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Preface

Every 2 years, the MOQESM conference takes place in Brest (France), in the
framework of the SeaTech Week Conference. MOQESM is the meeting point of
specialists from two fields, namely coastal hydrography and marine robotics. This is
a unique opportunity for industrials and academic scientists to present their
respective works to each other. It often leads to very rich scientific exchanges
during and after the presentations. Indeed, many hydrographic applications can be
performed by AUVs (Autonomous Underwater Vehicles), and, reciprocally, many
navigation methods can benefit from the advances in hydrography for localization
purpose, target identification, or path planning. The conference is also open to more
general marine robotic presentations in fields like design and operation. This book
gives to the reader an overview of some of the topics addressed during the
MOQESM 16 Conference (October 11–12, 2016). This book is more than the
proceedings of the conference, as it includes also original papers that have not been
presented during MOQESM, but have been selected by the editors. The topics
covered by this book include the following:

1. Acoustics: sonar tracks registration
2. Localization and navigation: simultaneous localization and mapping, range only

localization, interval analysis for trajectory estimation, and electric sense for
navigation

3. Multi-vehicles methods: securing an area with AUVs and performing adaptive
sampling with autonomous sailing boats

4. Design: optimization of propulsion systems, and design and control of an
underwater vehicle.

If this is not already the case, we hope that this bookwill convince you of the interest
of bringing coastal hydrography and marine robotics together and we hope that it will
make you as enthusiastic as we are to participate to next MOQESM editions.

Montpellier, France Vincent Creuze
May 2017

v
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Chapter 1
Fast Fourier-Based Block-Matching
Algorithm for Sonar Tracks Registration
in a Multiresolution Framework

Florian Nicolas, Andreas Arnold-Bos, Isabelle Quidu and Benoît Zerr

Abstract In the underwater mine warfare context, potential threats are usually de-
tected and classified by means of an Automatic Target Recognition (ATR) chain,
especially in case of newly surveyed areas. However, if we can rely on a previous-
ly acquired sonar track, it is conceivable to directly compare such a track, said as
reference, with a more recent one in order to detect seabed changes such as new
objects lying on the seabed. To perform this change detection process, the very first
step consists in geometrically aligning the reference and the repeated tracks. In this
paper, we detail a block-matching approach using masked Fourier cross-correlation
as a similarity metric, to carry out a fast elastic registration in a multi resolution
framework. To improve the robustness of the algorithm, the resulting vector field is
then filtered thanks to the navigation uncertainty, provided by the INS, along with
an Inverse Distance Weighting estimate, to get rid of outliers.

1.1 Introduction

In the context of sonar imagery, image registration, consisting in geometrically align-
ing two or more images, is a crucial step as it is often the very first step to fur-
ther perform several tasks such as navigation correction [1–3], seabed mosaicking

The original version of this chapter was revised: For detailed information please see Erratum.
The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-70724-2_10
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2 F. Nicolas et al.

[4–6] or also to carry out change detection [7–10]. Such an alignment can there-
fore be achieved through various methods. We usually split these methods into two
groups, the symbolic ones (features-based) [1–5, 7, 11–14] and the iconic ones
(intensity-based) [6, 8, 9, 15–20]. While the former try to extract and match features
such as objects lying on the seabed, salient points or homogenous areas, the latter
directly work with the pixels intensity through various similarity (resp. dissimilarity)
measures to maximize (resp.minimize), to find the optimal transformation.

As we are looking for a method which does not rely on any features detection
and description step, we focus on intensity-based methods. Indeed, we want such
an algorithm to apply whatever the seabed type (presence of man-made objects
or not, presence of sand ripples or not, textured seabed). A key point of a block
matching algorithm is the choice of the similarity metric. The most famous one
is undoubtedly the mutual information [21] which has massively been used by the
medical image processing community [22] but also in the underwater field [17, 18].
However, according to Vandrish [3], such a metric can perform poorly compared
to other similarity metrics such as the phase correlation. In addition, in [23], we
demonstrated that a zero normalized cross-correlation (ZNCC) can be sufficient to
perform registration.Moreover, theZNCC, computed in the Fourier domain, retrieves
the optimum through an unique iteration, while other metrics will have to look for
the maximum in the entire search space, requiring much more iterations. As our
algorithm should be designed to operate in real-time, such an advantage cannot be
neglected. Although it could be conceivable to search for such a maximum through
an optimization process, we can not insure to converge towards the global optimum.
Moreover, the masked version of the Fourier NCC proposed by Padfield [24] is of
interest in our case, allowing us to only take into account some parts of sonar tracks
during registration.

In Sect. 1.2,we emphasize the key steps of the proposed block-matching algorithm
which results on real high-resolution sonar tracks are provided in Sect. 1.3.

