K.W. Chau · Isabelle Y.S. Chan Weisheng Lu · Chris Webster Editors

Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate



Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate

K.W. Chau · Isabelle Y.S. Chan Weisheng Lu · Chris Webster Editors

Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate



Editors K.W. Chau

Department of Real Estate and Construction

The University of Hong Kong

Hong Kong Hong Kong

Isabelle Y.S. Chan

Department of Real Estate and Construction

The University of Hong Kong

Hong Kong Hong Kong Weisheng Lu

Department of Real Estate and Construction

The University of Hong Kong

Hong Kong Hong Kong

Chris Webster

Faculty of Architecture

The University of Hong Kong

Hong Kong Hong Kong

ISBN 978-981-10-6189-9 ISBN 978-981-10-6190-5 (eBook) https://doi.org/10.1007/978-981-10-6190-5

Library of Congress Control Number: 2017950275

#### © Springer Nature Singapore Pte Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature

The registered company is Springer Nature Singapore Pte Ltd.

The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

# **Contents**

| 1 | K.J. Li, Y. Zhou, A. Shrestha and G.W. Liu                                                                                                                                 | j  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2 | A Comparison of Barrier-Free Access Designs For the Elderly Living in the Community and in Care and Attention Homes in Hong Kong  Ibukun Famakin and Mei-yung Leung        | 11 |
| 3 | A Comparison of Green Building Policies in Asian Countries or Regions                                                                                                      | 19 |
| 4 | A Comparison of Public Private Partnership Environment Between Australia and China Yongjian Ke, Marcus Jefferies and Peter Davis                                           | 35 |
| 5 | A Conceptual Model of Cloud-Based Virtual Community for BIM Innovation and Promotion                                                                                       | 45 |
| 6 | A Dynamic Analysis on the Urban Carbon Footprint and Carbon Carrying Capacity—A Case Study of Chongqing S.P. Li, Q.J. Zheng, D.H. Zeng, Z.H. Huang and L.Y. Shen           | 53 |
| 7 | A Framework for Quantifying Carbon Emissions Generated  During Demolition Waste Processing  Y. Li, H.Y. Wu, Z.Z. Wu, J.Y. Wang, H.B. Duan, J. Zuo,  Z.D. Li and X.L. Zhang | 67 |
| 8 | A Framework for Utilizing Automated and Robotic Construction for Sustainable Building Mi Pan, Thomas Linner, Hui Min Cheng, Wei Pan and Thomas Bock                        | 79 |

vi Contents

| 9  | A Literature Review of Sustainable Urbanization in China Y.T. Tan and H. Xu                                                                                           | 89  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10 | A Macro-Micro Framework of ADR Use in the Malaysian Construction Industry                                                                                             | 97  |
| 11 | A Preliminary Study on the Effects of HSR on Station Area Guo Liu and Kunhui Ye                                                                                       | 107 |
| 12 | A System Dynamics Framework of Drivers and Constraints to Enhancing Productivity of the Hong Kong Construction Industry                                               | 117 |
| 13 | A Whole Life Cycle Group Decision-Making Framework for Sustainability Evaluation of Major Infrastructure Projects B. Xue and H. Xu                                    | 129 |
| 14 | Adaptive Reuse of Inner-City Buildings: Methods for Minimising Waste and Stimulating the Economy  N. Udawatta, Zillante George, A. Elmualim, R. Rameezdeen and J. Zuo | 141 |
| 15 | An AHP-ANP Integrated Framework of Evaluating Innovative Business Models for Sustainable Building                                                                     | 153 |
| 16 | An AHP-GIS Based Model of C&D Waste Landfill Site Selection: A Triangulation of Critical Factors Zhikun Ding, Menglian Zhu, Yifei Wang and Jiasong Zhu                | 163 |
| 17 | An Alternative Model for Regional Sustainability Evaluation: A Case Study of Chongqing                                                                                | 175 |
| 18 | An Empirical Analysis of the Effect of Prefabrication on Fostering Sustainable Construction                                                                           | 185 |
| 19 | An Empirical Investigation of Construction and Demolition Waste Management in China's Pearl River Delta                                                               | 197 |
| 20 | An Intelligent Decision Support System for Improving Information Integrity in Procuring Infrastructures in Hong Kong                                                  | 213 |

Contents vii

| 21 | An Investigation of Waste Reduction Measures Employed in Construction Industry: Case of Shenzhen Y. Gao, J.Y. Wang, H.Y. Wu and X.X. Xu                                                       | 223 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 22 | An Optimization-Based Semantic Building Model Generation Method with a Pilot Case of a Demolished Construction F. Xue, K. Chen, D. Liu, Y. Niu and W.S. Lu                                    | 231 |
| 23 | Analysis and Optimization of Key Index of Public Investment Building Project's Performance Evaluation Based on Project Governance Y.S. Wang, F.f. Liu, W.Z. He, Y. Zhang, H.Y. Li and J.F. Li | 243 |
| 24 | Analysis on the Influencing Factors of Building Energy Consumption—A Southwest China Case Study  Z.N. Zhao, H.M. Zhang, Y.F. Ding and L.Y. Shen                                               | 259 |
| 25 | Analysis on the Influencing Factors of Multidimensional LMDI Energy Consumption—A Case Study of Chongqing H.M. Zhang, Z.N. Zhao, L.Y. Shen, W.W. Wen and M. Chen                              | 273 |
| 26 | Application of Building Information Modeling (BIM) in Site Management—Material and Progress Control                                                                                           | 289 |
| 27 | Application of SWOT Analysis in Turkish Construction Industry                                                                                                                                 | 299 |
| 28 | Assessment of Energy Efficiency for Retrofit Versus Reconstruction Projects by Building Information Modeling G. Demirdöğen and Z. Isık                                                        | 311 |
| 29 | Barriers to and Enablers for Lessons Learned Practices in International Infrastructure Development Projects—A Case Study                                                                      | 321 |
| 30 | Benchmarking Innovation Potentials in Large Projects by Public Private Partnerships Cut Sarah Febrina and Palaneeswaran Ekambaram                                                             | 331 |
| 31 | Benefits of Using Constructability, Operability, and Maintainability in Infrastructure Projects: A Meta-Synthesis S. Jadidoleslami, E. Saghatforoush, N. Kordestani Ghaleenoe and C. Preece   | 347 |
| 32 | Big Data in Urban Planning Practices: Shaping Our Cities with Data                                                                                                                            | 365 |

