Andrés Julián Aristizábal Cardona Carlos Arturo Páez Chica Daniel Hernán Ospina Barragán

Building-Integrated Photovoltaic Systems (BIPVS)

Performance and Modeling Under Outdoor Conditions

Building-Integrated Photovoltaic Systems (BIPVS)

Andrés Julián Aristizábal Cardona Carlos Arturo Páez Chica Daniel Hernán Ospina Barragán

Building-Integrated Photovoltaic Systems (BIPVS)

Performance and Modeling Under Outdoor Conditions

Andrés Julián Aristizábal Cardona Engineering Department Universidad de Bogota Jorge Tadeo Lozano Bogota, Colombia

Daniel Hernán Ospina Barragán Engineering Department Universidad de Bogota Jorge Tadeo Lozano Bogota, Colombia Carlos Arturo Páez Chica Engineering Department Universidad de Bogota Jorge Tadeo Lozano Bogota, Colombia

ISBN 978-3-319-71930-6 ISBN 978-3-319-71931-3 (eBook) https://doi.org/10.1007/978-3-319-71931-3

Library of Congress Control Number: 2017959884

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1	Ene Refe	rgy's Cu erences .	urrent State	1 8
2	Con	ceptual	Framework	9
	2.1	Power	Generation with Photovoltaic Solar Energy	9
	2.2	Types	of PV Systems	10
		2.2.1	Isolated Photovoltaic Systems	10
		2.2.2	Grid-Connected Photovoltaic Systems	10
		2.2.3	BIPVS Operability	10
		2.2.4	Distributed Generation (DG)	11
		2.2.5	Power Quality (PQ)	12
	Refe	erences.		15
3	BIP	VS Basi	cs for Design, Sizing, Monitoring, and Power	
•	Qua	lity Me	asurement and Assessment	17
	3.1	BIPVS	Basics for Design and Sizing	19
		3.1.1	Fundamentals for BIPVS Sizing	20
	3.2	Monito	bring System Development Fundamentals	23
		3.2.1	Sensors and Signal Conditioning	24
		3.2.2	Data Acquisition Hardware	27
		3.2.3	Personal Computer	28
		3.2.4	Software	29
	3.3	LabVI	EW Software in Virtual Instrumentation	29
	Refe	erences.		32
4	Inte	grated l	Photovoltaic System Sizing and Economic Evaluation	
	Usin	g RETS	Screen TM for a Building of 40 Apartments	35
	4.1	Applic	ation Analysis	36
		4.1.1	Building Loads Calculation	36
		4.1.2	Residential Energy Demand	37
		4.1.3	Colombian Law 1715–2014	39

	4.2	Sizing	g and Economic Evaluation	40
		4.2.1	Energy Demand and Photovoltaic	
			Generator Sizing	40
		4.2.2	Economic Analysis Using RETScreen [™]	41
	Refe	erences		45
5	RID	VS Sizi	ing and Implementation at the Universidad	
5	de F	V S SIZI Rogotá	Iorge Tadeo I ozano	47
	5 1	BIPV	S Sizing	47
	Refe	erences	5 512mg	51
				51
6	Met	hod for	Calculating Quantum Efficiency and Spectral	50
	Res	ponse o		53
	6.1	Initial	Considerations	54
		6.1.1	Analytical Model of the Solar Cell	54
		6.1.2	Spectral Short-Circuit Current Density	55
		6.1.3	Photon Spectral Flow	56
		6.1.4	Total Short Circuit Current	57
		6.1.5	Quantum Efficiency (QE)	57
		6.1.6	Spectral Response	57
	6.2	Solar	Cell Application	57
		6.2.1	Solar Cell's Current in the Dark	61
		6.2.2	Effects of Solar Cell Material	61
		6.2.3	Superposition	62
		6.2.4	<i>I–V</i> Characteristics of a Solar Cell	62
	Refe	erences	•••••••••••••••••••••••••••••••••••••••	63
7	PV	Genera	tor Characterization	65
	7.1	Param	eters of the <i>I</i> –V Characteristic	65
	7.2	Electr	ical Model of the Photovoltaic Cell	66
	7.3	Simula	ation and Characterization for Different	
		Levels	s of Irradiance	70
	Refe	erences		78
Q	Imn	lomont	ation of the RIPVS Monitoring System	70
0	8 1	Monit	arion of the D11 v5 Monitoring System	70
	8.2	Data /	Acquisition System	80
	8.2	Virtua	Instrumentation (VIS) Electrical	80
	0.5	and Fi	nvironmental Parameters Analysis	81
	Refe	and El		80
	KUR			09
9	Perf	forman	ce, Behavior, and Analysis of BIPVS	91
	9.1	BIPVS	S Technical Performance	91
		9.1.1	PV Generator Performance	91
		9.1.2	Inverter Performance	92
		9.1.3	BIPVS Performance	- 94

