Scala for Java
Developers

A Practical Primer
Toby Weston

Apress’

Scala for Java Developers

Toby Weston

Apress’

Scala for Java Developers: A Practical Primer

Toby Weston
London, United Kingdom

ISBN-13 (pbk): 978-1-4842-3107-4 ISBN-13 (electronic): 978-1-4842-3108-1
https://doi.org/10.1007/978-1-4842-3108-1

Library of Congress Control Number: 2017963118

Copyright © 2018 by Toby Weston

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Jeff Friesen
Coordinating Editor: Mark Powers
Copy Editor: Francesca Louise White

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484231074. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3108-1

In memory of Félix Javier Garcia Lopez

Table of Contents

About the AULNOKcceiiiiiiiiii s s an s s nnnnnns Xiii
About the Technical REVIEWETcccuniissmmmmnmmmmmmmssssssssssssssssssssssssssssnssesssssssssnssnsssnss XV
AcknowIledgmENtS......cccurermssssssnmssnnmmmssssssssssssnnsssesssssssssnsnnnsssssssssssnsnnnnnsssssssssssnnnnns XVii
o - T Xix
1 HIT 7 1 T (] 1 1
Chapter 1: The Scala LANQUAQEcurmssuessssansssssnssssansssssnsssssnsssssnsssssnsssssnnssssnnssssnnssss 3
As a Functional Programming LANQUAGEccccvvrerverierenensensesessssessesse s ssssessessesssssssessesssssssessesses 3
TRE PAST.....eiceieceie e R e R e e R e e r R 4
THE FULUIE ... e s e b e e p e e e e R e r e e e e nne s 5
Chapter 2: Installing Scalaccccussemnrmsssnsnnmsssssnnnmssssssssemsssssssesssssssessssssssessssannnsnss 7
GEtting STAMEU......cce e ————————————— 7
The SCala INEIPIEter ... e 7
SCAIA SCHIPLS ...viireiirierir s e p e e a e e e ne s 8
o7 - T S SS RS PRRST 9
Chapter 3: Some BasiC SYNtaX......uuseemesnmmmsmmmmsssssssssssmsssssssssssssssssssssssssssssssssnsssssssns 11
Defining Values and VariableS.......ccccveverrrverernnenseresesessessessessssessessesssssssessessesssssssessessessssessesaes 11
Defining FUNCHIONSee ettt a e s s a e s n e s an 12
Operator Overloading and Infix Notation...........c.cccvininninin s 14
COHIECLIONS ...ttt b e e e e e e e R e b e e e ne e 15
TUPIES ettt AR E R e e R R e e e e e e ae e 17
Java INteroperabilityc.cccveeerniesrnene s s 18
o 4T AT] 1< O 19

https://doi.org/10.1007/978-1-4842-3108-1_2#Sec4

TABLE OF CONTENTS

Chapter 4: Scala’s Class Hierarchy.........ccciuunsssemnmmssnsnssnss 21
ANYVAEL ...t e e e e e R e e R e p e e e nne s 22
3 OSSR 23
ANYRET ... e e e nr s 24
5 T0 0]] TSR 25

Chapter 5: SCAlADOCcurriismmnmrssssnnnmmssssnnnsessssnsnsessssnnnsessssnnnsssssnnnnsesssnnnnsssssnnnnssss 29

Chapter 6: Language Features.........cciuuummmmssnmmssnsmsssssmsssssssssnsssssnsssssnsssssnsssssnsssssnnss 33
Working With SOUICE COUE.......cverererierierererirrere e s s s e se s sre e e e s saesae e e e nnesnens 33
Working With MEthods ... s 34
Functional Programming.......c.cccucvinnnssese s s ssssese s ssssessessesssssssessesssssssessesnes 36

Chapter 7: SUMMAIY....cccccrriisennmmmsssnnsmssssssssessssssssessssssssessssnsssessssnnssesssannnsssssnnnnsenss 37