viii Contents

| 33 | Board of Director's Role in Preventing Corporate Misconduct in the Construction Industry                                                            | 375 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 34 | Bridging Knowledge Gap Between Green and Non-green Facilities Management in Singapore Yujie Lu and Ngiam Min Li Joyce                               | 383 |
| 35 | Bridging the Cyber and Physical Systems for Better Construction: A Case Study of Construction Machinery Monitoring and Utilization                  | 393 |
| 36 | Building Information Modeling (BIM) in Architecture, Engineering and Construction (AEC) Industry: A Case Study in Malaysia                          | 401 |
| 37 | Carbon Emission Modelling for Construction Logistics Process Through Activity-Based Method                                                          | 413 |
| 38 | Causal Loop Analysis on the Impact of Schedule Risks in Prefabrication Housing Production in Hong Kong                                              | 425 |
| 39 | Causes of Delays in Mega Projects—Case of the Zambian Transmission Power Projects Chaali Kalebuka, Erastus Mwanaumo and Wellington Didibhuku Thwala | 435 |
| 40 | Characterization of Carbon Emissions from the Construction Activities: A Case Study of Shenzhen, China                                              | 451 |
| 41 | China's Ongoing Policy Instrument for Building Energy Efficiency: Drives, Approaches and Prospects                                                  | 461 |
| 42 | Chinese Building Energy Service Industry Evolution Based on Ecological Niche                                                                        | 471 |
| 43 | Clean Development Mechanism in Airports: The Colombian Case                                                                                         | 481 |

Contents ix

| 44 | Conflict Analysis of Concentrated Rural Settlement Development During Post-disaster Reconstruction in China: A Multi-agent Simulation                             | 491 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 45 | Construction and Demolition Waste Management: Experiences Learning from Developed Countries and Their Enlightenment to China                                      | 503 |
| 46 | J.Y. Wang  Construction Project Manager Health and Safety Interventions                                                                                           |     |
|    | Towards Improving Workers' Performance                                                                                                                            | 513 |
| 47 | Construction Work Productivity in South Africa: A Case of Gauteng Province Construction Industry                                                                  | 523 |
| 48 | Contractors' Organisational Culture Towards Health and Safety Compliance in Ghana                                                                                 | 535 |
| 49 | Convention and Exhibition Center Integrated into High Speed Rail Station: Experience and Idea                                                                     | 543 |
| 50 | Corporate Social Responsibility Localization in International Construction Business                                                                               | 553 |
| 51 | Correlation Analysis of Key Influencing Factors to the Total Factor Productivity of the Hong Kong Construction Industry W. Zhan, W. Pan, A.A. Javed and K.W. Chau | 565 |
| 52 | Critical Impact Factors Affecting Carbon Emission: Evidence from STIRPAT Model with Panel Data Analysis                                                           | 577 |
| 53 | Critical Risks Associated with BIM Adoption: A Case of Singapore                                                                                                  | 585 |
| 54 | Critical Success Factors of Joint Ventures in the Construction Industry: Literature Review                                                                        | 597 |
| 55 | Detection and Quantification of Spalling Distress in Subway Networks                                                                                              | 607 |
|    | T. Dawood, Z. Zhu and T. Zayed                                                                                                                                    |     |

x Contents

| 56 | Determinants of Business Overdraft Accessibility Within Small and Medium-Sized Enterprises in the South African Construction Industry: A Case of Gauteng Province O.A. Balogun, N.J. Agumba and N. Ansary | 617 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 57 | Determination of Project Management Competence Risks in Build Operate Transfer (BOT) Transportation Projects H. Aladağ and Z. Işık                                                                        | 629 |
| 58 | Does the Development of China's Building Industry Influence the Global Energy Consumption and Carbon Emissions? an Analysis Based on the GVAR Model                                                       | 641 |
| 59 | Driving Factors for Promoting Urbanization of Small Townsin Southwest China                                                                                                                               | 651 |
| 60 | Estimating the Walking Accessibility Premiums                                                                                                                                                             | 665 |
| 61 | Evaluating the Critical Risk Factors of Reconstruction Urban Renewal Projects: The Developer's Perspective in China W.D. Wu, G.W. Liu, Z.H. Cai and S.N. Zheng                                            | 677 |
| 62 | Evaluating the Effects of Alleviating Urban Traffic Congestion Using Real-Time Traffic Information on Mobile Devices M.W. Hu, W.K. Huang and Y. Chen                                                      | 689 |
| 63 | Evaluation of Construction Waste: Management Problems and Solutions                                                                                                                                       | 701 |
| 64 | Evaluation of Procurement Systems of Public Sector Funded Projects                                                                                                                                        | 709 |
| 65 | Evolutionary Game Analysis on the Low-Carbon City Construction Between Central and Local Government in China Yingli Lou, Xiangnan Song and Hui Yan                                                        | 717 |
| 66 | Examining Critical Factors Affecting Knowledge Transfer in Public-Private Partnership (PPP) Projects                                                                                                      | 727 |
| 67 | Explication of Challenges with Acceptance of Marketing Functions in the Management of Construction Business Enterprise                                                                                    | 745 |

