Sustainable Production, Life Cycle Engineering and Management Series Editors: Christoph Herrmann, Sami Kara

Arno Kwade Jan Diekmann *Editors*

Recycling of Lithium-Ion Batteries

The LithoRec Way

Sustainable Production, Life Cycle Engineering and Management

Series editors

Christoph Herrmann, Braunschweig, Germany Sami Kara, Sydney, Australia Modern production enables a high standard of living worldwide through products and services. Global responsibility requires a comprehensive integration of sustainable development fostered by new paradigms, innovative technologies, methods and tools as well as business models. Minimizing material and energy usage, adapting material and energy flows to better fit natural process capacities, and changing consumption behaviour are important aspects of future production. A life cycle perspective and an integrated economic, ecological and social evaluation are essential requirements in management and engineering. This series will focus on the issues and latest developments towards sustainability in production based on life cycle thinking.

More information about this series at http://www.springer.com/series/10615

Arno Kwade · Jan Diekmann Editors

Recycling of Lithium-Ion Batteries

The LithoRec Way

Editors Arno Kwade Institute of Particle Technology, Battery LabFactory Braunschweig Technische Universität Braunschweig Braunschweig Germany

Jan Diekmann Institute of Particle Technology, Battery LabFactory Braunschweig Technische Universität Braunschweig Braunschweig Germany

ISSN 2194-0541ISSN 2194-055X (electronic)Sustainable Production, Life Cycle Engineering and ManagementISBN 978-3-319-70571-2ISBN 978-3-319-70572-9 (eBook)https://doi.org/10.1007/978-3-319-70572-9

Library of Congress Control Number: 2017958613

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Series Editors' Foreword

Private transportation is going through a dramatic technological transformation. Increased uptake of electric mobility is expected to decrease the environmental impacts caused by the tailpipe emissions from internal combustion vehicles significantly. In addition, if powered with low carbon intensity energy sources, electric vehicles might contribute to reducing the amount of greenhouse gas emissions during their life cycle, therefore, diminishing their contribution to climate change. This technology, however, involves the development of new automotive components, which imply the emergence of new material supply chains. In this regard, the environmental impact of road transportation has started to transform. Its environmental hotspot increasingly shifts to the manufacturing phase of the vehicle and its new components. The traction battery required for the vehicle's operation is one of the key components. Current commercial traction batteries are expensive, heavy in weight, and linked with various potential environmental impacts. They contain high amounts of key engineering metals such as copper, aluminum, nickel, and cobalt. While the extraction processes of these materials cause numerous local environmental impacts linked to mine tailing, their refining processes usually demand large amounts of energy. Furthermore, some of the materials contained in current lithium-ion traction batteries might face future supply risks due to the geopolitical instability and potential market constraints caused by resources scarcity and the low technical feasibility of the extraction processes.

In this context, recycling is a very attractive solution, as it is promoted to return many of these materials back to their supply chains while preventing further environmental and social implications. However, recycling is not without environmental impact due to energy and resources use during the recovery processes. Therefore, recycling processes for traction batteries should be designed with the objective of compensating their life cycle environmental impacts. This means recovering as much valuable and high-quality material as possible while optimizing the consumption of energy, time, and resources during the recycling processe.

The research within the LithoRec project aimed at developing recycling processes, which are able to recover much of the materials used in a commercial traction battery system while achieving a significant reduction of the energy consumption compared to the current commercial pyrometallurgical processes. This book is the result of more than 5 years of research. It gives a very detailed description of the processes developed within the LithoRec project. The authors provide the reader with highly valuable insights into understanding not merely the theoretical aspects of recycling processes for traction batteries, but also present analyses of all relevant technical and economic challenges emerging from its implementation. Therefore, this book makes a significant contribution to our understanding of many interactions among the technical, economic, and environmental dimensions surrounding the complex process of a battery recycling process.

> Christoph Herrmann Technische Universität Braunschweig, Braunschweig, Germany

Sami Kara The University of New South Wales, Sydney Australia

Preface

Lithium-ion batteries are increasingly applied in electrical vehicles, stationary energy storage systems, and other consumer products like power tools. The increasing usage of lithium-ion batteries requires a rise in their production capacity and a minimization of their ecological impact, e.g., carbon dioxide footprint. Moreover, the access to the raw materials has to be ensured and the material costs have to be kept down, although production rates will rise dramatically in the next years. In order to fulfill these tasks and goals, the spent lithium-ion battery systems, especially those of the electric vehicles, have to be recycled and fed back into the material cycle to close the loop. Today, the first recycling technologies have been developed and are used for the recycling of lithium-ion batteries. The most common way is the extraction of the most valuable components by disassembling followed by pyro-metallurgical processes in a smelting furnace. This process recovers components of high costs like cobalt, nickel, and copper, enabling synthesis of new battery materials. However, several other materials including lithium are transferred into slag and are therefore lost for further battery use.