1.2 Non-rigid Registration Algorithm

1.2.1 Masked Normalized Cross-Correlation

As it has previously been shown in a rigid context [23], the zero normalized cross-
correlation (ZNCC) is suitable to perform sonar tracks registration. The ZNCC be-
tween two images f1 and f2 can be expressed, in the spatial domain, as:

ZNCC(u, v) =

∑

(x,y)∈∩u,v

( f1(x, y) − f1)( f2(x − u, y − v) − f (u,v)
2 )

√ ∑

(x,y)∈∩u,v

( f1(x, y) − f1)2
√

∑

(x,y)∈∩u,v

( f2(x − u, y − v) − f (u,v)
2 )2

(1.1)
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where∩u,v = {(x, y) ∈ f1 ∩ f (u,v)
2 }where f (u,v)

2 is a shifted version of f2 with shifts
u, v, and f̄i corresponds to the average of fi on this same interval.

In addition, it is possible to insert binary masks (mi for image fi ) in the ZNCC
Fourier formulation (1.2) in order to discard certain regions from both images [24]
as they would affect the registration results adversely. This is known as the Masked
Normalized Cross-Correlation (MNCC). Thus, in our underwater context, such an
ability is welcome for various reasons. Firstly, as we deal with geo-referenced sonar
tracks, it allows us to register blocks located near the sonar track borders while only
taking into account pixels associated with sonar data. Secondly, as reference and
repeated tracks can differ from each other due to differences in their point of view
and/or grazing angle, it could sometimes be interesting to remove shadows from the
mask to achieve registration. However, we do not need to retrieve a scale factor and
a rotation factor. Indeed, we assume that these global parameters can be modeled
through our block-matching formulation.

MNCC =
F−1(F2 � F∗

1 ) − F−1(F2�M∗
1 )�F−1(M2�F∗

1 )

F−1(M2�M∗
1 )

√

F−1(F( f2 � f2) � M∗
1 ) − (F−1(F2�M∗

1 ))2

F−1(M2�M∗
1 )

√

F−1(M2 � F( f
′
1 � f

′
1)) − (F−1(M2�F∗

1 ))2

F−1(M2�M∗
1 )

m′
1 = rot (m1, 180

◦)
f ′
1 = rot ( f1, 180

◦)
M2 = F(m2)

M∗
1 = F(m′

1)

� is the element-wise product operator
(1.2)

1.2.2 Block-Matching Algorithm

As demonstrated in [23], a rigid body transformation can not be chosen to precisely
register two sonar tracks. Indeed, sonar data projected in the Earth frame are prone
to error due to carrier uncertainty navigation. To overcome such an issue, as detailed
in Fig. 1.1, our algorithm first consists in dividing the reference track into several
blocks at the first available resolution level by means of a regular grid. The size
of such blocks should be small enough to be able to model local deformations but
large enough to contain sufficient information about the seabed. Then, a MNCC is
computed between such a block from the reference image and another larger one
from the repeated track. Figure1.2 gives two examples of the MNCC between two
blocks. Once all blocks have been processed, the yielded vector field must undergo
a two-steps filtering as it will be explained in the next Sects. (1.2.3 and 1.2.4). Such
a filtered vector field is then used to initialize the registration at the next finer level,
allowing to decrease the search space and thus decreasing the computational cost.
Finally, the vector field obtained at the finest resolution is used to perform the repeated
track warping (Sect. 1.2.6).
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Fig. 1.1 Overview of our
multi-resolution
block-matching algorithm

1.2.3 Navigation-Based Filtering

As the peak location provided by the MNCC does not necessarily correspond to a
physically reliable displacement, we rely on the latitude and longitude uncertainties
provided by the Inertial Navigation System (INS), for each transmitted ping, to get
rid of such outliers. Such outliers can for example be due to repetitive patterns such
as linear trawling net marks or blocks located within homogeneous areas where the
correlation peak can be sensitive due to the lack of distinctive features.

Thus, let pre fi (resp. prepi ) be the observation of the i th true contact pi (unobserved)
acquired during the reference (resp. repeated) pass:

pre fi ∼ N (pi , �
re f
i )

prepi ∼ N (pi , �
rep
i )

(1.3)

�
re f
i (resp. �rep

i ) is the reference (resp. repeated) diagonal covariance matrice.
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Fig. 1.2 Examples of masked normalized cross-correlation computed at the coarsest resolution
level. a MNCC yielding the expected displacement between both blocks owing to the mine-like
contact. bMNCC providing an erroneous displacement due to the linear trawling net mark raising
an ambiguity

As pre fi and prepi are considered independent, the distribution of di = pre fi − prepi
can be written as:

di ∼ N (0, �re f
i + �

rep
i )

∼ N (0, �i )
(1.4)

with:

�i =
((

σ
re f
i,lat

)2 + (
σ
rep
i,lat

)2
0

0
(
σ
re f
i,lon

)2 + (
σ
rep
i,lon

)2

)

=
(

σ 2
i,lat 0
0 σ 2

i,lon

) (1.5)

A registration vector vi

(
Δi,lat

Δi,lon

)

will thus be kept if and only if, it is contained in

the following uncertainty ellipsis:

(
Δi,lat

σi,lat

)2

+
(

Δi,lon

σi,lon

)2

≤ K (1.6)
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K can be chosen according to the χ2 distribution (with 2 degrees of freedom), to
set the probability to keep such a vector.