Contents xi

| 68 | Sites: A Literature Review  R. Prasad, Y. Feng and M. Hardy                                                                                                     | 759 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 69 | Factors Influencing the Construction Time and Cost Overrun in Projects: Empirical Evidence from Pakistani Construction Industry                                 | 769 |
|    | Ahsen Maqsoom, Muhammad Umar Khan, Muhammad Tariq Khan, Shahfahad Khan, Naeemullah and Fahim Ullah                                                              |     |
| 70 | Feasibility Analysis of Using Construction and Demolition Waste in Sea Reclamation Projects in Hainan X.L. Li, Y. Li, H.Y. Wu, J.Y. Wang, H.B. Duan and X.X. Xv | 779 |
| 71 | Female Student Enrolments in Construction Management Programs                                                                                                   | 789 |
|    | B.L. Oo and E.C. Widjaja                                                                                                                                        | 109 |
| 72 | Financial Simulation in Operation and Maintenance of Railway Transportation: A Case Study of Greater Jakarta Light Rail Transit                                 | 799 |
|    | H.Z. Rahman, P. Miraj and J.S. Petroceany                                                                                                                       |     |
| 73 | Finding Academic Concerns on Real Estate of U.S. and China: A Topic Modeling Based Exploration                                                                  | 807 |
| 74 | From Paper-Based to Cloud-Based Safety Information System in Infrastructure Construction Projects                                                               | 819 |
| 75 | Game Analysis of Stakeholders in Urban Renewal Based on Maximization of Social Welfare                                                                          | 835 |
| 76 | Game-Based Construction Process Learning for Students' Education: A Case Study of Concreting Game                                                               | 851 |
| 77 | Identification and Assessment of Particulate Matters in Asphalt Fumes from Road Construction                                                                    | 859 |
| 78 | Identifying the Relationship Between Housing Market Development and Urbanization Process: Evidence from Jiangsu, China                                          | 869 |
|    | Jing Du, Yifan Yang and Bing Jiang                                                                                                                              | 20) |

xii Contents

| 79 | Impacts of Large Construction Projects on Residents' Living Status in China: A Reservoir Project Case W.S. Lin, Y. Ning, Y.L. Huang and M.J. Liu  | 879  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 80 | Improving Construction Safety Performance Through Error Management: A Literature Review Minh Tri Trinh and Yingbin Feng                           | 891  |
| 81 | Improving Mentoring Relationships of Construction  Management Professionals  A.E. Oke, C.O. Aigbavboa and M.M. Mutshaeni                          | 899  |
| 82 | Index Decomposition Analysis of Building Energy Consumption in Chongqing: 2000–2014                                                               | 907  |
| 83 | Indicators for Guiding Sustainable Development of Townships in Mountainous Regions in Southwest China Y. Chen, Y.T. Ren, Y.L. Huang and L.Y. Shen | 917  |
| 84 | Influential Factors in Construction Industry of Yemen                                                                                             | 927  |
| 85 | Investigating the Relationship Between Student Characteristics and Progression: An Archive Study  Josua Pienaar, Xianbo Zhao and Nadine Adams     | 945  |
| 86 | Key Parameters on Financial Loss of Construction Accidents in Hong Kong Construction Industry                                                     | 957  |
| 87 | Knowledge Transfer Between R&D Projects and Commercial Projects: A Conceptual Framework  Eric Too and Stewart Bird                                | 969  |
| 88 | Life Cycle Costing for Insulated Pitched Roof Structures I.M. Chethana S. Illankoon, Vivian W.Y. Tam and Khoa N. Le                               | 981  |
| 89 | Life-Cycle Cost Assessment of Durable Repair of Concrete Structures Based on Environmental Costs                                                  | 995  |
| 90 | Literature Review on the Research Discipline of Low Carbon Cities in China                                                                        | 1005 |
| 91 | <b>Management Strategies for 5D-BIM Adoption in Hong Kong</b> I.Y.S. Chan, A.M.M. Liu and B. Chen                                                 | 1023 |

Contents xiii

| 92  | Method for Urban Rail Transit Project Financing Decision-<br>Making Based on Triangular Fuzzy Number                                                                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 93  | On Territorial Planning Reconfiguration in China: A Critical Review of the Existing Planning System                                                                                      |
| 94  | On the Garbage Classification Mechanism Based on Repeated Games in Urban Network Organization                                                                                            |
| 95  | Optimizing Life-Cycle Carbon Emissions for Achieving Concrete Credits in Australia                                                                                                       |
| 96  | Paradigm Shift Towards Green Industry Restructuring: A Review of Industrial Land in China                                                                                                |
| 97  | Pilot Case Study of New Engineering Contracts (NECs) in Hong Kong—Joy or Tears?                                                                                                          |
| 98  | Potentials of TDR for Balancing Built Heritage Conservation and Compact Development in Hong Kong                                                                                         |
| 99  | Prioritizing Best Value Contributing Factors for Contractor Selection: An AHP Approach                                                                                                   |
| 100 | Recycled Aggregate in Concrete Production:  A New Approach                                                                                                                               |
| 101 | Recycled Ceramic Fine Aggregate for Masonry Mortar Production                                                                                                                            |
| 102 | Remaking the Physical Disability Inclusion Score (PDIS) and the Visual Impairment Inclusion Score (VIIS) to Assess the Disability Inclusiveness of Commercial Facilities:  A Pilot Study |
| 103 | Research of Housing Price Based on Bid-Rent Theory                                                                                                                                       |

xiv Contents

| 104 | Research on Cost Risks for EPC Project Using Entropy-Weight Evaluation Method                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 105 | Research on Dynamic Fuzzy Multi-objective Optimization of Engineering Projects Considering Risk Factors                                     |
| 106 | Research on Evaluation of Xi'an Shantytown Renovation Projects' Social Benefit                                                              |
| 107 | Research on Performance of Construction Enterprises Based on Informatization and Contract Management                                        |
| 108 | Research on the Comprehensive Economic Strength of Macro Regional Distribution in Urbanization                                              |
| 109 | Research on the Housing Affordability of University Graduates in Guangzhou                                                                  |
| 110 | RFID-Enabled Management System Adoption and Use in Construction: Passing Through the Labyrinth with an Improved Technology Acceptance Model |
| 111 | <b>Risk and Risk Factors in Brownfield Development</b>                                                                                      |
| 112 | Risk Management in the Supply Chain of Essential Medicines 1275<br>Mario M.J. Musonda, Erastus M. Mwanaumo<br>and Didibhuku W. Thwala       |
| 113 | Rural Residential Land Transfer in China: Government-Driven or Market-Driven?                                                               |
| 114 | Scenarios for Applying Big Data in Boosting Construction: A Review                                                                          |
| 115 | Smart Gateway for Bridging BIM and Building                                                                                                 |