In order to overcome these problems, a novel recycling process was developed in the two LithoRec projects financially supported by the German Ministry for Environment, Nature Conservation, Building, and Nuclear Safety. This book presents the results of the LithoRec II project. The LithoRec way incorporates the battery system transport and the establishment of safety strategies for further battery system handling, dismantling of the battery system, safe crushing of battery cells, and separation of the different battery components, including electrolyte and active materials. To gain new raw materials for the synthesis of active material, the individual compounds were extracted from the coating materials and further separated by hydro-metallurgical processes. Special attention was paid to a safe process design, the maximization of the recycling rate, and the ecological credits, as well as the minimization of recycling costs. The knowledge was finally consolidated in a pilot plant at the Technische Universität Braunschweig, where 1.4 tons of battery systems were recycled. The different book chapters show that a sophisticated technological strategy for the recycling of lithium-ion batteries exists already today, which will enable a closed loop for battery materials in the near future.

As the scientific speaker of the LithoRec projects, I would like to thank all involved partners and collaborators for the intensive and highly motivated work within the last years, and for the preparation of the different book chapters showing the state of the art in recycling of lithium-ion batteries. In place of the collaborators my special thanks go to Christian Hanisch, Jan Diekmann, and Martin Steinbild for their continuous commitment. Our special thank goes to the German Ministry for Environment, Nature Conservation, Building, and Nuclear Safety for the financial support and to the project executing organization VDI/VDE Innovation + Technik GmbH, especially to Dr. Randolf Schließer for the intensive supervision of the project.

Braunschweig, Germany

Arno Kwade Scientific speaker of the LithoRec projects

Contents

1	Background	1
2	The LithoRec Process	33
3	Potential Dangers During the Handling of Lithium-IonBatteriesJan Diekmann, Martin Grützke, Thomas Loellhoeffel,Matthias Petermann, Sergej Rothermel, Martin Winter,Sascha Nowak and Arno Kwade	39
4	Overdischarging Lithium-Ion Batteries	53
5	Disassembly Planning and Assessment of Automation Potentials for Lithium-Ion Batteries Felipe Cerdas, Roman Gerbers, Stefan Andrew, Jan Schmitt, Franz Dietrich, Sebastian Thiede, Klaus Dröder and Christoph Herrmann	83
6	Safe, Flexible and Productive Human-Robot-Collaboration forDisassembly of Lithium-Ion BatteriesRoman Gerbers, Kathrin Wegener, Franz Dietrich and Klaus Dröder	99
7	Crushing of Battery Modules and Cells Jan Diekmann, Steffen Sander, Guido Sellin, Matthias Petermann and Arno Kwade	127
8	Separation of the Electrolyte—Thermal Drying Friederike Stehmann, Christian Bradtmöller and Stephan Scholl	139

Contents

9	Separation of the Electrolyte—Solvent Extraction Paul Haas, Stefan Pfeifer, Jannes Müller, Christian Bradtmöller and Stephan Scholl	155
10	Electrolyte Extraction—Sub and Supercritical CO₂ Sergej Rothermel, Martin Grützke, Xaver Mönnighoff, Martin Winter and Sascha Nowak	177
11	Off Gas Cleaning by Adsorption Friederike Stehmann and Stephan Scholl	187
12	Material Separation Jan Diekmann, Steffen Sander, Guido Sellin and Arno Kwade	207
13	Hydrometallurgical Processing and Thermal Treatment of ActiveMaterialsSergej Rothermel, Steffen Krüger, Martin Winter and Sascha Nowak	219
14	Realization in a Demonstration Plant	247
15	Economic Assessment of the LithoRec Process Christian Thies, Karsten Kieckhäfer, Claas Hoyer and Thomas S. Spengler	253
16	Environmental Aspects of the Recycling of Lithium-Ion Traction Batteries Felipe Cerdas, Stefan Andrew, Sebastian Thiede and Christoph Herrmann	267