Contents

	9.2	BIPVS Performance and Analysis of the Power Quality	100
	9.3	BIPVS Environmental Performance	103
		9.3.1 Solar Radiation Data	103
		9.3.2 Ambient Temperature Data	104
	Refer	ences	107
10	Behav	vior and Analysis of the Power System	
	in Ste	ady State	109
	10.1	Power Flow	110
		10.1.1 Load Flows Analysis	111
	10.2	Short Circuit Studies	112
		10.2.1 Short Circuit Analysis	112
	10.3	Harmonics Studies	115
		10.3.1 Harmonic Analysis	115
	Refer	ences	118
11	Appli	cation of Neural Networks to Validate the Power	
	Gene	ration of BIPVS	119
	11.1	Development of a Neural Network to Evaluate	
		the BIPVS	119
		11.1.1 Artificial Neural Network Model (ANN)	120
	11.2	BIPVS Performance Results	121
	11.3	ANN Model Results	123
	Refer	ences	126
12	Study	and Analysis of BIPVS with RETScreen	129
	12.1	UJTL BIPVS Analysis with RETScreen	129
	12.2	BIPVS Information	130
	12.3	RETScreen Energy Model—Power Generation Project	130
	12.4	RETScreen Cost Analysis	132
	12.5	RETScreen Emission Reduction Analysis	134
		12.5.1 Base Case—Electrical System (Diesel Generator)	134
		12.5.2 Proposed Case—Electrical System (Photovoltaic	
		Generator)	134
		12.5.3 Reduction of GHG Emissions Summary	135
	12.6	RETScreen Financial Analysis	136
	Refer	ences	137
Ind	ex		139

List of Figures

Fig. 1.1	Estimated Renewable Energy Share of Global Final Energy	2
F ' 10	Consumption, 2015.	2
F1g. 1.2	Average Annual Growth Rates of Renewable Energy	2
F ' 1.0	Capacity and Biofuels Production, End-2010 to End-2015	2
F1g. 1.3	Renewable Power Capacities in World, BRICS, EU-28	_
	and top Six Countries, 2016	3
Fig. 1.4	Estimated Renewable Energy Share of Global Electricity	
	Production, End–2016.	4
Fig. 1.5	Global new investment in renewable energy by technology,	
	Developed and developing countries, 2016.	6
Fig. 1.6	Solar PV global capacity, 2006–2016.	6
Fig. 1.7	Solar PV capacity, top 10 countries, 2016.	7
Fig. 2.1	BIPVS operation diagram	11
Fig. 3.1	BIPVS configuration for operation (a) centralized	
	and (b) embedded in residential areas	18
Fig. 3.2	Schematic of a BIPVS showing its five functional blocks	19
Fig. 3.3	Typical PC-based data acquisition system	24
Fig. 3.4	Operating principle of AC clamps	27
Fig. 3.5	DC current measurement using a Hall effect current clamp	27
Fig. 4.1	Ratio of stock price with the volume of reservoirs	37
Fig. 4.2	Average monthly consumption (kWh). Residential	
•	strata 1, 2 and 3	38
Fig. 4.3	Average monthly consumption (kWh). Residential	
0	strata 4. 5 and 6	38
Fig. 4.4	Predictions of power demand for Bogota and Cundinamarca	
8	to 2018	39
Fig 45	Environmental data from Bogota	42
1 15. 4.5		т2-

