Entropy,
		and Other Entropy Types 100
	3.6	The Second Law of Thermodynamics 103
		3.6.1 General Formulations 103
		3.6.2 Formulations Through Entropy 104
		3.6.3 Formulation Through Exergy 107
	3.7	The Third Law of Thermodynamics 111
		-

4

3.8	The Fo	burth Law of Thermodynamics	112
	3.8.1	Lotka's Maximum Energy-Flux Principle	112
	3.8.2	Odum's Maximum Rate of Useful-Energy-	
		Transformation Principle	113
	3.8.3	Onsager Reciprocal Relations	114
	3.8.4	Some Further Fourth-Law Statements	115
3.9	Branch	es of Thermodynamics	116
	3.9.1	Traditional Branches	117
	3.9.2	Natural Systems Branches	119
	3.9.3	Modern Branches	121
3.10	Entrop	y Interpretations	126
	3.10.1	Entropy Interpretation as Unavailable Energy	126
	3.10.2	Entropy Interpretation as Disorder	127
	3.10.3	Entropy Interpretation as Energy Dispersal	128
	3.10.4	Entropy Interpretation as Opposite to Potential	129
3.11	Maxwe	ell's Demon	130
3.12	The A	rrow of Time	132
	3.12.1	Psychological Arrow	134
	3.12.2	Thermodynamic Arrow	134
	3.12.3	Cosmological Arrow	135
	3.12.4	Quantum Arrow	138
	3.12.5	Electromagnetic Arrow	139
	3.12.6	The Causal Arrow	139
	3.12.7	The Helical Arrow	140
3.13	Conclu	isions and Quotes for Thermodynamics, Entropy,	
	and Li	fe	141
	3.13.1	Thermodynamics General Quotes	141
	3.13.2	Entropy Quotes	143
	3.13.3	Life and Human Thermodynamics Quotes	144
Refere	ences		146
Infor	motion I	: Communication, Transmission, and Information	
			157
4.1	•	iction	157
4.1		s Information?	157
4.2		cal Landmarks	161
4.5	4.3.1	Pre-mechanical Period.	161
	4.3.2	Mechanical Period	162
	4.3.3	Electromechanical Period	162
	4.3.3	Electronic Period	162
	4.3.4	Information Theory Landmarks	165
	4.3.5 4.3.6	Computer Networks, Multimedia, and Telematics	104
	4.3.0	· · · · ·	165
		Landmarks	103

	4.4	Comm	unication Systems	168
		4.4.1	General Issues	168
		4.4.2	Shannon–Weaver Communication Model	169
		4.4.3	Other Communication Models	170
		4.4.4	Transmitter–Receiver Operations	172
		4.4.5	Analysis of Analog Modulation–Demodulation	174
		4.4.6	Pulse Modulation and Demodulation	185
	4.5	Inform	ation Theory	190
		4.5.1	General Issues	190
		4.5.2	Information Theory's Entropy	191
		4.5.3	Coding Theory	198
		4.5.4	Fundamental Theorems of Information Theory	205
		4.5.5	Jayne's Maximum Entropy Principle	211
	4.6	Conclu	Iding Remarks	214
	Refere	ences	- 	215
5	Inform	nation I	I: Science, Technology, and Systems	219
3	5.1			
	5.2		ation Science	
	5.3		ation Technology	
	5.5	5.3.1	Computer Science.	
		5.3.2	Computer Engineering	
		5.3.3	Telecommunications	
	5.4		ation Systems	
	5.4	5.4.1	General Issues	
		5.4.2	General Structure and Types of Information	204
		5.4.2	Systems	265
		5.4.3	Development of Information Systems	
	5.5		isions	
6			Control I: History and Classical Methodologies	
	6.1		action	
	6.2		oncept of Feedback	
		6.2.1	General Definition	
		6.2.2	Positive and Negative Feedback	
	6.3		oncept of Control	
	6.4		ical Landmarks of Feedback and Control	
			Prehistoric and Early Control Period	
		6.4.2	Pre-classical Control Period.	
		6.4.3	Classical Control Period	
		6.4.4	Modern Control Period	288
	6.5		cal Control	
		6.5.1	Introductory Issues	
		6.5.2	The Basic Feedback Control Loop	291