Abbreviations

μCT	Micro-computer tomography
3p4s	3parallel4series
А	Adsorptive
AC	Activated carbon
ACN	Acetonitrile
ADP	Abiotic depletion potential
AP	Acidification potential
ARS	Axial rotary shear
BET	Brunauer-Emmett-Teller theory
BMU	Battery management unit
BT	Breakthrough
CC	Constant current
CCD	Charge-coupled device
CE	Counter electrode
CED	Cumulative energy demand
CHB	Cyclo hexyl benzene
CID	Current interrupt device
CMC	Carboxymethyl cellulose
СР	Constant power
CR	Constant resistance
CV	Constant voltage
DC	Direct current
DEC	Diethyl carbonate
DEDOHC	Diethyl-2,5-dioxahexane dicarboxylate
DEFP	Diethyl fluorophosphate
DMC	Dimethyl carbonate
DMDOHC	Dimethyl-2,5-dioxahexane dicarboxylate
DSC	Differential scanning calorimetry
EC	Ethylene carbonate
EDX	Energy dispersive X-ray analysis
ELV	End-of-life vehicle

EMC	Ethyl methyl carbonate
EMDOHC	Ethylmethyl-2,5-dioxahexane dicarboxylate
EMFP	Ethylmethyl fluorophosphate
EOL	End-of-life
EP	Eutrophication potential
Epm	Exergy primary material
E _{sm}	Exergy secondary material
EV	Electric vehicles
FTIR	Fourier transform infrared spectroscopy
GC	Gas chromatography
GC-MS	Gas chromatography-mass spectrometry
GHG	Greenhouse gas
GWP	Global warming potential
HEV	Hybrid electric vehicle
HHPCO ₂	Helium head pressurized carbon dioxide
HSAL	High surface area lithium
HTP	Human toxicity potential
HV	High voltage
IAST	Ideal adsorbed solution theory
IC	Ionic chromatography
IC/ESI-MS	Ion chromatography–electrospray ionization-mass spectrometry
ICP-MS	Inductively coupled plasma mass spectrometry
ICP-OES	Inductively coupled plasma optical emission spectrometry
IDLH	Immediately dangerous to life and health
LCA	Life cycle assessment
LCO	Lithium cobalt oxide LiCoO ₂
LEL	Lower explosion limit
LFP	Lithium iron phosphate
LIB	Lithium-ion battery
LOD	Limit of detection
LOQ	Limit of quantification
MMU	Module management unit
MOSFET	Metal oxide semiconductor field effect transistor
NA	Necessity to automate the corresponding disassembly operation
NCA	Lithium nickel aluminum oxide
NCM	Lithium nickel cobalt manganese oxide
NCM 111	Lithium nickel manganese oxide LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂
NCM 532	Lithium nickel manganese oxide LiNi _{0.5} Co _{0.3} Mn _{0.2} O ₂
NCM 622	Lithium nickel manganese oxide LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂
NMP	N methyl pyrrolidone
NPV	Net present value
OEM	Original equipment manufacturer
PA	Polyamide
PC	Propylene carbonate
PHEV	Plug-in hybrid electric vehicle

PLC	Programmable logic control
PMFP	Particle matter formation potential
POCP	Photochemical ozone creation potential
PTC	Positive temperature coefficient
PTFE	Polytetrafluoroethylene
PVDF	Polyvinylidene fluoride
RE	Reference electrode
rpm	Rounds per minute
RRS	Radial rotary shear
scCO ₂	Supercritical carbon dioxide
SEI	Solid electrolyte interface
SEM	Scanning electron microscopy
SFE	Supercritical fluid extraction
SOC	State of charge
SOH	State of health
subCO ₂	Subcritical carbon dioxide
TAA	Technical ability of a disassembly process to be automated
TAP	Terrestrial eutrophication potential
TGA	Thermogravimetric analysis
UEL	Upper explosion limit
WE	Working electrode
WEEE	Waste electrical and electronic equipment
XRD	X-ray powder diffraction

Symbols

- V Volume (mL)
- X Carbon loading (mmol/g)
- m Mass (g)
- Y Gas loading (g/L)
- M Molar mass (g/mol)
- ρ Density (kg/m³)
- b Langmuir parameter (L/mmol)
- b' Langmuir parameter (–)
- t Tóth Parameter (-)
- φ Saturation (–)
- π Spreading pressure (–)
- R Ideal gas constant (J/molK)
- T Temperature (K)
- y Concentration is gas phase (mol/mol)
- x Concentration in adsorbed phase (mol/mol)
- α Seperation factor (–)
- A Area (m²)
- t Time (h)

