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Mas não basta pra ser livre
Ser forte, aguerrido e bravo
Povo que não tem virtude
Acaba por ser escravo

(Hino Rio-Grandense)
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Abstract

Flexible and transparent electronics enable the integration of innovative
cost-efficient products. One of the outstanding aspects of this technology is its wide
range of applications, from flexible and transparent displays to wearable electronics
and RFID (radio-frequency identification) tags for sensor networks employed, for
instance, in health monitoring systems. In this area, thin-film transistors (TFTs)
are the key elements which drive the electrical currents in the devices. Conjointly,
hybrid systems, combining high-performance silicon-based transistors for data
processing and thin-film transistors for enhanced user interactivity, emerge profiting
from the synergy of both technologies.

In this study, ZnO-based TFTs for flexible and transparent electronics were
integrated and characterized. The fabrication processes were limited to cost-efficient
and low-temperature methods compatible to large-area flexible substrates; therefore,
solution-based techniques were primarily applied. For the active semiconductor,
ZnO precursors and dispersions containing nanostructures of the material were
evaluated, the latter depicting better compatibility with the integration process as
well as higher performance and reliability. As gate dielectric, poly(4-vinylphenol)
(PVP) and a high-k nanocomposite were employed. The transistors were structured
in both inverted staggered and inverted coplanar setups. On the one hand, the
staggered structures depict larger contact area between the drain/source electrodes
and the active semiconducting layer, hence higher charge carrier injection. On
the other hand, their coplanar counterparts profit from the late semiconductor
deposition, which enables an effective analysis of the instabilities concerning the
transistor. To investigate the performance metrics and reliability issues, an extensive
characterization of the transistors was performed. After the main instability effects
were identified and mitigated, the TFTs were also integrated on polymeric sub-
strates. Aiming at the fabrication of compact and energy-efficient devices, optical
photolithography was used for layer patterning instead of shadow mask technique.
Along with the resolution of around 1 �m achieved for multiple-layer definition, the
employment of freestanding PET substrates reproduces a more realistic scenario for
a later large-scale production. Different methods, namely, spin- and spray-coating
and doctor blade technique, for the semiconductor dispersion deposition were
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x Abstract

investigated, leading only to minor variations on the TFT electrical performance.
The metrics of the integrated ZnO nanoparticle TFTs are among the best reported for
nanoparticle-based transistors up to date. Additionally, they are comparable to those
of TFTs fabricated using cost-intensive techniques or high-temperature processes.

In order to evaluate the ZnO TFTs in electronic circuit applications, inverters
employing an active transistor in the pull-down network and a load transistor in the
pull-up network were integrated on rigid and on flexible substrates. Furthermore,
the dynamic characteristics of such inverters were analyzed in ring oscillator
circuits. Finally, by an adaptation of the photolithography, self-alignment processes
were used to reduce the transistor’s parasitic capacitances as well as to pattern
the semiconducting layer in order to avoid cross-talk effect between devices.
Furthermore, a complementary design using n-type inorganic and p-type organic
TFTs is evaluated.
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Chapter 1
Introduction

Products and applications using transparent and flexible electronics are widely
connected to a futuristic scenario. They were explored by novels, such as the
Shape of Things to Come from H.G. Wells in [TSTC33], and by films, such as
“Barbarella” [Bar68] based on Jean-Claude Forest’s comics in 1968. The animation
studio Hanna-Barbera also explored some aspects of future daily artifacts through
“the Jetsons” [TJ60] cartoons in the 1960s and 1980s. Some of the recent Hollywood
productions, such as Minority Report ([MR02]) and Ironman ([IM08], [IM10], and
[IM13]), also give us insights of future applications for flexible and transparent
electronics and how they can be integrated in our lives. These futuristic visions
and ideas motivate the scientific community as well as companies to develop and to
employ this technology.

Flexible and transparent electronics enable the fabrication of innovative products
making use of different aspects of the applied materials and compounds. Some
concepts of applications which take advantages of these characteristics are shown
in Fig. 1.1. The integration of transparent displays, for example, increases the
interactivity of the user with the surrounding environment. Moreover, by employing
a flexible substrate, integrated sensor networks can be used as wearable electronic
skins enabling, for instance, collection and analysis of body functions for sports and
medical applications. The food industry can also profit from this technology: cost-
efficient radio-frequency identification (RFID) tags can be employed to monitor
food quality and storage conditions in real time. For these applications, thin-film
transistors (TFTs) are commonly used as active circuit elements. The advantages
of this type of transistors are the integration process almost independent of the
substrate (generally used just as mechanical support) and the opportunity to apply
a wide range of materials in its structure. Nevertheless, the TFT technology is
not to be seen as a substitute for crystalline silicon (Si)-based transistors in the
high-performance market. This technology should act promoting new products and
applications, being implemented in most cases in hybrid systems, to improve data
acquisition and user interface.