Part ll: Key Syntactical Differences........cccuusseemmmmmsssssssnmmmsssssassnmssssssssssnnnsssns 39

Chapter 8: Classes and Fieldsccccvumummmmmssssnsnmmssssssnmssssssssmssssssnnssssssnsnssssssnnnsssss 43
Creating CIASSESc.vvrrrrererrrseressesessesessssesessessssssessssesessssessesesss e sessesssssssssasssessssssssnnssansssssssnsenens 43
Derived Setters and GELLEIrS.......cccvrvrinir s s 44
Redefining Setters and GBSccv v e sr e e naennes 48
£ 1§14 7R 52

Chapter 9: Classes and ObJECScccurrrsssmnnrrsssnnnsmssssnnssessssnsssssssssssssssssnnnssssssnnnsenss 53
Classes Without Constructor ArguUmENTS.........ccecreerricnire s 53
Additional CONSIIUCTIOIS.......ccieviiirere s s e e s p e e nne 55

UsSing Default ValUES.........ccvricsir it 57
T4 101 Lo (0TI 0] =T SRR 58
ComMPANIoN ODJECTScverierrrerisese e e r s n e 61

Other Uses for Companion ODJECTS.........coveeirenmrnnernesre e 63

Chapter 10: Classes and FUNCLIONScccciuunismmnmmsssssnnmmssssssnmssssssnsssssssssssssssnnnnsnnss 67
ANONYMOUS FUNCLIONS.......ciceierieitriere st se s se s s s s e ae e se s sae e e e naennens 67
ANONYMOUS ClASSES ...veveuersersersesersersersessssersessessesessessessesssssssessesssssssessessessssessessesssssssessessessnsessens 68

TABLE OF CONTENTS

First-Class FUNCLIONS.........ccciiirinc s 69
Passing in FUNCHIONScoceviiiinrinrir e s 70
Returning FUNCHIONScoouiiirie e s 71
STOFING FUNCHIONS ...ccueiviiceriere s ste e s e s se s e sae e se s e s s s e e s saesaess s e saesaesaesssnenaesaes 72

L1 0 o103 TS 74

FUNCLIONS VS. MELNOAS ... 74

Lambdas VS. CIOSUIEScccoerererrenerenesessesessesesessesessese s s sessssessssessssssessssessssessssssssssssssssesssssssnns 75

Chapter 11: INheritance.........cccunnnsssmmnnmnmmnmmmssssssssnreessssss s 79

SUDLYPE INNEIILANCEeeveecrecer e 79

ANONYMOUS ClASSESveveuerueruersesersersersessssersessessesessessessessssessessessssessessessessssessessessssessessessessssessens 82

INEEITACES/TIAILS ...c.vvvieccce e 84
MethodS 0N TrAILS.......cccreieiree s 87
Converting Anonymous Classes 10 LamMBAas...........cuovverernrenserserensssessessessesessessesessssessessens 94
Concrete Fields 0N TrailS ... 95
Abstract Fields on TrailScocvriimrnnns e 96

ADSTFACT CIASSESveeecrererrsseseesesesssee e e sa s sespsnsn e e 97

POIYMOIPRISIN ... e e e e e p e e nn 98
Traits VS. ADSIIACE ClASSES......corerereerereeererese s se s nnenens 99

Deciding Between the OplioNS.........coccverrenrene e 103

Chapter 12: Control Structures........ccciumsemmmmmsssnnnmmssssssnmmssssssnmssssssnnesssssssesssssnnns 105

{0 o 11T 1 OSSOSO 105
IfS @NA TEINANIES ...cveveerreeriresere e e b e nnnne e nr s 105
SWILCh STAtEMENTScecceceeceerr e ————— 108

Looping Structures: do, While and fOr.........ccevvvrvnenninrne s s s ssessessssessesnens 113

Breaking Control Flow (break and CONtINUE).......c.ccvverrererrereresessersersessesessessessssessessessessssesensens 116