Fig. 1.1	Overview of the global installed capacity of the wind and	
	solar power in the years 2005–2015 (Renewables 2015	~
F ' 1.0	Global Status Report 2015)	2
Fig. 1.2	Simplified representation of the power grid situation of	
	tomorrow. The generated energy is comprised of the steady	
	growing share of renewables such as solar (a), wind power	
	(b) and conventional base load power generation (c). To	
	compensate fluctuations of wind and solar energy, the	
	mismatch between power generation (\mathbf{d}) and load (\mathbf{f}) is	
	managed by intermediately stored battery power (e). Inspired	
	by Hoelzle and Chang 2014	4
Fig. 1.3	Schematic illustration of the fundamental operating principle	
	of a LIB in the discharged (a) and in the charged state (b)	5
Fig. 1.4	Schematic illustration of a metal-based rechargeable lithium	
	battery showing the typical morphology of the lithium surface	
	before charge/discharge cycling (\mathbf{a}) and after an undefined	
	number of cycles (b). The continuously growing dendrites	
	potentially penetrate the separator membrane and cause a	
	short circuit	7
Fig. 1.5	Schematic illustration of the graphite exfoliation process	
	initiated by the co-intercalation of solvated Li ⁺ ion between	
	the graphene layers (above). Reductive decomposition of	
	intercalated solvent shell leads to gas formation and	
	delamination of individual graphene layers (exfoliation).	
	Protective function of the passivation layer (SEI), which	
	prevents the entry of the solvation shell and thus minimizes	
	the graphite exfoliation processes (below). Adapted from	
	Vetter et al. (2005)	9
Fig. 1.6	Cutaway view of a cylindrical 18650 cell	11
Fig. 1.7	Cutaway view of a wound prismatic cell	13
Fig. 1.8	Cutaway view of a stacked pouch cell.	14

Fig. 1.9	Electrode fabrication process	16
Fig. 1.10	Schematic illustration of the cylindrical cell fabrication	17
Fig. 1.11	Schematic illustration of the wound prismatic cell fabrication	10
Fig. 1.12	Schematic illustration of the stacked pouch cell fabrication	20
Fig. 1.13	Major innovations in material technology. Past, existing and expected battery chemistries (Pavoni 2012: Andre et al. 2015)	20
Fig. 1.14	Tetrahedral coordination of Co(II) (a) and octahedral coordination of Ni(II) (b) by dialkylphosphonic acid (c). In presence of water the octahedrally coordinated Ni(II) complex undergoes a reversible ligand exchange increasing its hydrophilic properties. The disintegration of the complex is initiated by reducing the pH. Exemplarily demonstrated on the Co(II) complex (c). Adapted from Kathryn (2008)	26
Fig. 2.1	Process flow chart of the investigated process steps and the overall LithoRec process	- 0
Fig. 3.1	General decomposition pathways for the formation of transesterifications products (a), oligocarbonate-based products (b), organophosphate-based products (c) organic fluorophosphate-based products and (d) hydrolysis products	
Fig. 3.2	Reprinted with permission of (Nowak and Winter 2017) Pictures of the changes on the storage containers over storage duration. Reprinted with permission of	42
Fig. 3.3	(Grützke et al. 2015a) Ionic decomposition and reaction products identified via IC/ESI-MS. Reprinted with permission of	43
Fig. 3.4	(Grützke et al. 2015a) Decomposition and reaction products identified via GC-MS.	43
Fig 25	Installation of the 18650 battery cell in a PTEE holder	44
Fig. 3.6	Temperatures on the battery cells surfaces during nail penetration tests with 18650 battery cells	45
Fig. 3.7	Concentrations of carbon monoxide (CO) during nail penetration tests of 18650 battery cells	46
Fig. 3.8	Concentrations of hydrogen fluoride (HF) during nail penetration tests of 18650 battery cells	47
Fig. 3.9	Relative comparison of highest concentrations of the identified gaseous products of nail penetration tests of 18650 battery cells	47
Fig. 3.10	μ CT-images of the inner structure of the battery cells after abuse (at top: NCM 2.2 Ah, at bottom: NCA 3.4 Ah, left: structure including electrodes, right: rod and aluminum)	48