7

	6.5.3	System Stability	294
	6.5.4	System Performance Specifications	295
	6.5.5	Second-Order Systems	297
6.6	The Ro	pot-Locus Method	299
6.7	Freque	ncy-Domain Methods	301
	6.7.1	Nyquist Method	301
	6.7.2	Bode Method	305
	6.7.3	Nichols Method	310
6.8	Discret	e-Time Systems	310
	6.8.1	General Issues	310
	6.8.2	Root Locus of Discrete-Time Systems	314
	6.8.3	Nyquist Criterion for Discrete-Time Systems	315
	6.8.4	Discrete-Time Nyquist Criterion with the Bode	
		and Nichols Plots	316
6.9	Design	of Classical Compensators	317
	6.9.1	General Issues	
	6.9.2	Design via Root Locus	318
	6.9.3	Design via Frequency-Domain Methods	319
	6.9.4	Discrete-Time Compensator Design	
		via Root-Locus	320
6.10	Ziegler	-Nichols Method for PID Controller Tuning	320
6.11	Nonlin	ear Systems: Describing Functions and Phase-Plane	
	Method	ls	324
	6.11.1	8	
	6.11.2	Oscillations Condition	326
	6.11.3	5 8 5	
		via Describing Functions and Nyquist Plots	328
	6.11.4	II ···································	329
	6.11.5	Phase Plane	330
6.12		ding Remarks	333
Refere	ences		334
Feedb	ack and	Control II: Modern Methodologies	337
7.1		iction	338
7.2		ate-Space Model	338
	7.2.1	General Issues	
	7.2.2	Canonical Linear State-Space Models	
	7.2.3	Analytical Solution of the State Equations	
7.3		nov Stability	343
110	7.3.1	General Issues	343
	7.3.2	Direct Lyapunov Method	344
7.4		llability and Observability	345
	7.4.1	Controllability	345
	7.4.2	Observability	347
	7.4.3	Controllability-Observability, Duality, and Kalman	/
		Decomposition	348
		Position	2.10

7.5	State-F	eedback Controllers	349
	7.5.1	General Issues	349
	7.5.2	Eigenvalue Placement Controller	351
	7.5.3	Discrete-Time Systems	352
	7.5.4	Decoupling Controller	352
	7.5.5	Model Matching Controller	354
	7.5.6	State-Observer Design	355
7.6	Optima	and Stochastic Control	356
	7.6.1	General Issues: Principle of Optimality	356
	7.6.2	Application of the Principle of Optimality to	
		Continuous-Time Systems	358
	7.6.3	Linear Systems with Quadratic Cost	359
	7.6.4	Pontryagin Minimum Principle	360
	7.6.5	Stochastic Optimal Control	362
7.7	Adaptiv	ve and Predictive Control	365
	7.7.1	General Issues	365
	7.7.2	Model-Reference Adaptive Control	366
	7.7.3	Self-tuning Control	368
	7.7.4	Gain-Scheduling Control	370
	7.7.5	Model-Predictive Control	371
7.8		Control	372
	7.8.1	General Issues	372
	7.8.2	Non-stochastic Uncertainty Modeling	373
	7.8.3	Formulation of Robust Control Design	374
7.9		ear Control	375
	7.9.1	State-Feedback Linearizing Control	375
	7.9.2	Optimal Nonlinear Control	377
	7.9.3	Robust Nonlinear Sliding-Mode Control	377
7.10	U	ent Control	379
7.11		l of Further System Types	387
	7.11.1	Control of Large-Scale Systems	388
	7.11.2	Control of Distributed-Parameter Systems	389
	7.11.3	Control of Time-Delay Systems	392
	7.11.4	Control of Finite-State Automata	396
7 10	7.11.5	Control of Discrete-Event Systems	398
7.12		sions	402
Ref	erences		403
	aptation, C	omplexity, and Complex Adaptive Systems	409
8.1		ction	410
8.2		s Adaptation?	411
8.3		cal Note	413
8.4	Adapta	tion Mechanisms	415