Contents xv

| 116 | Spatial-Temporal Effects of Housing Price Caused by Metro Construction: A Perspective of Price-to-Rent Ratio                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 117 | <b>Stakeholder Analysis of Sustainable Construction in China</b> 1335<br>Hongyang Li, S. Thomas Ng and Yahong Dong               |
| 118 | Strategic Factors Influencing Bid/No-Bid Decision of Pakistani Contractors                                                       |
| 119 | Study on the Affordable Housing Policy in China's Urbanization Process                                                           |
| 120 | Suggestion for Improving Project Management Competency of Project General Contractors in China                                   |
| 121 | The Analysis of Rural Undergraduates' Separation of Registered and Actual Residences and the Separation's Influences on Land Use |
| 122 | The Decoupling Analysis Between Regional Building Energy Consumption and Economic Growth in China                                |
| 123 | The Demand for Senior Housing Grows. The Answer Is to Be Found in Various Models of Social "Enterprise"                          |
| 124 | The Effect of Contract Control on Contractors' Cooperative Behavior: The Moderating Role of Owner Power                          |
| 125 | The Evaluation of Urban Renewal Policies in Shenzhen, China (2009–2016): An Analysis Based on Policy Instruments                 |
| 126 | The Improvement of Safety Climate of Migrant Workers  Based on Social Mining Technologies                                        |

xvi Contents

| 127 | The Potential Cost Implications and Benefits from Building Information Modeling (BIM) in Malaysian Construction Industry            | 1439 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|------|
|     | LiWei Chin, ChangSaar Chai, HeapYih Chong, Aminah Md Yusof and NurFakhira bt Azmi                                                   |      |
| 128 | The Researches on Construction Project Manager Competency and Its Application                                                       | 1455 |
| 129 | The Rise of the Smart Circular City: Intelligent Modelling of Cities for Improved Waste Reuse and Environmental Effects R. Vrijhoef | 1463 |
| 130 | The Simulation and Evaluation Method and Technology of Passenger Flow in Urban Rail Terminal                                        | 1473 |
| 131 | The Supply and Demand for Green Housing in China:  A Micro-Perspective                                                              | 1487 |
| 132 | Trend Analysis of the Labor Supply and Demand in China's Construction Industry: 2016–2025                                           | 1499 |
| 133 | Understanding Construction Technology Transfer from a 'SCOT' Perspective                                                            | 1509 |
| 134 | Urban Green Land Carbon-Sink in Different Functional Cities: The China Case                                                         | 1521 |
| 135 | Use of a Mobile BIM Application Integrated with Asset Tracking Technology Over a Cloud                                              | 1535 |
| 136 | Using Switching State-Space Model to Identify Work States Based on Movement Data                                                    | 1547 |

# **About the Editors**



**Prof. K.W. Chau** (鄒廣榮) B.Sc. (B.S.), B. Building, Ph.D. (HKU), FRICS, FHKIS, FCIOB

Chair Professor and Head, Department of Real Estate and Construction, The University of Hong Kong.

Director, Ronald Coase Centre for Property Rights Research, The University of Hong Kong.

Professor K. W. Chau is a currently Chair Professor and Head of the Department of Real Estate and Construction and Director of the Ronald Coase Centre for Property Rights Research at The University of Hong Kong. He is also Honorary President of the Chinese Research Institute of Construction Management (CRIOCM). His main areas of research include real estate finance and economics, real estate price index, construction economics and urban analysis. Most of his works are empirical studies with implications for policy makers and practitioners. He the International Real Estate Achievement Award in 1999. He founded Asian Real Estate Society in 1996 and served as the first President (1996–7). He also served as President of the International Real Estate Society (2000–1). He was elected as President of the Hong Kong Institute of Surveyors (2009–10) and President of the Chinese Research Institute Construction Management (2014–17).

Professor Chau has many years of experience in real estate research and consultancy. He has done many consultancy works for private and public organizations. Professor Chau has also served and is serving on many government committees.

xviii About the Editors



**Dr. Isabelle Y.S. Chan** B.Eng.(Hons), M.Phil., Ph.D., MCIOB, FISHP

Lecturer, Department of Real Estate and Construction, The University of Hong Kong.

Isabelle is a Lecturer at the Department of Real Estate and Construction, University of Hong Kong, PRC. In the past few years, she has participated in more than 10 government-/university-/industry-funded research projects covering areas of construction health and safety, stress management in construction, sustainable development, innovation in construction and so on. In line with these projects, she has over 50 international publications in books, journals and conferences. Isabelle is a Chartered Construction Manager. She also the Vice-chairman of the Institute of Safety and Health Practitioners in Hong Kong.



**Dr. Weisheng Lu** Ph.D., M.Sc., B.Eng., MCIOB, MCRIOCM

Associate Professor, Associate Dean (Research), Faculty of Architecture (FoA), The University of Hong Kong, Hong Kong.