(=]] 0] S 117

vii

TABLE OF CONTENTS

Chapter 13: GENETICS .uuvueerrrssssnnrrsssssnnnssssssnssesssssnnssssssnnnsesssssnnnessssnnnssssssnnnnssssnnnnss 121
Parametric POIYMOrPhiSM.........ccccviiiiiircnerr s s s 121
(T T T o O 122
MELNOA GENETICSvveeeeceeresrseeese s se s sesp s ne s 123
STACK EXAMPIB......eecerereevirserere st senrere e ses e se s sae e s e s s sae e saesaesae e s e saesaesassessesaesasssssensenaens 123
BOUNAEA CIASSES.......cceueereecrererereesee e se s se s e s e ne e e s 126
Upper Bounds (<U eXIendS T>) ..vccvcircnniinine s s sss e s ssessssessesneens 127
Lower Bounds (<U SUPEE T>) .oueiiiicrcresissirsese s se s sssse s ssesssssssessesssssssesneens 128
Wildcard Bounds (<? extends T, <? SUPEI T>) .ccvcvvrienninsnne s ssssesesesssssssessesnes 134
MURPIE BOUNGS.....cci it s s sa e 136

L1 LT 1SR 137
117 LT T 138
011 T T 139
CONTAVANIANCEceeeeereecreeeeeree e sesse e e ses e s e sre e s e s e sse e e s e sae e sse e se s e e snennnsnns 139
VarianCe SUMMATYcccuciieiininiinie s se s e s s s s s st b e e 139
Part lll: Beyond Java to Scala..........ccccemrmmsnnmmnmmnsssssssnnmmsssssssssnesssssssssssnsnns 141
Chapter 14: Faking Function CallS.......cc.ccccsmmmmssnnmnmmsssssnnmmssssssnmsssssssssssssssssssssssnnnss 143
The apply MEtOdooei e e 143
The update MEthod...........cci e ————— 145
Multiple update Methods.........cccuveiiririe e 146
Multiple Arguments 10 UPAALEcccvvriererrrrrere s s enes 147

£ 1134 7 148
Chapter 15: Faking Language Constructs.......c.cccuusmmmsssmmmsssnsmssssssssssnsssssssssssnssssas 149
Curly Braces (and FUNCLiON LItEralS)ccoeerreererererreserenesesese s sessese s sessesenns 149
Higher-0rder FUNCHIONS ... s 150
Higher-Order Functions with Curly Bracesc.cccuvvvnininnnnnnnenssissessess s sessesnes 152
Call-DY-NAME........coocririririr e s p e e R e 152
[T o T 154
Scala Support for Curried FUNCLIONS ... e s 157
SUMIMAIY....eitierreesese s e e e e e s R e R e ne e R e e R e e e e e nRe e R e e ne e e e nns 158

viil

TABLE OF CONTENTS

Chapter 16: Pattern Matchingccciunseemmmmssssnnnmmsssssnmnsssssssmnssssssessssssssessssnnnns 159
£330 o 159

L L (-] 3 160
LT L U TSR 161
CONSTrUCTOr MAICNES.........cceereeiree e 162
7L 11T OO 165
Deconstruction Matches and UNAPPIY......cccererrererrerierenerrersessessssessesessssessessessessssessessessssessessens 166
Why Write Your OWN EXIFACIOIS? ...cceeuevevieriereresersese s sss s sessessessssessessessessssessessesssssssessesas 168