8

	8.5	Adaptation Measurement	420
	8.6	Complex Adaptive Systems	421
		8.6.1 General Issues	421
		8.6.2 A Concise Definition of CAS	423
	8.7	List of Reference Works on Complexity, Complex Systems,	
		and Complex Adaptive Systems	424
	8.8	Chaos and Nonlinear Systems	425
		8.8.1 Fractals and Strange Attractors	425
		8.8.2 Solitons	434
	8.9	Complexity	437
	8.10	Emergence	441
	8.11	More on Complex Adaptive Systems	445
	8.12	Concluding Remarks	454
	Referen	nces	455
9	Self-or	ganization	461
,	9.1	Introduction	462
	9.2	What Is Self-organization?	463
	2.2	9.2.1 Definition of W. Ross Ashby	463
		9.2.2 Definition of Francis Heylinghen	464
		9.2.3 Definition of Chris Lucas	464
		9.2.4 Definition of Scott Camazine.	464
		9.2.5 Definition of A.N. Whitehead	465
		9.2.6 Definition of M. B. L Dempster	465
	9.3	Mechanisms of Self-organization	466
	9.4	Self-organized Criticality	468
	9.5	Self-organization and Cybernetics	470
	 9.6 Self-organization in Complex Adaptive Systems 9.7 Examples of Self-organization 		
		9.7.1 Linguistic Self-organization	478 480
		9.7.2 Knowledge Networks	481
		9.7.3 Self-organizing Maps	482
	9.8	Concluding Remarks	483
	Referen	nces	486
10	Enona	u in Life and Capita	489
10	10.1	y in Life and Society	489
	10.1	Energy and Life: Biochemical Pathways	490
	10.2	10.2.1 Photosynthesis	490
		10.2.2 Respiration 10.2.3 Metabolism	494 497
	10.3	Energy Movement in an Ecosystem	497 498
	10.5	10.3.1 General Issues	498 498
		10.3.1 General Issues 10.3.2 Energy Flow Through Food Chains	498 499
		e. e	499 501
		10.3.3 Efficiency of Energy Flow Through Food Chains	501

	10.4	Energy and Human Society	505
		10.4.1 General Issues	505
		10.4.2 Evolution of Energy Resources	506
	10.5	Energy and Economy	514
		10.5.1 General Issues: Thermoeconomics	514
		10.5.2 Sectors of Economy	516
	10.6	Management of Energy	518
	10.7	Demand Management, Economics, and Consumption	
		of Energy	519
		10.7.1 Energy Demand Management and Energy	
		Economics	519
		10.7.2 Consumption of Energy	520
	10.8	Concluding Remarks	530
	Refere	nces	531
11	Inform	nation in Life and Society	535
	11.1	Introduction	536
	11.2	Information and Life	537
	11.2	11.2.1 General Issues	537
		11.2.2 Substantive Role of Information in Biology	538
		11.2.3 The Transmission Sense of Information in Biology	540
	11.3	Natural Information Processing Principles	542
		11.3.1 The Information Store Principle	543
		11.3.2 The Borrowing and Reorganizing Principle	543
		11.3.3 Randomness as a Genesis Principle	544
		11.3.4 The Narrow Limits of Change Principle	545
		11.3.5 The Environmental Organizing and Linking	
		Principle	545
	11.4	Biocomputation	546
	11.5	Information and Society: Introduction	548
	11.6	Information Technology in Office Automation	551
	11.7	Computer-Based Power Generation and Distribution	553
	11.8	Computer-Integrated Manufacturing	556
	11.9	Information Technology in Business: Electronic Commerce	560
	11.10	Information Technology in Education	561
	11.11	Information Technology in Medicine	563
	11.12	Information and Communication Technology in	
		Transportation	564
	11.13	Concluding Remarks	568
	Refere	nces	570
12	Feedba	ack Control in Life and Society	575
	12.1	Introduction	576
	12.2	Feedback Control in Living Organisms	577
		12.2.1 General Issues	577

		12.2.2 Negative Feedback Biological Systems	577
		12.2.3 Positive Feedback Biological Systems	583
	12.3	Systems and Control Methods for Biological Processes	590
		12.3.1 System Modeling of Biological Processes	590
	12.4	Feedback Control in Society	601
		12.4.1 General Issues	601
		12.4.2 Hard Technological Systems	602
		12.4.3 Soft-Control Systems	614
	12.5	Concluding Remarks	620
	Refere	nces	620
13	Adapt	ation and Self-organization in Life and Society	627
	13.1	Introduction	628
	13.2	Adaptations of Animals	629
	13.3	Ecosystems as Complex Adaptive Systems	631
	13.4	Adaptation to Climate Change	632
	13.5	Adaptation of Immune and Social-Ecological Systems	635
	13.6	Stock Markets as Complex Adaptive Systems	637
	13.7	Society Is a Self-organizing System	639
	13.8	Knowledge Management in Self-organizing	
		Social Systems	642
	13.9	Man-Made Self-organizing Controllers	647
		13.9.1 A General Methodology	647
		13.9.2 Self-organizing Traffic-Lights Control	649
	13.10	Concluding Remarks	652
	Refere	nces	656
Ind	ex		661