© Springer International Publishing AG 2018
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2 1 Introduction

Fig. 1.1 Concept applications of transparent and flexible electronics in the field of displays, sensor
networks for medical monitoring and for sport activity, and RFID tags for the food industry

As this technology avails a wide range of products, the development of new
systems itself can be time- and cost-intensive; one of the main issues is dealing
with the feasibility and with the complexity of the whole project. Therefore, the
use of abstraction levels leads to a more effective development of the technology.
Figure 1.2 shows an example of a schematic design of abstraction levels for
transparent and flexible systems. In this particular case, the main focus has been
given to its electronic part; nevertheless the same method can be also directed to the
mechanical and aesthetic aspects of the product. Each abstraction level can use the
previous one as a black box or as a model avoiding unnecessary internal complexity
and focusing on the developing of the current level elements. In the example
of Fig. 1.2, the system was divided into different levels in order of increasing
abstraction: materials, devices, circuits, modules, and the system itself. The focus
of this study is placed in the device level; however, a merge with both frontiers
(materials and circuits) is also covered.

The purpose of this book is the development of cost-efficient inorganic-based
thin-film transistors and circuits on flexible and transparent substrates employing
low-temperature processes. Aiming at reduced costs, solution-based materials are
preferred for the integration of the TFTs. The use of solution-based techniques
fulfills the large area integration and flexible substrates requisites while exhibiting
advantages when compared to cost-intensive vacuum-based processes. Among
inorganic materials, metal oxides dominate the sector with different compounds and
deposition methods, which can be selected depending on the system requirements
[WS09, FBM12, PMVC16]. Zinc oxide (ZnO) has emerged as a primary compound
in this field, possessing outstanding electrical and chemical characteristics as well as
being transparent to the visible light spectrum. Therefore, solution-based processes
employing either ZnO precursors or a dispersion containing nanostructures of the



1.1 Structure of the Work 3

Fig. 1.2 Schematic design of abstraction levels for flexible and transparent systems. The selection
in red depicts the levels covered in this book

material are chosen for the formation of the active semiconducting layer. Besides the
investigation of different gate dielectric materials as well as deposition methods for
the semiconductor, it is also an objective of this study to identify and minimize the
agents responsible for instability effects in the transistor operation. Further studies
should be conducted to analyze the TFTs characteristics upon different transistor
structures on either rigid (oxidized Si or glass wafer) or on polymeric substrates.
Moreover, the integration and evaluation of the transistors in digital circuits, e.g.,
inverter circuits and ring oscillators, are also sought.

1.1 Structure of the Work

Initially, the fundamentals concerning thin-film transistors and flexible electronics
are presented in Chap. 2. The discussion comprises the intrinsic attributes of the
active semiconducting material employed in this study; important aspects related
with TFTs, such as its history and a comparison with high-performance Si-
based transistors; as well as their operation properties, modeling, and electrical
characterization.



4 1 Introduction

Chapter 3 is devoted to the integration process of the transistors on rigid and on
flexible substrates. Therefore, TFT basic structures and each of its components are
addressed. Although the focus is given to the processes and methods applied in this
study, a general overview of the most used techniques and materials found in the
literature is given.

The electrical characterization of the TFTs is mainly presented in Chap. 4. Tran-
sistors integrated employing ZnO precursor or nanoparticles as well as a discussion
concerning the electron flow mechanism in the nanoparticulated semiconducting
film and its effect on the transistor’s current are described. Along with the I–V
curves, qualitative models representing the TFT behaviors are given and analyzed.

Chapter 5 addresses the performance of circuits integrated employing the ZnO-
based TFTs. Whereby, inverter circuits integrated using load-transistors in the pull-
up network and active-transistors in the pull-down network on rigid and on flexible
substrates are analyzed. Additionally, their dynamic characteristics (ring oscillator
circuits) are evaluated.

Improvements for the integrated circuits and devices are presented in Chap. 6.
Approaches such as the reduction of parasitic capacitances and of cross-talk effects,
implementation of a complementary design applying both n-type ZnO-based TFTs
and p-type organic-based TFTs, and evaluation of further deposition methods for
the active semiconducting material are addressed.

Finally, in Chap. 7, the main conclusions of this book as well as future perspec-
tives for ZnO-based TFTs and flexible electronics are discussed.
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