Fig. 4.6 Fig. 4.7	Technical data of solar panels and selected inverters \dots Analysis of CO ₂ emissions avoided by the use	43
Fig. 4.8	of solar energy Analysis of cumulative cash flows	44 45
Fig. 5.1	FV arrangement Installed at the UJTL	51
Fig. 6.1	Schematic representation of a conventional solar cell. It represents the creation of electron–hole pairs, e ⁻ and h ⁺ , respectively	55
Fig. 6.2 Fig. 6.3	Front panel of the "Photon Cell" program developed Spectral short-circuit current densities of the emitter (<i>green-left</i>) and base (<i>red-left</i>). Total short-circuit current density (<i>right</i>)	58 59
Fig. 6.4	Response of the internal quantum efficiency of the analyzed solar cell	60
Fig. 6.5 Fig. 6.6	Internal spectral response of the analyzed solar cell Calculation of the characteristic $I(V)$ for a solar cell of Si and another of GaAs	60 61
Fig. 7.1	Characteristic curve of a PV panel	66
Fig. 7.2 Fig. 7.3	Equivalent electrical model of a PV cell Typical comparison of the $I-V$ characteristic, specification sheet, and theoretical simulation of the TSM-PA05.08 module under parameters of irradiance of 1000 W/m ² and temperature	67
Fig. 7.4	of 25 °C Typical comparison of the characteristic $P-V$, specification sheet, and theoretical simulation of the TSM-PA05.08 module under irradiance parameters of 1000 W/m ² and temperature of 25 °C	71
Fig. 7.5	Typical comparison of the <i>I–V</i> characteristic, specification sheet, and theoretical simulation of the TSM-PA05.08 module under parameters of irradiance of 800 W/m ² and temperature of 25 °C	72
Fig. 7.6	Typical comparison of the characteristic $P-V$, specification sheet, and theoretical simulation of the TSM-PA05.08 module under parameters of irradiance of 800 W/m ² and temperature of 25 °C	72
Fig. 7.7	Typical comparison of the $I-V$ characteristic, specification sheet, and theoretical simulation of the TSM-PA05.08 module under irradiance parameters of 600 W/m ² and temperature of 25 °C	73
Fig. 7.8	Typical comparison of the characteristic $P-V$, specification sheet, and theoretical simulation of the TSM-PA05.08 module under irradiance parameters of 600 W/m ²	, 5
	and temperature of 25 °C	74

Fig. 7.9	Typical comparison of the $I-V$ characteristic, specification sheet, and theoretical simulation of the TSM-PA05.08 module under irradiance parameters of 400 W/m ²	
	and temperature of 25 °C	74
Fig. 7.10	Typical comparison of the characteristic <i>P</i> – <i>V</i> , specification	
	sheet, and theoretical simulation of the TSM-PA05.08	
	module under parameters of irradiance of 400 W/m ²	
	and temperature of 25 °C	75
Fig. 7.11	Relative Error of the <i>I</i> – <i>V</i> Curves of the MPP,	
	specification sheet, and theoretical simulation of the	
	TSM-PA05.08 module	75
Fig. 7.12	Relative Error of the $P-V$ Curves of the MPP,	
	specification sheet, and theoretical simulation of the	
	TSM-PA05.08 module	76
Fig. 7.13	<i>I–V</i> curves, for different temperature scales and constant	
	irradiance at 1000 W/m ² of module TSM-PA05.08	76
Fig. 7.14	Curves <i>P</i> – <i>V</i> , for different temperature scales and constant	
	irradiance at 1000 W/m ² of module TSM-PA05.08	77
Fig. 7.15	I-V curves, 6 KW PV generator with 1000 W/m ²	
	irradiance and 25 °C temperature	77
Fig. 7.16	P-V curves, 6 KW PV generator with 1000 W/m ² irradiance	
	and 25 °C temperature	78
Fig. 8.1	BIPVS data acquisition and monitoring system	80
Fig. 8.2	VIs acquisition and monitoring of voltage and AC current	82
Fig. 8.3	VIs acquisition and monitoring of the phasor analysis	82
Fig. 8.4	VIs acquisition and monitoring of frequency behavior	83
Fig. 8.5	VIs acquisition and monitoring of the power factor	84
Fig. 8.6	VIs acquisition and monitoring of electrical power	84
Fig. 8.7	VIs acquisition and monitoring of active energy	85
Fig. 8.8	VIs acquisition and monitoring of power quality	85
Fig. 8.9	VIs acquisition and monitoring of the voltage harmonic	
•	component	86
Fig. 8.10	VIs acquisition and monitoring for THD %	87
Fig. 8.11	VIs severity index for short duration flicker (Pst)	87
Fig. 8.12	VIs front panel for BIPVS performance	88
Fig. 8.13	VIs front panel for BIPVS environmental performance	88
Fig 0.1	Profile of the mean daily DC energy production of the DV	
rig. 9.1	array together with the mean daily ambient temperature	
	in Bogotá from 2015 (January) to 2016 (December)	92
Fig 02	Profile of the PV array conversion efficiency together along	12
1 15. 7.2	with the mean daily solar radiation in Rogotá for 2015	
	(January) and 2016 (December)	93
Fig 03	System's irradiance and AC power variation	,5
1 16. 7.5	for a sunny day	93
	101 w county way erroreseen erroreseen erroreseen erroreseen erroreseen erroreseen erroreseen erroreseen errores	15