Dr. Weisheng Lu's research interests mainly including Building Information Modelling (BIM), smart construction, big data in construction waste management and international construction. He is the Associate Dean of the Faculty of Architecture (FoA), looking after research and knowledge exchange (KE) in the Faculty. Dr. Lu is also steering the development of *iLab*, which is an urban big data hub under the umbrella of the HKUrbanLab, the research arm of the FoA at HKU. *iLab* facilitates multidimensional and multidisciplinary urban big data collection, storage, analysis and presentation to inform all sorts of decision-making throughout the life cycle of urban development. *iLab* also has its own unique research remit to integrate big data in pursuit of integrated modelling of smart urban development, combining smart

About the Editors xix

community, smart infrastructure, smart construction, smart property and facilities management and Internet of Things (IoTs). His recent research projects fostered in *iLab* include how BIM can be used for construction cost management, smart construction, logistic and supply chain management and facility maintenance.



**Prof. Chris Webster** Dean and Chair Professor, Faculty of Architecture, The University of Hong Kong.

Professor Chris Webster is Dean of the Faculty of Architecture, the University of Hong Kong, and leads the HKUrbanLab. He has degrees in urban planning, computer science, economics and economic geography and is a leading urban theorist and spatial economic modeller. He has published over 150 scholarly papers on the idea of spontaneous urban order and received over US\$20M grants for research and teaching and learning projects. He was co-editor of Environment and Planning B for 10 years. Books include Webster and Lai (2003) Property Rights, Planning and Markets. Cheltenham. Edward Elgar; Webster and Frantz, (2006) Private Cities, London, Routledge; Wu, Webster, He and Liu, (2010) Urban Poverty in China, Cheltenham: Edward Elgar; and Wu and Webster (Editors) Marginalisation in Urban China, London: Palgrave MacMillan; and Sarkar, Webster and Gallacher (2014) Healthy Cities: Public Health Through Urban Planning, Cheltenham: Edward Elgar. Professor Webster prize-winning academic papers on urban theory.

He has many research interests on the go, including leading HKU's Healthy High Density Cities research group. His current research agenda for this group is to establish systematic evidence for the relationship between urban configuration (planned and spontaneous) and individual health. To do this, he has teamed up with the Oxford University-based UKBiobank (N = 500,000), the HKU LKS Faculty of Medicine's Family cohort (N = 40,000) and other national-scale epidemi-

xx About the Editors

ology studies (N = 500,000) to create large-scale medical-built environment platforms for healthy city science. He also co-leads HKU's One Belt One Road Observatory (OBORObs), which has the objective of modelling and predicting connectivity improvements in the Eurasian urban network and advising city governments on smart land policy to capture more of the land value uplift of OBOR infrastructure for the urban poor.

# Chapter 1 A Cluster Analysis of Real Estate Business Models in China

K.J. Li, Y. Zhou, A. Shrestha and G.W. Liu

#### 1.1 Introduction

The globalized construction market leads to globally-interconnected projects and boosts competition between emerging players. To survive in such a challenging environment, companies are forced to embrace innovations for their business model. A business model can be understood as the approach that a company takes to generate revenue and makes profits (Ovans 2015). The model articulates the logic, the data, and other evidence that support a value proposition for the customer, and a viable structure of revenues and costs for the enterprise delivering that value (Teece 2010). It emphasizes organizational activities in a systems perspective of doing business which seeks to explain both value creation and capture (Pan and Goodier 2012). For example, the business model for Walmart, the world's largest company in revenue, was to sell products at a lower price by decreasing service. In the real estate industry, the "current trader" business model consists of a cycle of land acquisition, development, and outright sale (Pan and Goodier 2012).

Despite increasing academic interest and attention in this area, no commonly accepted definition of real estate business models have yet been established. Also, there is a lack of quantitative studies for the main streams of real estate business models in China. In order to fill on this perceived knowledge gap, and to facilitate cross-context learning, the aim of this paper is thus to reveal the clusters of real estate business models in China. The paper first examines the variables for studying the business model of the real estate market. It then examines 117 real estate companies identified through a two-step cluster analysis, and subsequently elaborates on the revealed real estate business model clusters in China. Coupling results provide a tool to depict real estate business model and quantifiable evidence for

1

K.J. Li · Y. Zhou (☒) · A. Shrestha · G.W. Liu Faculty of Construction Management and Real Estate, Chongqing University, Chongqing 400045, China e-mail: zhouyang@cqu.edu.cn

2 K.J. Li et al.

Chinese real estate practitioners to understand the main stream of real estate business models in China.

# 1.2 Methodology

# 1.2.1 Samples Selection

Chinese enterprises with more than 70% of their total revenue generated from the real estate development were selected as the samples in this study. As of December 2014, there were 143 enterprises listed on the Shanghai and Shenzhen real estate sector. All 143 companies were investigated and based on the inclusion criteria, 117 companies were selected as the research samples while the remaining 26 enterprises that did not meet the criteria were excluded.

## 1.2.2 Variables Considered for Cluster Analysis

In order to establish the variables for depicting real estate business models, this study reviewed the papers on business model published between 1998–2016. Seven items for measuring the construct of business model were derived from studies including Moore (2004), Johnson et al. (2008a, b) and Brege et al. (2014). According to our knowledge, this is the first study that analyses clusters of enterprise business models applying multiple dimensions and using a large sample size. The selected indicators were greatly represented the model of comprehensive and data available.

The variables are discussed individually below.