C T Tl 00T o 1 (0] PR 169
Chapter 17: Map and FIatMapcccccrmnsnemmmmmsssnnmmmssssssmssssssssessssssssessssssssssssssnnnss 171
MapPINg FUNCHIONSccveiiiisircne e s e s se s s et 171
LS I (0] (= T T 172
P21 o OO OSSPSR 173
NoOt Just fOr COIIECLIONS........cccvererrererese s 176
Chapter 18: MONAdSccccssvemmmsesmssnsssssmsssmssnssssssssssssnssssnssssssssnssssssssnssssnsnsnnsnsans 177
BaSiC DEfINILION........ciicccrirerseci s 177
[0 03P 177
The MapP FUNCLION........c.ocieic e 178
070110 10 O 181
(001U B T=] (0 - O 182
Monadically Processing OPLioncccvvevieverinreriesssersere s sessessessessssessessessssessessesasssssessesaes 182

The Option.flatMap FUNCTION ... 183
More Formal Definitionccorenerinnrinrene e 184
SUMIMANY ..ttt e e e e s R e e e e e R e e e e e e e Re e R e e e e e Re e Re e R e e e e e Reeb e e e e e aenris 186
Chapter 19: For COmprehensionsccccccusreressssssssssssssssssssssssssssssnssssssssssssssssnnssnnss 187
Where We Left Offccveeerirernsesesssessse s e s ss e sessssssssssssssssesssssnssnens 187
USING NUIL CRECKScueeveerieerincsesese e ss s s e s 188
Using flatMap With Option.........ccccvirivninin e s eaens 189

ix

TABLE OF CONTENTS

How For ComprenenSions WOTK.........ccuveerrerereenensesessessssesessessssessessesssssssessessessssessessesssssssessens 191
Finally, Using a For Comprehension for Shipping LabelSccccvvernennnnrnsennesennesesesesenns 194
SUMIMANY ..ttt e e s b e e e e R e e e e Re e R e e e e e Re e Re R e e e e e Re e R e e e e e Renrs 195
Part IV: Adopting Scala in Java Teamsuceeermmmsssssssnnmmssssssssnnesssssssssssnsssns 197
Chapter 20: Adopting Scala........ccccccmmnssnmmmmmsssnnnmmsssssnmmssssnmmssssnssssam——— 199
AVOId NOT ENOUGN ...ttt e nr e np s 199
Dot DO TOO MUCKH ...t s 199
Purely FUNCHONAL FTW? ..o rere s sese e sse s sesse s sessessesaessssessessesaessssesaesnssassensennens 200
Chapter 21: What to EXpectccuscemrrmssnnnnmmssssnnnmssnnnnss 201
THE LEArniNg CUIVE......c.ccceueerirerereserieests e sesse e s e ses e sesse e e e stssesessesesse e ssssesessssesssnessssessssenens 201
The Learning CONTINUUM..........cccoiiierecrrcreree e se s se s sessssennnnens 203
€T OSSOSO 204
Chapler 22: TiPS. . uturrrmissssssnnsnnnrrsssssssssssssnsseesssssssssssssnnssessssssssssnnnnnseesssssssnnnnnnnnness 205
BB BN ... ciiriecircrc sttt e e e e R e e Rt e e nae e 205
GEL GUIANCE......eruereecieirer et b e e s b b e e e e b e e e e e aennan 206
HAVE @ PIAN ... 206
Chapter 23: Convert Your COdebaseccuuurrmmmsssssnnssnnnmsssssssssssnssnssssssssssssnnssnssnnnss 209
Chapter 24: Manage Your Codebase.........cccurmsssmmmmmssssnnnnsssssnnnnssssssnnsssssssnnssssssnnnnss 211
0] 11T 0] 211
WRAL 10 AVOIM ..o e e e e e e s 212
Other CRAIIENGES.......cccvererie s b s s b e e s b e e e nnn 213
Appendix A: Code LiStiNGS ...cccremmemmmmrmmmsssssssmssnmmmssssssssssssssnsssssssssssssssssssssssssssssnnnnns 215
INNEIILANCEve i s e e s b e e bt e e ae 215
Subtype INheritance iN JAVAcovcvverereserrssree e 215
AnONYMOUS ClASSES IN JAVAcccrvrererreerresesesesessesesse e sessesesss s s ssssssessssssssssssssesenssssssenens 217
Subtype INheritance in SCal@...........cooverreernerrres s 218

https://doi.org/10.1007/978-1-4842-3108-1_24
https://doi.org/10.1007/978-1-4842-3108-1_24
https://doi.org/10.1007/978-1-4842-3108-1_24#Sec1
https://doi.org/10.1007/978-1-4842-3108-1_24#Sec2
https://doi.org/10.1007/978-1-4842-3108-1_24#Sec3