Fig. 3.11	Concentrations of hydrogen fluoride (HF) during nail penetration test of 18650 battery cells, installed in a PTFE or	
	a steel holder	49
Fig. 3.12	Schematic drawing of the hazards associated with lithium-ion batteries and their interaction	50
Fig. 4.1	Flowchart proposing how to deal with LIBs before and after overdischarging	55
Fig. 4.2	Definition of "overdischarging" and "pole reversal"	57
Fig. 4.3	Different basic modes of electrical behaviour for overdischarging	58
Fig. 4.4	Devices used and their energy transformation concepts to overdischarge cells, modules, and systems	60
Fig. 4.5	Single cell resistor (variant A)	62
Fig. 4.6	Selectable resistor device (variant B)	63
Fig. 4.7	Experimental setup to discharge battery cells in conductive liquids (variant C)	64
Fig. 4.8	Device with MOSFETs to discharge cells and modules with	
1.8	constant current (variant D)	65
Fig. 4.9	Electronically adjustable loads to discharge modules and	
	systems in CR, CC and CP modes [left: heat transformation	
	(variant E); right: energy recuperation into grid (variant F)]	65
Fig. 4.10	Circuit diagram of basic setup for all discharge variants	66
Fig. 4.11	Overdischarge current/voltage characteristic curve for a 3.1	
	Ah cell with variant A	68
Fig. 4.12	Overdischarge current/voltage characteristic curve for a 3.1 Ah cell with variant B	68
Fig. 4.13	Overdischarge current/voltage characteristic curve for a 3.1 Ah cell with variant C	69
Fig. 4.14	Experimental setup (left), cell poles (middle left), liquid sample (middle right), brown liquid (right)	69
Fig. 4.15	Overdischarge current/voltage characteristic curve for a 3.1 Ah cell with variant D.	72
Fig. 4.16	Overdischarge current/voltage characteristic curve for a VW e-Golf battery system with variant E	72
Fig. 4.17	Overdischarge and relaxation curves for 50 Ah NCM cells at different temperatures	74
Fig. 4.18	Relaxation curves for three 25 Ah and three 3.1 Ah cells for different short circuit times	75
Fig. 4.19	Relaxation curves for three 3p4s modules for different short circuit times.	76
Fig. 4.20	Short circuit current for a 2p4s module at 2.8 V relaxation voltage	, 0 77

Fig. 4.21	Overdischarge current/voltage characteristic curves for VW e-Golf battery systems with 15 kW (variant E) and 3.5 kW	- 0
Fig. 4.22	(variant F)	78
118. 1.22	overdischarging at 9 °C ambient temperature	78
Fig. 4.23	Temperature rise and pole reversal for a 25 Ah NCM cell	79
Fig. 4.24	Cell pole reversal and heat rise while overdischarging a 2p4s	.,
8	battery module	80
Fig. 5.1	Methodical approach for the definition of a disassembly	
U	system and the assessment of automation potentials	88
Fig. 5.2	Setup of the battery system used in the hybrid Audi Q5	89
Fig. 5.3	Main components of the Audi Q5 hybrid battery system	
•	(closed system)	89
Fig. 5.4	Main components of the Audi Q5 hybrid battery system (open	
	system)	90
Fig. 5.5	Disassembly matrix for the Audi Q5 hybrid battery system	
	(Wegener et al. 2014)	92
Fig. 5.6	Disassembly priority graph (Wegener et al. 2014)	93
Fig. 5.7	Portfolio analysis (left) and bar chart for process oriented	
	visualisation (Herrmann et al. 2012)	95
Fig. 6.1	Manual disassembly tests on battery systems	
	(Wegener et al. 2014)	109
Fig. 6.2	Disassembly workstation concept (Wegener et al. 2015)	110
Fig. 6.3	Cost-optimized robot tool (w/o protective cover) for the	
	disassembly of various screw connections	110
Fig 64	Decording of the depth image camera with detected human	110
11g. 0.4	hand (left) compliance and force control for contact detection	
	(right) (Gerbers et al. 2016)	111
Fig 65	Possibilities of intuitive programming and control	111
1 ig. 0.5	(Dröder et al. 2017)	114
Fig. 6.6	User interface for gesture control (Trentlage 2014)	114
Fig. 6.7	Functional principle of the direct positioning control	
0	(Trentlage 2014)	115
Fig. 6.8	Possibility of intuitive robot programming and control using a	
-	handheld device (Dröder et al. 2017).	116
Fig. 6.9	Template and screw database (Küthe 2015)	117
Fig. 6.10	Process steps for object recognition and localization	
	(Küthe 2015)	118
Fig. 6.11	Process time in dependence on the chamfer diameter	
	(Gerbers et al. 2016)	119
Fig. 6.12	Experimental results of the tool validation	
	(Gerbers et al. 2016)	119