Chapter 1 Life and Human Society: The Five Fundamental Elements

The goal of life is living in agreement with nature. Zeno of Elea (490–435 B.C.) The good life is one inspired by love and guided by knowledge. Bertrand Russel

Abstract The aim of this chapter is to provide fundamental material about life and society (definition, evolution, etc.), starting with a brief presentation of cell biology, DNA/RNA, protein synthesis, and a list of the principal discoveries about DNA and RNA. The meaning of "society" is discussed, followed by the evolution of life on Earth, and the evolution of human society (physical, vital, and mental stages). The common fundamental elements (pillars) of life and society that are studied in this book, namely: energy, information, feedback, adaptation, and self-organization, are briefly introduced. As a supplement, the chapter includes a short outline of some purely societal fundamental elements that are encountered in humanity studies. These elements are: (i) pillars of democracy, (ii) pillars of fulfilled living, and (iii) pillars of sustainable development.

Keywords Life · Society · Molecular biology · Cell biology · Life domains Energy · Information · Feedback · Adaptation · Self-organization Evolution of life · History of life · Evolution of human society Human development · DNA · Life-program · Pillarsof democracy Pillars of fulfilled living · pillars of sustainable development

1.1 Introduction

This chapter serves as an introduction to the book by providing some background concepts about life and society, specifically their definitions and evolution. These concepts will help the reader to go smoothly to the five particular "*elements*" or "*pillars*" of life and society studied in the book. The term "*pillar*" is used in several frameworks of life and society, some of which will be discussed in Sect. 1.5. Koshland has used the term "pillar" for the definition of 'life' [1]. According to

[©] Springer International Publishing AG 2018

S. G. Tzafestas, *Energy, Information, Feedback, Adaptation, and Self-organization*, Intelligent Systems, Control and Automation: Science and Engineering 90, https://doi.org/10.1007/978-3-319-66999-1_1

Webster (1913) the term "pillar" literally means "a firm, upright, insulated support for a superstructure; a pier, column, or post; also, a column or shaft not supporting a superstructure, as one erected for a monument or an ornament" [2, 3]. "Figuratively, that which resembles a pillar in appearance, character or office; a supporter or mainstay" (as: the Pillars of Hercules; a pillar of the state, etc.) or "anything tall and thin approximating the shape of a column or tower". In science, pillar may be called "a fundamental principle or practice".

The questions "what is life" and "what is society" were of primary concern to humankind throughout the centuries of historical record and have been studied by philosophers, scientists, biologists, sociologists, archaeologists, geographers, etc. Today we have better informed and more developed views of what is life and how it evolved since the formation of Earth 4.5 billion years ago. We know that human societies are essentially "adaptive systems" the elements of which, "human populations", strive to satisfy their varied needs and wishes. History has shown that these needs and wishes have been accomplished either by maintaining existing ways of doing things or by developing and adopting new, innovative ways. In all cases, the parts that failed to adapt were eliminated from the system, while those that succeeded survived. This is exactly the "principle of survival of the fittest" which holds in all biological and sociological processes.

The structure of the chapter is as follows. Section 1.2 deals with the question "*what is life*". It starts with a brief presentation of cell biology, DNA, and protein synthesis. Then it lists the main discoveries about DNA and RNA, and provides the definition of life coined by *Daniel Koshland*. Section 1.3 is concerned with the meaning of society (*Richard Jenkins'* and *Richard Alston's* views). Section 1.4 outlines the evolution of life (prokaryotes, eukaryotes, etc.) and society (physical, vital, and mental stages). It also includes a discussion of *human development* (requirements, components, economic models) and *human development index*. Section 1.5 describes briefly the fundamental elements of some societal aspects, other than the five elements that are the subject matter of the book, namely: democracy, fulfilled living, and sustainable development. Finally, Sect. 1.6 discusses the scope of the book and places the five pillars: energy, information, feedback, adaptation, and self-organization, in their proper position which is in the "intersection" of the "biological" and "societal" sets of pillars [1–118].