TABLE OF CONTENTS

ANONYMOUS ClasSes iN SCAIAccvveviererrrrirsereresss s e s s ssssesse e ssessssessessesasssssensessens 219

C L] T 1 PR 219
Lower BOUNS QN JAVAcovvierieriecsescese e 219
Multiple BOUNAS iN JAVAcccceiereriiriinsie s s s s e s s s e s e e s saesesssesnesnessenns 223
Lower BoUNdS iN SCAIA..........covururuieererirrssesssese s sesss s sssesssssssns 224
Multiple Bounds in SCaAIA.........ccceerererreriererensereressssessessessesessessessessssessessessessssessesssssssessesses 226
Pattern MatChing ... s e 227
ConSEruCtOr MAICNES ..o 227
Deconstruction Matches and Unapply.........cccovriinnnincsnsnsc s sesseenes 229

VD e e e Re st e e e nae e 229
Mapping FUNCHIONScoirre e s e e 229

o L1 o SRS 231
Appendix B: Syntax Cheat Sheet..........cccccunemmmnnnmmnmmmmssmnmmssssnmmssssmmssssmmm——. 233
INO@X . uuerisssnnnsssnnnsssnnssssanssssanssssanssssannsssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 241

xi

About the Author

Toby Weston is an independent software developer based in London. He specializes in
Java and Scala development, working in agile environments. He’s a keen blogger and
writer, having written for JAXenter and authored the books Essential Acceptance Testing
(Leanpub) and Learning Java Lambdas (Packt).

xiii

About the Technical Reviewer

Jeff Friesen is a freelance teacher and software developer with an emphasis on Java.
In addition to authoring Java 1/0, NIO and NIO.2 (Apress) and Java Threads and the
Concurrency Utilities (Apress), Jeff has written numerous articles on Java and other
technologies (such as Android) for JavaWorld (JavaWor1d. com), informIT (informIT.com),
Java.net, SitePoint (SitePoint.com), and other websites. Jeff can be contacted via his
website at JavaJeff.ca. or via his LinkedIn profile (www.linkedin.com/in/javajeff).

http://www.linkedin.com/in/javajeff

Acknowledgments

Thanks go out to James Maggs, Alex Luker, Rhys Keepence and Xuemin Guan for their
feedback on early drafts and Lee Benfield for building the excellent CFR decompiler and
sharing it with the community.

Additionally, thank you to Amy Brown for providing an early copyedit of this book.

Xvii

Preface

Audience

This book is for Java developers looking to transition to programming in Scala.

The Structure of the Book

The book is split into four parts: a tour of Scala, a comparison between Java and Scala,
a closer look at Scala-specific features and functional programming idioms, and finally a
discussion about adopting Scala into existing Java teams.

In Part I, we're going to take a high-level tour of Scala. You'll get a feel for the language’s
constructs and how Scala is similar in a lot of ways to Java, yet very different in others. We’ll
take a look at installing Scala and using the interactive interpreter and we’ll go through
some basic syntax examples.

Part II talks about key differences between Java and Scala. We'll look at what’s missing
in Scala compared to Java, vice versa, and how concepts translate from one language to
another.

Then in Part III, we’ll talk about some of the language features that Scala offers that aren’t
found in Java. This part also talks a little about functional programming idioms.

Finally, we’ll talk about adopting Scala into legacy Java projects and teams. It’s not always
an easy transition, so we’ll look at why you would want to, and some of the challenges you
might face.