- (1) Target customers: This variable was used primarily to measure the enterprise customer groups. According to the income of target customers, which were mainly derived from corporate annual reports, the target customers were divided into: (i) ordinary customers (ordinary-income groups), (ii) high-end customers (high-income groups) and (iii) integrated customers (both ordinary and high income groups).
- (2) Product: Product refers to the product types of the enterprise. According to the analysis of the income data obtained from the corporate annual reports regarding the enterprises' main businesses, they were divided into: (i) residential oriented; (ii) commercial oriented; and (iii) others. If residential construction accounted for more than 70% out of the main business income for the enterprise, the enterprise was classified into residential oriented; if commercial buildings account for 70% out of the main business income for the enterprise, the enterprise was classified as business oriented; and for the enterprises with

- 70% of their income not being generated from either residential or commercial construction were classified as others.
- (3) Market orientation: This variable was used to identify the proportion of sales income based on where the location of the enterprises' market. The proportion of domestic sales income and the proportion of foreign sales income was used as the basis of classification. In addition, regional division was based on the administrative regions in China, i.e., East China, North China, South China, Central China, Northeast, Southwest, Northwest. Enterprises whose regional sales accounted for more than 70%, were classified as local leading type, while the others were classified as domestic leading type.
- (4) Finance: This variable was mainly used to measure whether the corporate finance structure was adequate to support the sustainable development of enterprises. If the debt-to-assets ratio index was less than 40%, the enterprise was classified as risk-adverse. If the debt-to-assets ratio index was greater than 40% but less than 70%, the enterprise was classified as risk-neutral and if the debt-to-assets ratio index was higher than 70%, the enterprise was the classified as risk-seeking. Risk adverse enterprises may not use full leverage of funds to create greater value for shareholders. Risk neutral enterprises use funds to generate medium level of earnings. Risk seeking enterprises may take more financial risks by making full use of financial leverage to obtain high profits.
- (5) Collaboration network: This variable was mainly used to measure the cooperation relationships between enterprise and stakeholders (such as government, contractors, suppliers, investors, etc.). The industrial chain theory divides stakeholders into the upstream stakeholders (such as government and financial institutions), the peer stakeholders (such as designers and contractors) and downstream stakeholders, (such as business partners and terminal customers). We examined whether sample enterprises had established long-term cooperative relationship with the three types of stakeholders. Therefore, this study classified the relationship between enterprises and stakeholders into: (i) upstream cooperation type; (ii) peer cooperation type; and (iii) downstream cooperation type; (iv) upstream and downstream cooperation type; and (vii) the industry-wide cooperation type.
- (6) Core capability: This variable was mainly used to compare the competitive advantage between enterprises and the competitors. Looking at the descriptions of the core capabilities in the annual reports of the real estate enterprises, it was found that it generally included competencies such as skilled staff, supply relations, relationship with government, technical resources and capabilities, sources of capital, management capability, brand influence and so on. This variable was further investigated using surveys the combines findings from the two methods were used to divide the enterprises into three types: (i) external enterprise; (ii) internal enterprise; and (iii) integrated enterprise. External enterprises' core capabilities lie in the integration with the industry chain regarding the interests of the relevant parties (including upstream and downstream industries, consumers and government resources) and the relevant

4 K.J. Li et al.

| Logical<br>level  | Components               | Dimension                                                                                                                   | Reference           | Data<br>sources                |
|-------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|
| Value orientation | Target customers         | Ordinary; high-end; integrated                                                                                              | Brege et al. (2014) | Interview                      |
|                   | Product                  | Residential oriented;<br>commercial oriented; others                                                                        | Brege et al. (2014) | Financial statement, interview |
|                   | Market orientation       | Local leading type;<br>domestic leading type                                                                                | Self-designed       | Financial statement            |
| Value<br>creation | Finance                  | Risk-adverse; risk-neutral; risk-seeking                                                                                    | Pan et al. (2012)   | Financial statement            |
|                   | Collaboration<br>network | Upstream; peer;<br>downstream; upper and<br>peer; peer and downstream;<br>upstream and downstream;<br>and the industry-wide | Self-designed       | Interview                      |
|                   | Core capability          | External; internal; integrated                                                                                              | Chesbrough (1996)   | Interview                      |
| Value<br>source   | Revenue                  | Sales oriented; rental oriented; integrated                                                                                 | Chesbrough (1996)   | Financial statement            |

**Table 1.1** The business model scales of real estate enterprise

sources (including land, funds, raw materials, etc.). Internal enterprises' core capabilities lie in their own strong management and technological capabilities, including human resources, life cycle management and control ability and so on. Integrated enterprises' core capabilities lie in the integration of the external and internal capabilities mentioned above.

(7) Revenue: This variable was used to measure the enterprise's main source of income. Through the analysis of the annual income for the listed enterprises, it was found that the real estate business revenue sources include property sales, property rental, hotel experience, property management, design and decoration, etc. Based on the availability of the data, the real estate enterprises' source of income was divided into: (i) sales oriented; (ii) rental oriented; and (iii) integrated type. Enterprises with more than 50% of their income coming from property sales were classified as sales oriented, while enterprises with more than 50% of their income coming from property rental was classified as rental oriented. All other enterprises were classified as integrated type (Table 1.1).

#### 1.2.3 Data Collection

The data was collected in two parts. Firstly, in terms of data resources, the variables, i.e., target research customers, products, market positioning, capital structure, source of income and cost structure of data were collected from the published

corporate annual reports of the listed enterprises. Secondly, the data of cooperation network and the core resources and capabilities were collected through questionnaire surveys.

Data from corporate annual reports were obtained by examining the contents of the reports as well as the sections that offered prospectus. Data was also collected from other published sources as well as enterprises' websites. Subsequently, based on the analysis of the data collected, we divided the core capabilities into: (i) platform type enterprise; (ii) managing type enterprise and (iii) comprehensive type enterprise. The cooperation network was divided into: (i) short-term cooperation; and (ii) long-term cooperation.

The questionnaire items used 7-point Likert scale, and the respondents provided answers mainly based on their personal experience and opinions. One of the issues with subjective questionnaire data is that the accuracy can be partly affected due to the respondents' bias (Podsakoff et al. 2003). However, in order to improve the quality of the data, the only the data from experienced respondents were used in the analysis. Particularly, the data collected from respondents who were familiar with business models in the real estate industry and experts who had more than 5 years' research experience in business modeling were considered. In addition, data from any respondents who were employees of the enterprises under investigation were also excluded from the analysis.