1.2 What Is Life?

1.2.1 General Issues

The reply to this question appears to be simple: "A living organism is an organized entity which is able to grow and sustain itself through metabolic processes (absorption of energy), to respond to stimuli, to protect itself from external attacks or injuries, and to be reproduced". This is a very primitive definition of life not capturing all the facets of life. Actually, many biologists have the opinion that there still does not exist a clear, definite, and complete definition of life. One of the reasons seems to be the existence of *viruses* and other *microscopic entities*. Many biologists suggest that viruses are complex organic molecules, but others consider viruses as the simplest form of life. No one knows with certainty how life began. But we know for certain that all life on Earth involves strings of **DNA** (**D**eoxyriboNucleic Acid) that are long chains of self-replicating molecules which encode information (*genes*) and implement the so-called *life-program*. We also know that life (except of viruses) is constructed by cells, i.e., tiny containers which contain the DNA and other chemical compounds that make up the cells. The early life forms were single cells. To understand what life is and later supply an apparently complete list of *features* (or *pillars*) that define life, we first give a short review of *cell-biology* (biological cell) [4–11].

1.2.2 The Living Cell

A *living organism* may be composed of a single biological cell (*single-cell organisms*) or of many cells (*multiple-cell organisms*). The biological cell can sustain its functionality through a set of *organelles* (which are "*miniature*" machines) that each have a special function. Some of them in case of the animal cells are the following Fig. 1.1 Analogous organelles exist in the plant cell (http://waynesword.palomar.edu/Imexer1a.htm).¹

Cell membrane or plasma membrane This is the external layer of a cell that has a structural and protective role affecting how molecules enter or exit the cell.

- **Nucleus** This is the "*brain*" of the cell that contains the genetic information about the processes taking place in an organism. It is surrounded by the *nuclear membrane*.
- **Nucleolus** This resides inside the nucleus and is the organelle where ribosomal RNA is produced.
- Cytoplasm This is the fluid that surrounds the contents of a cell.
- **Mitochondrion** This is an organelle that participates in respiration (i.e., in the energy release and storage; it is also called "*powerhouse*" of the cell).
- **Ribosomes** These are packets of **RNA** (**RiboNucleic Acid**) and protein. They are the site of protein synthesis. Messenger RNA from the nucleus moves systematically along the ribosome where transfer RNA adds individual amino-acid molecules to the lengthening protein chain.
- Lysosomes These are sacs filled in with digestive enzymes.

¹(*) The term "biology" comes from the Greek "Bίος" (bios = life) and "λόγος" (logos = speech/ study), (**) All web sources and references were collected during the writing of the book. Since then, some of the urls may not be valid due to change or removal.

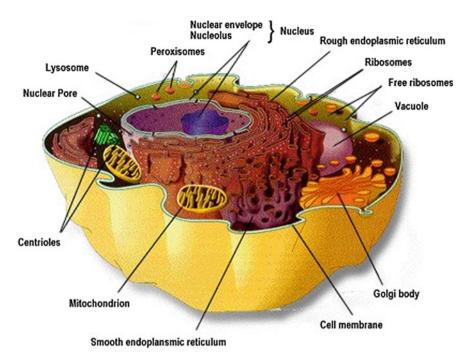


Fig. 1.1 Schematic of eukaryote animal cell with the basic organelles. *Source* http://www.odec. ca/projects/2004/mcgo4s0/public_html/t1/animalcell3.jpg (The reader is informed that Web figures and references were collected at the time of writing the book. Since then, some of them may not be valid due to change or removal by their creators, and so they may no longer be available)

- Golgi body/complex They are involved in the production of glycoprotein.
- Vacuole Cavities filled with food being digested and waste material to go out of the cell.
- **Centrosome** A small body located near the nucleus, also called "the microtubule organizer center". It is the organelle where microtubules are made during cell division (mitosis).
- Endoplasmic reticulum (ER) A useful organelle, differentiated into rough ER and smooth ER, which is involved in the synthesis of protein.