Xix

PREFACE

Compiling Code Fragments

Later in the book, I introduce the Scala REPL: an interactive tool for working with Scala
and the Scala version of Java’s JShell. You'll see REPL sessions prefixed with scala>.

When you do so, you can expect to be able to type in the code following scala> in the
REPL verbatim, hit enter, and see the results. An example follows.

// an example REPL session
scala> val x = 6 * 9
x: Int = 54

If you don’t see the scala> prefix, assume the fragment may depend on previous code
examples. I've tried to introduce these logically, balancing the need to show complete
listings with trying to avoid pages and pages of dry code listings.

If things don’t make sense, always refer to the full source code. In short, you may find it
useful to consult the full source while you read.

Larger Fragments in the REPL

If you'd like to transpose some of the larger code fragments into the REPL, you may notice
compiler errors on hitting enter. The REPL is geared up to evaluate a line at a time. Pasting
larger fragments or typing in long examples requires you to be in paste mode.

Typing : paste enters paste mode, allowing you to type multiple lines. Pressing Ctrl + D exits
paste mode and compiles the code.

scala> :paste
// Entering paste mode (ctrl-D to finish)

val x = 4
val y = 34
X+y*2

// press Ctrl + D
resi: Int = 72

PREFACE

Infrequently, you may notice an ellipsis (...) or triple question marks (???) in code
fragments. When you see this, it indicates that the fragment is incomplete and will usually
be followed by additional code to fill in the blanks. It probably won’t compile. It's used
when I've felt that additional code would be uninteresting, distracting, or when I'm
building up examples.

Source Code

The source code for this book is available at GitHub: https://github.com/tobyweston/
learn-scala-java-devs. You can clone the repository or download an archive directly
from the site.

The source code is licensed under Apache 2.0 open source license.

Source Code Appendix

The book often includes partial code fragments in an attempt to avoid reams of distracting
“scaffolding” code. Code may refer to previous fragments and this may not be immediately
obvious. Try to read the code as if each example builds on what'’s gone before.

If this style isn’t for you, I've also included a code listing appendix. This offers complete
listings for the more complex code, in case you want to see all the code in one place. It’s
not there to pad out the book. Honest.

xxi

https://github.com/tobyweston/learn-scala-java-devs
https://github.com/tobyweston/learn-scala-java-devs

PART |

Scala Tour

Welcome to Scala for Java Developers: A Practical Primer. This book will help you transition
from programming in Java to programming in Scala. It’s designed to help Java developers
get started with Scala without necessarily adopting all of the more advanced functional

programming idioms.

Scala is both an object-oriented language and a functional language and, although I do
talk about some of the advantages of functional programming, this book is more about
being productive with imperative Scala than getting to grips with functional programming.
If you're already familiar with Scala but are looking to make the leap to pure functional
programming, this probably isn’t the book for you. Check out the excellent Functional
Programming in Scala' by Paul Chiusano and Ranar Bjarnason instead.

The book often compares “like-for-like” between Java and Scala. So, if you're familiar with
doing something a particular way in Java, I'll show how you might do the same thing in
Scala. Along the way, I'll introduce the Scala language syntax.

'http://amzn.to/1Aegnwj

http://amzn.to/1Aegnwj

CHAPTER 1

The Scala Language

Scala is both a functional programming language and an object-oriented programming
language. As a Java programmer, you'll be comfortable with the object-oriented definition:
Scala has classes, objects, inheritance, composition, polymorphism—all the things you're
used to in Java.

In fact, Scala goes somewhat further than Java. There are no “non”-objects. Everything is
an object, so there are no primitive types like int and no static methods or fields. Functions
are objects and even values are objects.

Scala can be accurately described as a functional programming language because it allows
and promotes the use of techniques important in functional programming. It provides
language level features for things like immutability and programming functions without
side effects.