Fig. 6.13	Experimental accuracy analysis of direct positioning control (Trentlage 2014)	120
Fig. 6.14	Screw images for reliability testing	121
Fig. 6.15	False positives during screw detection (Küthe 2015)	121
Fig. 6.16	Implementation of the hybrid disassembly workstation	
8	(Dröder et al. 2017).	123
Fig. 7.1	Variations of module designs.	129
Fig. 7.2	Composition of a generic battery module	130
Fig. 7.3	Gas emissions during decomposition of lithium	
0	hexafluorophosphate in the crushing product (measured via	
	Fourier transform infrared spectroscopy)	131
Fig. 7.4	Ageing influence on gas emissions of LIB cells (18650 battery	
0	cells) during crushing (Diekmann et al. 2016a)	133
Fig. 7.5	Gas emissions during crushing of LIB cells (PHEV 1 battery	
U	cells) in a technical scale crusher. Reprinted with permission	
	of Diekmann et al. (2016b)	134
Fig. 7.6	Influence of different crushing mechanisms on the particle size	
U	distribution of the crushing product (RRS: radial rotary shear,	
	ARS: axial rotary shear, M: mesh size); data obtained from	
	Mämpel (2013)	135
Fig. 7.7	Influence of mesh size of the discharge screen on the particle	
U	size distribution of the crushing product (RRS: radial rotary	
	shear, M: mesh size); data obtained from Mämpel (2013)	136
Fig. 7.8	Inert crusher designed for the recycling of lithium-ion battery	
C	modules by Hosokawa Alpine Aktiengesellschaft	136
Fig. 8.1	Vapor pressure (a) and boiling temperature (b) of remaining	
-	liquid in the battery fragments	142
Fig. 8.2	Mol fraction of carbonates in the residual liquid within the	
	material to be dried along the drying progress. Maximum	
	temperature is set to 120 °C at a pressure of 0.1 bar	143
Fig. 8.3	Nitrogen demand dependent on the maximum temperature at	
	0.1 bar	143
Fig. 8.4	Nitrogen demand for sufficient drying and fraction of	
	low-boiler in the gas after drying. Based on 1 battery	
	system = 220 kg and a maximum temperature of 60 °C	
	(Stehmann et al. 2017)	144
Fig. 8.5	Composition of off gas with condensation temperature of 20 $^\circ$	
	C without extraction (a) and with $E/E_{min} = 10$ (b)	144
Fig. 8.6	Shovel dryer HTL-VT 10 (left) with drying chamber	
	including shovels (right)	145
Fig. 8.7	Experimental setup including dryer HTL-VT 10, two	
	condensers and vacuum pump (P1)	146
Fig. 8.8	Metal fragments sorted out prior to drying (left) and shovel	
	equipped with PTFE-plates (right) to prevent blocking	146