The cell (or plasma) membrane, which is a semi-permeable structure composed by proteins and fat (*phospholipid*) molecules, acts as a circumferential barrier and allows only selected compounds to get in and out of a cell. The transportation of *ions* via the cell membrane into the cell is performed in three ways: *active transport* (based on concentration gradient), *passive transport* (diffusion via a carrier), and *simple diffusion* (such as *osmosis of water*). The uptake of materials from the external environment of the cell is called *absorption*, and the ejection of material is called *secretion*. A full animal-cell picture with labels is provided by *Russell Kightley Media* [21]. The cells are specialized to each perform a distinct function within an organism. Thus we have, for example:

- Skin cells They function as waterproof and pathogen protection from the cell's exterior environment.
- **Nerve cells** These cells, also called *neurons*, are electrically excitable cells that function within the nervous system for message transmission to and from the central nervous system.
- **Muscle cells** These cells have an elastic capability and enable flexible movement (as in our muscles).
- White blood cells They activate suitable digestive enzymes that break down pathogens to the molecular level, thus eliminating them.

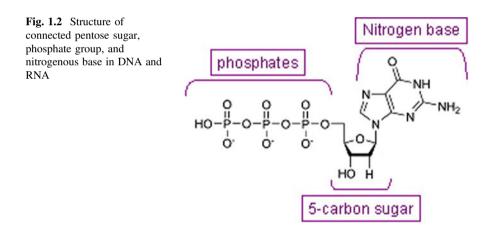
Biological cells have the capability to break down complex molecules into simple molecules, which can then be used as building elements of other complex molecules. This is done via *pinocytosis* (e.g., drinking bacteria after breaking down them into drinkable form) or *phagocytosis* (in which the original material is eaten, after it has been broken down into a suitable form).

1.2.3 DNA, Nucleotides, and Protein Formation

The type, structure, and functioning of cells are determined by *chromosomes* (from the Greek words chroma = color and soma = body) which reside in the cell nucleus. These chromosomes are made from DNA bonded to various proteins in the nucleus of eukaryotic cells or as a circular strand of DNA in the cytoplasm of prokaryotes and in the mitochondrion (and chloroplast) of some eukaryotes. The DNA specifies all the features of an organism, containing all the genetic material that makes what a living being is. This material (information) is transferred from generation to generation in a species, determining the offsprings' characteristics. The building blocks of DNA are the nucleotides which appear as four different types, namely: adenine (A), guanine (G), thymine (T), and cytosine (C). Our genome contains billions of these nucleotides in all possible permutations, located in adjacent pairs along the *double-helix* arrangement of DNA. Actually, there are two groups of bases, namely, purines and pyrimidines. Purines (adenine and guanine) have a two-ring structure, whereas pyrimidines (thymine and cytosine) have a single-ring structure. Complementary (or permissible) bases are bases that pair together in a DNA molecule. These base pairs are:

- Thymine and adenine (TA)
- Gyanine and cytosine (GC)

Thymine and cytosine cannot make a base pair, and similarly adenine and guanine cannot form a base pair.


While **DNA** resides mainly in the nucleus, the nucleic acid polymer **RNA** (*Ribonucleic acid*) is found mainly in the cytoplasm, despite the fact that it is usually synthesized in the nucleus. DNA contains the genetic codes to make RNA, and RNA contains the codes for the primary sequences of amino acids to make proteins.

The backbone of the polymer is a repeating chain of sugar-phosphatesugar-phosphate, etc. The pentose sugar of DNA is a *deoxyribose* sugar, whereas RNA contains a *ribose* sugar. Both DNA and RNA contain a phosphate group and a nitrogenous base as shown in Fig. 1.2.

The pentose is a five-membered, puckered ring. Attached to the ring is the phosphate group (which is a phosphorous atom with four covalently attached oxygen atoms) and the nitrogenous base. Pictures of DNA and RNA models are provided in http://www.dreamstime.com/stock-images-structure-dna-rna-molecule-vector-image28618424http://www.dreamstime.com/stock-images-structure-dna-rna-molecule-vector-image28618424

In the RNA model, we have an extra-OH of the pentose sugar, and the *uracil* base (U) is used instead of the thymine base (T) used in DNA (Fig. 1.3).

The cells—which have finite life spans—pass their genetic information to new cells replicating *exactly* the DNA to be transferred to offsprings. To this end, a

Fig. 1.3 Uracil base (a single-ring pyrimidine)

NH Uracil (U)

Uracil (U) (RNA only)

supply of suitable *enzymes* that stimulate the reaction process is available, together with a pool of the required nucleotides. The actual DNA acts as an *exact template*. The energy needed for this transfer is provided by **ATP** (Adenosine Triphosphate) molecules (see Chap. 10).