1.2.4 Neighborhood-Based Filtering

In the previous subsection, vectors have separately been filtered in examining their
latitude and longitude components. At the output of such a norm-based filtering, it
can still remain outliers. Indeed, all vectors contained in the ellipse formed by axes
(σlat , σlon) are remaining while they do not have a physical meaning. Therefore, it
is now necessary to perform another filtering rather based on their neighborhood.
To do so, our approach is based on the computation, for a given vector X (origin
x , orientation θ(x)), of its inverse distance weighting estimate θ̂ (x) (1.7) thanks to
its N neighboring vectors Xi (origin xi , orientation θ(Xi )) (1.7). In addition to the
distance, the previously computed cross-correlation peak value γ (Xi ) is introduced
in the weights computation. The comparison of θ(X) with θ̂ (X) in one hand, and
̂‖X‖ with ‖X‖ in the other hand, thus allows to decide wether the current vector
should be considered as an outlier (1.8). Tθ and T‖.‖ are user-defined thresholds.

ω(X, Xi ) = γ (Xi )

d(x, xi )
p

θ̂ (X) =
∑N

i=1 θ(Xi )ω(X, Xi )
∑N

i=1 ω(X, Xi )

̂‖X‖ =
∑N

i=1‖Xi‖ω(X, Xi )
∑N

i=1 ω(X, Xi )

(1.7)

‖θ̂ (X) − θ(X)‖ ≤ Tθ

1

T‖.‖
≤ ̂‖X‖

‖X‖ ≤ T‖.‖

(1.8)

The vector field variation should obviously be considered as slow for our approach
to be valid.
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1.2.5 Multi-resolution Framework

The multi-resolution framework consists in initializing the next level thanks to the
vector field computed at the previous one (Fig. 1.3). Thus, this allows to reduce the
search space along the resolution levels (denoted by s) i.e. constraining the vector
field while speeding up the algorithm.

As some vectors will be dismissed once filtering steps are done, it is possible
to generate new vectors at the next scale by duplicating inlying vectors in their
neighborhood in order not to run out of vectors.

Regarding the blocks size, a compromise has to be found. Indeed, let Sre f (resp.
Srep) be the size of a block from the reference track (resp. repeated track). Sre f
should be large enough to contain enough information to locally describe the seabed
but narrow enough to be able to model local deformations. However, Srep, which
is relatively large at the very first scale, decreases along the resolution levels as the
correlation peak is more and more accurately localized.

1.2.6 Warping Functions

Once the final vector field has been obtained, the next step consists in computing a
transformation for every pixel belonging to the repeated track. Several transformation
functions have been considered such as the radial basis functions whose general form
is given in (1.9). The radial basis function R(.) only depends on the distance between
the i th data point and the point x (x ∈ R

2 in the case of 2D image registration) to
interpolate.

Fig. 1.3 (from left to right). At the coarsest level, for both blocks from the reference (red dotted
square) and repeated (blue dotted square) tracks, the MNCC provides a displacement vector (red
arrow). Thus, at the next level, the location of the block from the repeated track is initialized
by means of the previously computed vector. This allows to decrease the search space along the
resolution levels to speed up the registration process
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f (x) =
n∑

i=1

αi R(di (x))︸ ︷︷ ︸
Radial basis function

+ pm(x)
︸ ︷︷ ︸

polynomial of degree m

(1.9)

The most famous RBF function is probably the Thin Plate Spline (TPS) (1.10)
which has extensively been used in image registration.

R(di ) = d2
i log(di ) (1.10)

However, in our case, although the center of blocks are arranged according to
a regular grid, our algorithm may finally yield a sparse vector field whose density
significantly varies in the space (vectors can thus all be located in a very small area
of the sonar track). Thus, we often deal with extrapolation rather than interpolation,
and, as the TPS have no local support property, it often fails to provide a reliable
field.