Traditional functional programming languages like Lisp or Haskel only allow you
to program using these techniques. These are often referred to as pure functional
programming languages. Scala is not pure in this sense; it’s a hybrid. For example, you can
still work with mutable data, leverage the language to work with immutable data, or do
both. This is great for flexibility and easy adoption but not too great for consistency and
uniformity of design.

As a Functional Programming Language

In general, functional programming languages support:
1. First-class and higher-order functions.
2. Anonymous functions (lambdas).

3. Pure functions and immutable data.

© Toby Weston 2018
T. Weston, Scala for Java Developers, https://doi.org/10.1007/978-1-4842-3108-1_1

CHAPTER 1 THE SCALA LANGUAGE

It can be argued that Java supports these characteristics and certainly Java has been trying
to provide better support. However, any movement in this direction has felt like an after
thought and has generally resulted in verbose syntax or tension with existing idioms and
language APIs.

It is unlikely that people will ever describe Java as a functional programming language
despite it's advancements. Partly because it’s clunky to use in this style and partly because
of it’s long history as an object-oriented language.

Scala on the other hand was designed as a functional programming language from day
one. It has better language constructs and library support so it feels more natural when
coding in a functional style. For example, it has keywords to define immutable values and
the library collection classes are all immutable by default.

The Past

Scalastartedlifein 2001 as aresearch projectat EPFLin Switzerland. Itwasreleased publicly
in 20042 after an internal release in 2003. The project was headed by Martin Odersky,
who'd previously worked on Java generics and the Java compiler for Sun Microsystems.

It’s quite rare for an academic language to cross over into industry, but Odersky and others
launched Typesafe Inc. (later renamed Lightbend Inc.), a commercial enterprise built
around Scala. Since then, Scala has moved firmly into the mainstream as a development
language.

Scala offers a more concise syntax than Java but runs on the JVM. Running on the JVM
should (in theory) mean an easy migration to production environments; if you already
have the Oracle JVM installed in your production environment, it makes no difference if
the bytecode was generated from the Java or Scala compiler.

It also means that Scala has Java interoperability built in, which in turn means that Scala
can use any Java library. One of Java’s strengths over its competitors was always the huge
number of open source libraries and tools available. These are pretty much all available
to Scala too. The Scala community has that same open source mentality, and so there’s a
growing number of excellent Scala libraries out there.

See Odersky, “A Brief History of Scala” on Artima and wikipedia for more background.

4

CHAPTER 1 THE SCALA LANGUAGE

The Future

Scala has definitely moved into the mainstream as a popular language. It has been
adopted by lots of big companies including Twitter, eBay, Yahoo, HSBC, UBS, and Morgan
Stanley, and it’s unlikely to fall out of favour anytime soon. If you're nervous about using it
in production, don’t be; it’s backed by an international organization and regularly scores
well in popularity indexes.

The tooling is still behind Java though. Powerful IDEs like Intelli]’s IDEA and Eclipse make
refactoring Java code straightforward but aren’t quite there yet for Scala. The same is true
of compile times: Scala is a lot slower to compile than Java. These things will improve over
time and, on balance, they're not the biggest hindrances I encounter when developing.

Scala’s future is tied to the future of the JVM and the JVM is still going strong. Various
other functional languages are emerging however; Kotlin and Clojure in particular are
interesting and may compete. If you're not interested in JVM based languages but just the
benefits of functional programming, Haskel and ELM are becoming more widely adopted

in industry.

CHAPTER 2

Installing Scala

Getting Started

There are a couple of ways to get started with Scala.
1. Run Scala interactively with the interpreter.
2. Run shorter programs as shell scripts.

3. Compile programs with the scalac compiler.

The Scala Interpreter

Before working with an IDE, it’s probably worth getting familiar with the Scala interpreter,
or REPL.