Actually, the replication of the double-helix DNA involves two strands of DNA, each one of which produces a copy of itself. The replicated DNA has only half of the original material from its parent (i.e., it is *semi-conservative*). Therefore the two copies produced have the full (exact) DNA material contained in the two strands of the DNA involved in the replication. This is the way genetic information is transferred from cell to cell and from parent to offspring.

The sequence of the nucleotides is used to create *amino acids*, the chains of which are shaped so as to make a protein. An amino-acid molecule consists of the basic *amino group* (NH_2), the *acidic carboxylic group* (COOH), a *hydrogen atom* (H), and an *organic side group* (R) attached to the carbon atom. Thus, an amino acid has the structure $NH_2CHRCOOH$. Actually, there exist more than a hundred amino acids in nature, each of them differing in the R group. Twenty of them participate in protein synthesis and are differentiated into *essential* and *non-essential* amino acids. *Essential* (or indispensable) amino acids cannot be created in the body and can only be acquired via food. *Non-essential* (or dispensable) amino acids are synthesized in the body. These twenty amino acids are the following:

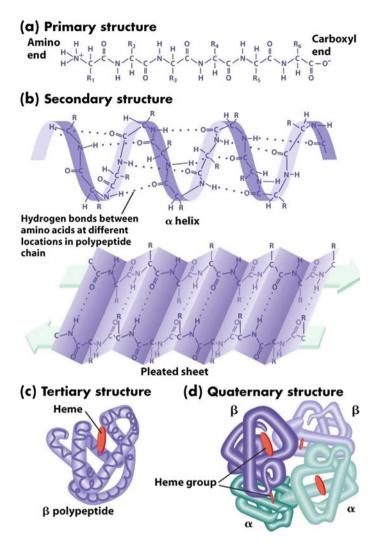
- **Essential** Histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.
- Non-essential Alanine, arginine, aspartic acid, asparagine, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine.

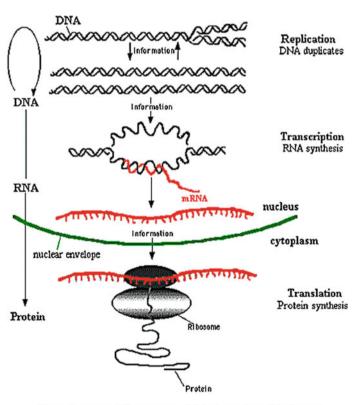
The structure of proteins spans four levels of complexity, namely:

- Primary structure (the sequence of amino acids).
- *Secondary structure* (local folding sustained via short-distance interactions; hydrogen bonds).
- *Tertiary structure* (additional folding sustained via more distant interactions between alpha helices and pleated sheets).
- *Quaternary structure* (sustained by interchain interactions of more than one acid chain).

Although the sequence must determine the structure, we cannot yet predict the full structure accurately from a sequence. Structures are stable and relatively rigid. Today, there are about 4000 known protein structures determined by X-ray crystallography and 2-D NMR studies. The above four-level structure of proteins is depicted in Fig. 1.4.

The synthesis of proteins takes place in the *ribosomes* residing in the cell's cytoplasm, whereas the genetic information lies in the nucleus. Thus, the genetic information has to pass to these ribosomes. This transfer is performed by **mRNA**




Fig. 1.4 The four-complexity levels of proteins (source [18])

(messenger ribonucleic acid), which is analogous to DNA, differing only in two aspects.

- In mRNA, the thymine bases are replaced by a base called *uracil* (U).
- The deoxyribose sugar of DNA is substituted by ribose sugar. The transfer is performed in the following sequence:
- Inside the cell's nucleus, genes (DNA) are transcribed into RNA. To this end, the double-helix structure of DNA uncoils for mRNA to replicate, like the DNA, the genetic sequence of which corresponds to the protein under synthesis.

- This RNA produces a mature mRNA through post-transcription modification and control.
- The mRNA is transported out of the nucleus and travels through the cytoplasm until it reaches a ribosome where it is translated into protein. Since ribosomes don't understand the mRNA code, they use their *translator*, i.e., the *transfer RNAs* (**tRNAs**). The RNAs decode the message and assemble the desired amino acids in the specified sequence to form the protein which is released into the cytoplasm for further transport and processing.

The above scheme for *protein synthesis* (known as "*dogma of molecular biology*") is pictorially illustrated in Fig. 1.5.