The questionnaires were administered to experts. The progress of scoring involved two stages. In the first stage, three experts (authors, academics and industry experts) were asked to provide scores through discussion. In the second stage, 15 experts were asked to provide their scores separately. Once the filled out questionnaires were collected, we compared the results from the two different stages. The enterprises showing large deviations (in the findings from the two stages) were selected for in-depth analysis in order to determine the category of each enterprise.

# 1.2.4 Method of Cluster Analysis

The SPSS 'Two Step Cluster' method was applied to reveal the clusters of the business models of house developers in china. This method is designed to discriminate natural groups from a set of variables stabilizing the nearness criterion, with a hierarchical agglomerative clustering whose centres are far apart (Fraley and Raftery 1998). Compared to classical cluster analysis methods, SPSS 'Two Step Cluster' can deal with both continuous and categorical attributes. Also, this method can automatically determine the optimal number of clusters. Likelihood was selected as the distance measure, which defines the normal density for continuous variables and the multinomial probability mass function for categorical variables. The cluster analysis involved two steps:

6 K.J. Li et al.

(1) Pre-clustering step: the data records were scanned one by one and the algorithm decided whether the current record could be added to one of the previously formed clusters or it started a new cluster, based on the distance criterion;

(2) Clustering step: the clustering stage had sub-clusters resulting from the pre-cluster step as input and grouped them into the optimal number of clusters. To determine which number of clusters was optimal, each of these cluster solutions was compared using Schwarz's Bayesian Information Criterion (BIC) as the clustering criterion. An optimal number of clusters will have a smaller value of the BIC, a reasonably large Ratio of BIC Changes and a large Ratio of Distance Measures.

Silhouette Coefficient (Rousseeuw 1987), a measure of density of all the data in the cluster, was utilized to measure the goodness-of-fit of the outcome. This index combines both, cohesion (based on the average distances between all the objects in a cluster) and separation (based on the average distance of any object to all the other objects not contained in the same cluster), and can range between -1 and +1; values below 0 are indicative of inappropriate fit, between 0 and 0.2 are poor, between 0.2 and 0.5 are fair, and above 0.5 are good.

### 1.3 Results and Analysis

# 1.3.1 The Optimal Number of Clusters and Relevant Variables

With the seven variables, each of the cluster solutions was compared using Schwarz's BIC as the clustering criterion in order to determine the optimal number of clusters. The optimal number of cluster should have a smaller value of the BIC, a reasonably large Ratio of BIC Changes and a large Ratio of Distance Measures. The results of this analysis suggest that the optimal number of clusters was five, with a smaller value of the BIC (2353.658), a larger Ratio of BIC Changes (0.311) and a larger Ratio of Distance Measures (1.549) (Table 1.2). These results suggest that goodness-of-fit was achieved, with fair average silhouette coefficient equal to 0.30.

#### 1.3.2 The Clusters Revealed

Through the two-step cluster analysis five clusters of the 'real estate business models' (117; 81.8%) were revealed. These clusters involved the use of seven variables consisting of target customers, product contents, market region, capital structure, external relations, core resources and capabilities, sources of income. These five clusters (Fig. 1.1) were with the sample size of 18 (15.4%), 26 (22.2%), 20 (17.1%), 31 (26.5%), and 22 (18.8%). The ratio of sizes comparing the largest to

| Number of clusters | Schwarz's Bayesian<br>Information Criterion (BIC) | BIC change <sup>a</sup> | Ratio of BIC changes <sup>b</sup> | Ratio of distance measures <sup>c</sup> |
|--------------------|---------------------------------------------------|-------------------------|-----------------------------------|-----------------------------------------|
| 1                  | 3435.351                                          | _                       | -                                 | _                                       |
| 2                  | 2965.696                                          | -469.655                | 1.000                             | 1.403                                   |
| 3                  | 2658.389                                          | -307.306                | 0.654                             | 1.584                                   |
| 4                  | 2499.766                                          | -158.623                | 0.338                             | 1.052                                   |
| 5                  | 2353.658                                          | -146.108                | 0.311                             | 1.549                                   |
| 6                  | 2293.357                                          | -60.301                 | 0.128                             | 1.001                                   |
| 7                  | 2233.150                                          | -60.207                 | 0.128                             | 1.231                                   |
| 8                  | 2202.264                                          | -30.885                 | 0.066                             | 1.160                                   |
| 9                  | 2188.877                                          | -13.388                 | 0.029                             | 1.105                                   |
| 10                 | 2185.910                                          | -2.966                  | 0.006                             | 1.199                                   |
| 11                 | 2199.344                                          | 13.434                  | -0.029                            | 1.125                                   |
| 12                 | 2221.933                                          | 22.589                  | -0.048                            | 1.001                                   |
| 13                 | 2244.584                                          | 22.651                  | -0.048                            | 1.061                                   |
| 14                 | 2271.461                                          | 26.878                  | -0.057                            | 1.017                                   |
| 15                 | 2299.496                                          | 28.034                  | -0.060                            | 1.355                                   |

Table 1.2 The indices for identifying the optimal number of clusters

Bold represents the optimal number of clusters based on results of the analysis

<sup>&</sup>lt;sup>c</sup>The ratios of distance measures are based on the current number of clusters against the previous number of clusters

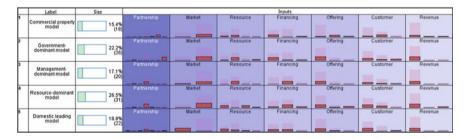



Fig. 1.1 Profiles of the revealed clusters of real estate business models

smallest cluster was 1.72. Figure 1.1 illustrates the accumulative distribution of the building cases grouped in the five revealed clusters against the seven critical variables.

The revealed five clusters were:

• Cluster 1 was dominated by peer-to-upstream cooperative (72.2%), internal capabilities (55.6%), risk-neutral (77.8%), commercial oriented (66.7%), regional (100%) enterprises which sales (66.7%) for high-end customers (72.2%).