Moreover, as we target real time processing, the interpolation complexity is a
key factor. Indeed, while the TPS complexity is O(nN ) [25], n and N respectively
being the number of data points and the number of points we want to interpolate, we
prefer using faster methods such as triangulation-based ones or B-splines. As their
name suggests, triangulation-based methods consists in triangulating the data points
through Delaunay triangulation and then perform piecewise interpolation in each
triangle by means of linear functions or cubic ones. A con of triangulation-based
methods comes from the fact that they are only able to perform the interpolation
inside the convex hull. To overcome this, we use the Shepard’s method to estimate
the vector field on sonar track borders and thus extend the convex hull.

Regarding B-splines methods, they have broadly been used in non-rigid and
optimization-based medical image registration [26, 27], as they are locally sup-
ported (i.e. it only relies on some neighbors to perform the interpolation). Given a
2D control lattice φ, they can be expressed as

f (x, y) =
3∑

k=0

3∑

l=0

Bk(s)Bl(t)φi+k, j+l , (1.11)

where i = �x� − 1, j = �y� − 1, s = �x� − x , t = �y� − y. Bk and Bl are B-spline
basis functions defined as

B0(t) = (1 − t3)

6
,

B1(t) = (3t3 − 6t2 + 4)

6
,

B2(t) = (3t3 − 6t2 + 4)

6
,

B3(t) = t3

6
.

(1.12)
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In Sect. 1.3.2, multilevel B-splines [28] and a triangulation-based approach [29]
are compared.

1.3 Experimental Results

1.3.1 Dataset

Toevaluate our registration algorithm,wehave twohigh-resolution synthetic aperture
sonar tracks acquired offshore Brittany coasts, near Brest, on September 2015. Such
data have been acquired with the SAMDIS sonar sensor manufactured by Thales.
While this sensor is able to perform multi-aspect acquisition, we only rely on the
broadside aspect to perform our registration. The carrier is also equipped with an
iXBlue PHINS inertial navigation system whose data are fused with a Teledyne
RDI Workhorse 300 data velocity log (DVL). First and foremost, we project both
sonar tracks in the Earth frame before storing them at different resolutions through
a hierarchical data format.

We have chosen three different resolution levels, ranging from 0.5 m to 0.12 m,
to benefit from the multi-resolution framework. A given resolution level of a track is
obtained by successively locally averaging its previous scale. We get rid of coarsest
levels and finest ones, as they respectively do not represent interesting features and
are polluted by speckle noise (Fig. 1.4).

Fig. 1.4 Geo-projected
reference and repeated sonar
tracks before registration
with patch A (red) and B
(green)
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1.3.2 Results

Intermediate results of the registration procedure, using the parameters detailed in
Table1.1, are shown in Fig. 1.5 to illustrate the role of each step. Indeed, while the
very first vector field computed at the coarsest scale contains several outliers (a),
the navigation-based filtering is able to get rid of them as they do not match the
navigation uncertainties provided by the INS. The remaining outliers (the two pink

Table 1.1 Block-matching semi-operational parameters used in our experiment

Parameters used in our experiment

Resolution level Sre f [m] Srep [m] d N K Tθ T‖.‖
Coarsest 30 40 2 all vectors 5.991 45◦ 1.4

Intermediate 20 22

Finest 15 16

Fig. 1.5 Patch extracted from the repeated track. aVector field after block-matching at the coarsest
resolution level. b Vector field at the coarsest resolution after navigation-based filtering. c Vector
field at the coarsest resolution after neighborhood-based filtering. d Filtered vector field at the finest
resolution level
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contours in (b)) are then filtered using the neighborhood-based approach described
in Sect. 1.2.4. However, as it can be seen from (c), an outlier remains after all these
filtering steps, but, as the correlation is probably not stable along the resolution levels,
it disappears from the final vector field (d), and thus allows to obtain a more reliable
warping of the repeated track.

Wehere provide both interpolated fields (X andYaxes) computed bymeans ofDe-
launay triangulationwith cubic piecewise function andmultilevel B-splines (Fig. 1.6)
for the intermediary resolution level consisting in an image of 3072 × 3072 pixels.
While the B-splines method provides a smoother field than the triangulation-based
one (due to extrapolation outside the initial convex hull), our current implementation
takes 28s to be computed whereas the triangulation-based one only needs 1.6s.

Nonetheless, as our sonar tracks are practically rendered using OpenGL, instead
of computing the displacement for each pixel of the repeated track, we only compute
such a displacement for the OpenGL vertices. Indeed, thus, when the vertices are
shifted, the sonar track, which is stored as a texture in OpenGL, will be automatically
warped through GPU interpolation, thus speeding-up the warping process.

Fig. 1.6 Interpolated vector fields (in pixels). Interpolation through Delaunay triangulation with
cubic piecewise function for X(a) and Y(b) axes. Interpolation by means of multilevel B-splines
for X(c) and Y(d) axes