The Central Dogma of Molecular Biology

Fig. 1.5 Synthesis of protein (source [9])

1.2.4 Historical Landmarks of DNA and RNA Discoveries

Until the 1800s, it was believed that life arose more or less spontaneously, but in 1864 *Louis Pasteur* disproved spontaneous generation. He demonstrated that, when any micro-organisms residing in a liquid are killed through boiling, the liquid becomes *sterile* (nothing grows afterwards). After *Pasteur*, the principal historical landmarks of the "*RNA world*" are here listed chronologically [12]. The complete historical evolution of DNA and RNA discoveries and studies can be found in [13–17].

- 1924: Alexander Ivanovich Oparin attributes the origin coming of the simplest single-cell life to simple organic molecules residing in the early Earth's atmosphere that was substantially different from our present atmosphere— there was no free oxygen, but there was abundant hydrogen, ammonia, methane, carbon dioxide, water, and nitrogen).
- 1953: *James Watson* and *Francis Crick* publish their results on the structure of DNA. They received a joint Nobel Prize for these results in 1962.
- 1961: *Marshal Nirenberg* and colleagues discover that messenger RNA, composed completely of the base uracil, can be translated into the amino acid phenylalanine.
- 1968: *Francis Crick* and *Leslie Orgel* argue that the first information molecule was RNA.
- 1972: *Harry Noller* suggests that ribosomal RNA plays a role in the translation of mRNA into protein.
- 1986: *Walter Gilbert* uses the term "*RNA world*" for the time during which RNA was the main information and catalytic molecule. *Thomas Cech* presents his discovery of *self-splicing* (catalytic RNA). In 1989, he shares a Nobel Prize with *Sidney Altman* for the catalytic RNA discovery. *Kary Mullis* presents a procedure for rapid copying of DNA and RNA sequences (*polymerase chain reaction*). He was awarded a Nobel Prize for this in 1993.
- 1989: *Gerald Joyce* starts his work on simulating RNA evolution via the "polymerase hain reaction". *Jack Szostak's* lab provides evidence for self-replicating RNA.
- 1992: *Harry Noller's* lab provides experimental evidence for the involvement of ribosomal RNA in protein synthesis.
- 1993: Gerald Joyce presents test-tube experimental processes for RNA evolution.
- 1994: *Charles Wilson* (while working in Szostak's labs) creates RNA molecules that are able to perform simple cellular reactions more efficiently than the proteins, which perform it in cells.

Complete presentations of "*molecular cell biology*" are provided in [19, 20], where both *genomics* (the complete DNA sequences of many organisms), and *proteomics* (all possible shapes and functions that proteins employ) are studied. The principal topics considered include:

- The dynamic cell
- Nucleic acids and genetic code

1.2 What Is Life?

- From gene to protein
- Protein structure and function
- Genetic analysis
- DNA replication, repair, and recombination
- RNA processing and post-transcriptional control
- The mechanism of translation
- Gene control in development
- Cell-to-cell signaling: hormones and receptors
- Genome analysis
- Epigenetics and monoallelic gene expression
- Medical molecular biology.

A useful site with biology images, videos, and cell-interactive animation is provided by *Cells Alive Com* in [22].

1.2.5 Koshland's Definition of Life

With the background on molecular and cell biology provided in Sects. 1.2.2–1.2.4, we can now proceed and examine the seven fundamental elements (pillars) that define life as presented by the molecular biologist *Daniel Koshland* (2002) [1], where the term "*pillars*" is used to mean "*the essential principles (thermodynamic and kinetic) that enable a living system to operate and propagate*". These seven pillars, although essential to the distinct mechanisms by which the life's principles are implemented on Earth, may be complemented by other pillars, as well that may explain better the mechanisms of life so far known or other mechanisms to be discovered in the future for other forms of life or for life elsewhere [1]. Koshland's seven pillars defining life are the following:

- Program
- Improvisation
- Compartmentalization
- Energy
- Regeneration
- Adaptability
- Seclusion,

Which can be represented by a Temple, called as a whole by the acronym **PICERAS**. A brief description of the pillars follows Fig. 1.6.

Program Koshland states that "*program* is the organized plan that describes both the ingredients themselves and the kinetics of the interactions among ingredients as the living system persists through time". These interactions and processes involve the metabolic reactions that enable a living organism to function over time. Each program of a living system on Earth is implemented by the DNA which encodes the