<sup>&</sup>lt;sup>a</sup>The changes are from the previous number of clusters in the table

<sup>&</sup>lt;sup>b</sup>The ratios of changes are relative to the change for the two cluster solution

8 K.J. Li et al.

• Cluster 2 was dominated by upstream cooperative (88.5%), internal capabilities (73.1%), risk-neutral (73.1%) residential oriented (96.2%), regional (100%) enterprises which sales (96.2%) for ordinary customers (53.8%).

- Cluster 3 was dominated by peer cooperative (85.0%), internal capabilities (100%), risk-seeking (100%), residential oriented (100%), regional (85.0%) enterprises which sales (100%) for ordinary customers (55.0%).
- Cluster 4 was dominated by peer cooperative (83.9%), external capabilities (48.4%), risk-seeking (64.5%), residential oriented (67.7%), regional (96.8%) enterprises which sales (83.9%) for ordinary customers (61.3%).
- Cluster 5 was dominated by peer cooperative (45.5%), comprehensive capabilities (59.1%), risk-seeking (54.5%), residential oriented (81.8%), nationwide (95.5%) enterprises which sales (90.9%) for ordinary customers (86.4%).

#### 1.4 Discussion and Conclusions

This paper has identified clusters of 'real estate business models'. The examination was carried out through a two-step cluster analysis of 117 'real estate enterprises' that have emerged and have been reported in China. Five 'real estate business models' clusters were revealed: (1) commercial property model; (2) government-dominant model; (3) management-dominant model; (4) resource-dominant model; and (5) domestic leading model. The findings indicate that the 117 enterprises were spread across five clusters evenly and every cluster has its distinct characteristics. This goes on to show that there are a variety of real estate business models, with each one varying from the other based on their applicability conditions. So, an enterprise should not replicate the business model of successful enterprises, but instead, should choose a suitable business model that fits their purpose.

The findings should help with understanding the complex profiles of real estate business models and support cross-context learning of the real estate practices. However, such learning should take into account the different characteristics of the house developers against the relevant variables. The variables examined in this paper provide a useful framework for developing cross-context learning of practices. The examined variables were descriptive and explanatory: target customer, product, market orientation, finance, collaboration network, core capability and revenue. Future research may analyze the relativity between the clustered results of variables in each type of business model.

#### References

- Brege S, Stehn L, Nord T (2014) Business models in industrialized building of multi-storey houses. Constr Manage Econ 32(1):208–226
- Chesbrough H (1996). Business model innovation: it's not just about technology anymore. Strateg Leadersh 35(16):12–17
- Doganova L, Eyquem-Renault M (2009) What do business models do?: innovation devices in technology entrepreneurship. Res Policy 38:1559–1570
- Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588
- Hamel G (1998) The challenge today:changing the rules of the game. Bus Strateg Rev 9(9):19–26 Harvard business review on business model innovation (2010) Harvard Business Press, Boston, MA
- Johnson MW, Christensen CM, Kagermann H (2008a) Reinventing your business model. Harvard Bus Rev 86(12):50–59
- Johnson MW, Christensen CM, Kagermann H (2008b) Reinventing your business model. Harvard Bus Rev 87(12):52–60
- Magretta J (2002) Why business model matter. Harvard Bus Rev 80(5):86-92
- Moore GA (2004) Darwin and the demon: innovating within established enterprises. Harvard Bus Rev 82(7):86–99
- Ovans A (2015) What is a business model? Harvard Bus Rev 27:167-178
- Pan W, Goodier C (2012) House-building business models and off-site construction take-up. J Archit Eng 18:84–93
- Podsakoff PM, Mackenzie SB, Lee JY, Podsakoff NP (2003) Common method biases in behavioral research: a critical review of the literature and recommended remedies. J Appl Psychol 88(5):879–903
- Rousseeuw PJ (1987) Shilhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65
- Teece DJ (2010) Business models, business strategy and innovation. Long Range Plan 43:172–194 Thomas R (2001) Business value analysis: coping with unruly uncertainty. Strateg Leadersh, 29(2):16–24
- Timmers P (1998) Business models for electronic markets. Electron Markets 8:3-8
- Voelpel S, Leibold M, Tekie E (2004) The wheel of business model to leapfrog competitors. J Change Manage 4(3)
- Weng JY (2004) Mesoscopic business model: nano research of management areas. China Econ Stud 01:34-40
- Yuan L (2007) Reconstruction of business model. China Ind Econ (6):72-81

# Chapter 2 A Comparison of Barrier-Free Access Designs For the Elderly Living in the Community and in Care and Attention Homes in Hong Kong

Ibukun Famakin and Mei-yung Leung

#### 2.1 Introduction

As in other developed countries, Hong Kong is experiencing changes in the age structure of its population. The number of elderly people is rapidly growing, which has been attributed to increasing life expectancy and declining fertility (Hui and Yu 2009). The proportion of the elderly aged 65 years and over is expected to reach about 1.74 million (i.e., 22% of Hong Kong's population) in the next 10 years (Census and Statistics Department 2012). The rate of increase of the elderly population is creating concerns for research and policy makers, due to the high prevalence of disabilities in this age group (Cutler 2001; Spillman 2004).

In order to moderate the effects of medical intervention, reducing the levels of elderly people's dependence has been identified as a means of sustaining the elderly. A recognised method for enhancing elderly independence is the installation of barrier-free access to support their mobility and activities of daily living in the living environment. This study therefore seeks to compare the levels of satisfaction with barrier-free access designs between the elderly living in community buildings and the elderly living in C&A homes in Hong Kong.

# 2.2 Housing Types for the Elderly in Hong Kong

To meet the diverse needs of the elderly in Hong Kong, different housing types provide accommodation designed to sustain their daily life activities: community buildings and C&A homes. Community buildings are defined in this study as housing programmes designed to meet the needs of independent elderly people,

I. Famakin (⋈) · M. Leung Hong Kong, China

e-mail: iofamakin2-c@my.cityu.edu.hk