Download the latest Scala binaries (from http://scala-lang.org/downloads) and
extract the archive. Assuming you have Java installed, you can start using the interpreter
from a command prompt or terminal window straight away. To start up the interpreter,
navigate to the exploded folder and type®

bin/scala

You'll be faced with the Scala prompt.

scala> _

You can type commands followed by enter, and the interpreter will evaluate the expression
and print the result. It reads, evaluates, and prints in a loop so it’s known as a REPL.

*If you don’t want to change into the install folder to run the REPL, set the bin folder on your path.

7
© Toby Weston 2018

T. Weston, Scala for Java Developers, https://doi.org/10.1007/978-1-4842-3108-1_2

http://scala-lang.org/downloads

CHAPTER 2 INSTALLING SCALA
If you type 42*4 and hit enter, the REPL evaluates the input and displays the result.

scala> 42*4
resO: Int = 168

In this case, the result is assigned to a variable called res0. You can go on to use this, for
example, to get half of reso0.

scala> reso / 2
resl: Int = 84

The new result is assigned to res1.

Notice the REPL also displays the type of the result: res0 and res1 are both integers (Int).
Scala has inferred the types based on the values.

If you add res1 to the end of a string, no problem; the new result object is a string.

scala> "Hello Prisoner " + resi

res2: String = Hello Prisoner 84

To quit the REPL, type
:quit

The REPL is a really useful tool for experimenting with Scala without having to go to the
effort of creating the usual project files. It’s so useful that the community provided a Java
REPL! as far back as 2013. Interestingly, Oracle followed suit and introduced the official
Java REPL called JShell in Java 9 in 2017.

Scala Scripts

The creators of Scala originally tried to promote the use of Scala from Unix shell scripts. As
competition to Perl, Groovy, or bash scripts on Unix environments it didn’t really take off,
but if you want to you can create a shell script to wrap Scala.

1 #!/bin/sh
2 exec scala "$0" "$@"

*http://www.javarepl.com/
8

http://www.javarepl.com/

CHAPTER 2 INSTALLING SCALA

#
object HelloWorld {
def main(args: Array[String]) {
println("Hello, " + args.tolist)
}

}
HelloWorld.main(args)

O 00N O U1 B~ W

Don’t worry about the syntax or what the script does (although I'm sure you've got a
pretty good idea already). The important thing to note is that some Scala code has been
embedded in a shell script and that the last line is the command to run.

You'd save it as a . sh file—for example, hello.sh—and execute it like this:

./hello.sh Woxld!

The exec command on line 2 spawns a process to call scala with arguments; the first is
the script filename itself (hello.sh) and the second is the arguments to pass to the script.
The whole thing is equivalent to running Scala like this, passing in a shell script as an

argument:

scala hello.sh World!

scalac

If you'd prefer, you can compile . scala files using the Scala compiler.

The scalac compiler works just like javac. It produces Java bytecode that can be executed
directly on the JVM. You run the generated bytecode with the scala command. Just like
Java though, it’s unlikely you’ll want to build your applications from the command line.

All the major IDEs support Scala projects, so you're more likely to continue using your
favorite IDE. We're not going to go into the details of how to set up a Scala project in each
of the major IDEs; if you're familiar with creating Java projects in your IDE, the process
will be very similar.

CHAPTER 2

INSTALLING SCALA

For reference though, here are a few starting points.

10

You can create bootstrap projects with Maven and the maven-scala-
plugin.

You can create a new Scala project directly within Intelli] IDEA once
you've installed the scala plugin (available in the JetBrains repository).

Similarly, you can create a new Scala project directly within Eclipse
once you have the Scala IDE plugin. Typesafe created this and it’s
available from the usual update sites. You can also download a bundle
directly from the scala-lang or scala-ide.org sites.

You can use SBT and create a build file to compile and run your project.
SBT stands for Simple Build Tool and it’s akin to Ant or Maven, but for
the Scala world.

SBT also has plugins for Eclipse and IDEA, so you can use it directly
from within the IDE to create and manage the IDE project files.