Fig. 9.4	SB 5000TL-US Inverter Efficiency and AC output	0.4
Eig 05	energy	94
FIg. 9.3	and PV system efficiency	06
Fig 96	Performance of the PV generator and rest of the system	90
Fig. 9.0	Performance parameters: VE L c L s of the BIPV system	00
Fig. 9.7	BIPVS PR performance ratio	100
Fig. 9.0	Energy Performance VR VA VF of BIPVS	100
Fig. 9.10	Frequency and the effective voltage variations	101
1 19. 9.10	for the 2 years of monitoring	102
Fig. 9.11	Power factor and short-term flicker (Pst) variations	10-
0	for 2 years of monitoring	102
Fig. 9.12	Variation of generated AC energy and behavior	
C	of voltage total harmonic distortion	103
Fig. 9.13	Average daily monthly irradiance in the city of Bogota	104
Fig. 9.14	Daily profile of solar irradiance. December 28th, 2015	105
Fig. 9.15	Daily profile of ambient temperature. December	
	28th, 2015	105
Fig. 9.16	Average daily monthly ambient temperature at UJTL	
	in the city of Bogota 2015–2016	106
Fig. 10.1	Single-line diagram of the power system at CIPI	
8	Building—UJTL	110
Fig. 10.2	Simulation of load flow with Etap	111
Fig. 10.3	Simulation of three-phase short circuit in bus 1	113
Fig. 10.4	Simulation of three-phase short circuit in bus 2	113
Fig. 10.5	Simulation of three-phase short circuit in bus 3	114
Fig. 10.6	Simulation of total harmonic distortion THD	115
Fig. 10.7	Harmonic currents spectrum and transformer	
	current wave	116
Fig. 10.8	Harmonic components voltage spectrum and voltagewave	
	of bars 1 and 2	117
Fig. 11.1	Basic model of an artificial neural network	120
Fig. 11.2	Solar radiation daily average along with daily average	120
	monthly of ambient temperature for 2016	122
Fig. 11.3	Daily average of solar AC output energy along	
0	with PV array efficiency for 2016	123
Fig. 11.4	Front panel of the virtual instrument for ANN model	124
Fig. 11.5	Histogram of estimated and measured ac power	
-	of the BIPV system	124
Fig. 11.6	DC and AC power estimated by the artificial neural	
	network with four inputs for December 2nd, 2016	125
Fig. 11.7	AC output energy estimated and measured for every	
	month of 2016	126

Fig. 12.1	RETScreen software	130
Fig. 12.2	Environmental Data—Meteorological Location of the City	
	of Bogotá delivered by RETScreen	130
Fig. 12.3	Implementation costs projection of costs of solar	
	photovoltaic energy systems between the years 2010	
	and 2020 (IRENA 2014C)	131
Fig. 12.4	Energy Model—Energy Export Tariff	133
Fig. 12.5	Analysis of Greenhouse Gas Emission Reduction	135
Fig. 12.6	GHG Emission Reduction Summary	135
Fig. 12.7	Cumulative Cash Flow	136

List of Tables

Renewable energy global potential, 2016 Costs of power generation. Adapted from Renewable	3
2016 Global status report, by REN21 (2016)	5
Percentage of harmonic components	15
Traditional instruments vs virtual instruments	30
Results of the estimation of energy demand of Bogotá until 2020	39
Comparison of incentives granted by Law 697–2001 and Law 1715–2014	40
Electrical demand of the building and transformer's capacity	41
Total energy demand by the common areas of the building	41
Electrical characteristics of the selected module Technical characteristics of the selected inverter BIPVS electrical characteristics at the UJTL	49 50 50
Principal parameters involved in the analytical model Comparison between a silicon solar cell and a GaAs	56
solar cell	62
Absolute error and relative error for MPP at different levels of irradiance and temperature of 25 °C	72
Values of: total energy produced by the BIPV system, parameters YR, YA, YF, PR, and LC, LS losses	95
Odd component of harmonic current present	
in the 75 KVA transformer Odd component of harmonic voltage in bars 2 and 3	117 118
	Renewable energy global potential, 2016

Introduction

Electricity generation located near the energy load is called distributed generation. The hardware is typically installed in the same area as the energy demand. There is a wide variety of technology that covers distributed generation, although their use is based on availability.

The present work reports on the design, installation, and start-up of the building integrated photovoltaic system (BIPVS) that is connected to the low-voltage grid of the Universidad de Bogotá Jorge Tadeo Lozano's Engineering Programs' Center for Research (CIPI). It also describes a mathematical analysis that models the behavior of a solar panel in the system. This book also presents the design and installation of a monitoring system for the performance of the solar plant that uses virtual instrumentation and analysis of the results of the photovoltaic (PV) generator and inverter.

The photovoltaic generator is made up of 24 solar panels, Trina Solar, of 250 W each and a Sunny Boy two-phase inverter of 5000 W. The results of the modeling stage indicate a relative error of 1.5% between the maximum power point reported by the solar panel manufacturer and the proposed mathematical analysis under a solar radiation level of 1000 W/m^2 . The main results of the performance monitoring analysis of the BIPVS system show that over a period of two years, 16.194 kWh was generated and the harmonics, nominal voltage, and system frequency have been within the operating ranges suggested by the IEEE 929-2000 standard. Solar radiation has exceeded 4 kWh/m²-day.

The book consists of 12 chapters, providing a comprehensive overview of the topic at hand.

Chapter 1 presents the current state of energy worldwide, with emphasis on its utilization in Colombia.

Chapter 2 corresponds to the conceptual framework of the work developed. It provides a global view on distributed energy generation and applies the concepts of BIPVS, with its respective form of operation and distributed generation (DG), among other concepts.

Chapter 3 provides the basics of the BIPVS sizing, power quality, monitoring system, and virtual instrumentation.

Chapter 4 reviews a BIPVS application on a 40 story building.

Chapter 5 focuses on the sizing and implementation of the BIPVS installed at the Universidad de Bogotá Jorge Tadeo Lozano as an object of research and development.

Chapter 6 describes solar cell characteristics and presents a method for calculating short-circuit spectral current density and quantum efficiency.

Chapter 7 corresponds to the modeling and characterization stage of the photovoltaic solar panel to determine the reliability of the implemented model's operation.

Chapter 8 covers detailed implementation of the monitoring system to carry out the acquisition of environmental and electrical parameters of the photovoltaic generation system. These parameters include all the physical elements of the system such as equipment, transducers, power lines, protections, acquisition cards, and PC.

Chapter 9 refers to the performance, behavior, and analysis of BIPVS.

Chapter 10 corresponds to stable state analysis of the power system incorporating a 6 kW photovoltaic generator to the low-voltage grid of the CIPI building.

Chapter 11 evaluates BIPVS power generation through the use of neural networks.

Chapter 12 refers to the analysis and economic viability of the photovoltaic system implemented at the UTADEO University through the RETScreen software.