Fig. 8.9	Shovel dryer HTC-VT 140 (AVA-Huep GmbH & Co. KG,	
	Herrsching, Germany) at Solvay GmbH, Hanover and flow	
	diagram including the periphery	147
Fig. 8.10	Insight of the drying chamber with agitator shaft and	
	shovel	148
Fig. 8.11	Pressure and temperature course of all experiments	149
Fig. 8.12	Fouling at dryer exit and entry of vapor filter	150
Fig. 9.1	Preceding and following process steps of extraction	156
Fig. 9.2	Büchi Glas Uster Versoclave 3 with anchor stirrer and filter at	
•	the bottom, 0.5 L vessel on left side	158
Fig. 9.3	Hexafluorophosphate concentration in extract with different	
•	solvents	160
Fig. 9.4	Absolute extracted mass of lithium hexafluorophosphate for	
-	different solvent to solid mass ratios	161
Fig. 9.5	Temperature influence on extraction of lithium	
•	hexafluorophosphate with PHEV 1 battery material from	
	Electrocycling GmbH	162
Fig. 9.6	Temperature influence on the extraction using Panasonic CGR	
	18650	163
Fig. 9.7	Mass flow chart for the four stage extraction	165
Fig. 9.8	Mass fraction of hexafluorophosphate and fluoride in extract	
-	after extraction stages	165
Fig. 9.9	Accumulated absolute mass of hexafluorophosphate in	
•	extract	165
Fig. 9.10	Temperature influence onto extraction with water	167
Fig. 9.11	Process sequence for an extraction sequence with DMC and	
	water each followed by a drying process	168
Fig. 9.12	Hexafluorophosphate and fluoride mass fraction in extract for	
	a combination of extraction with DMC and	
	water in 0.5 L scale	169
Fig. 9.13	Optimized sequence of process steps for the extraction with	
	organic solvent and water with transfer of slurry	170
Fig. 9.14	Comparison of mass fraction lithium hexafluorophosphate in	
	extract for the experimental data and model based on dilution	
	of liquid residue	172
Fig. 9.15	Calculated mass fraction of LiPF ₆ in extract for different	
	solvent to solid mass ratios	174
Fig. 10.1	Time dependency of the amount of recovered electrolyte from	
	commercial 18650 cells after formation extracted with	
	supercritical (300 bar, 40 °C; red stars) and liquid (60 bar, 25 $^\circ$	
	C; black squares) CO_2 (Grutzke et al. 2015)	180

Fig. 10.2	Compositions of the recovered electrolyte from commercial 18650 cells after formation extracted with supercritical a and	
	liquid b CO_2 for the first three data points of Fig. 10.1	
	determined with GC-MS. Blue, top: EC; yellow, middle:	
	EMC: magenta, bottom: DMC (Grutzke et al. 2015)	181
Fig. 10.3	Time dependency of the amount of recovered electrolyte from	
8	commercial 18650 cells after formation extracted with liquid	
	CO_2 and 0.5 mL/min additional solvents (black stars: ACN:	
	magenta triangles: ACN/PC (3:1): red circles: DEC) (Grutzke	
	et al. 2015)	182
Fig 10.4	Compositions and amounts (determined with GC-MS and IC)	102
115. 10.1	of the recovered electrolytes from commercial 18650 cells	
	after formation extracted with liquid CO ₂ and additional	
	solvents for 30 min, with subsequent 20 min without	
	additional solvent. Red. top: LiPE: blue below: EC: vellow	
	middle: EMC: magenta bottom: DMC	
	(Grutzka et al. 2015)	182
Fig. 10.5	Discharge capacities for aged (square red: 20 °C 70% SOH:	102
1 lg. 10.5	triangle blue: 45 °C 70% SOH) commercial 18650 cells	
	(Grützke et al. 2014)	183
Fig. 10.6	Chromatogram (GC MS) of the extract from different aged	105
11g. 10.0	commercial 18650 calls (Grützke et al. 2014)	18/
Fig. 11.1	Lab scale adsorber with model gas preparation: Nitrogen feed	104
11g. 11.1	(B01) heated DMC reservoir (B02) condenser (W01)	
	adsorber (B03), as chromatography (GC) and vacuum pump	
	(P01) (Stehmann and Scholl 2015)	190
Fig 11.2	Breakthrough curve of fixed bed adsorber with ideal	170
115. 11.2	breakthrough time	192
Fig 113	Adsorption equilibria of DMC onto activated carbon SC40	172
115. 11.5	Carbon loading dependent on (a) gas loading and	
	(b) saturation	194
Fig 114	Adsorption equilibrium of DMC and FMC onto activated	171
115.11.1	carbon SC40 (a) gas phase and adsorbed phase compositions	
	at a constant total gas loading of $Y = 0.1$ mmol L ⁻¹	
	(b) selectivity at a constant gas composition of $v_{\rm EMC} = 0.15$	
	mol mol ^{-1} (Stehmann et al. 2016).	197
Fig. 11.5	Toth-parameter of two-component adsorption (DMC and	177
1.8. 1110	EMC) onto activated carbon SC40 at 30 °C with $t = 0.3$.	
	Dots: Parameter of experimental data. Lines: Parameter	
	calculated with IAST.	197
Fig. 11.6	Breakthrough curve of model off gas loaded with DMC. fixed	
0	bed is filled with carbon SC40 (Stehmann et al. 2017a)	198

Fig. 11.7	(a) Location of temperature peaks along the adsorption process.(b) Parity chart of temperature and ideal	
	breakthrough time (Stehmann et al. 2017a)	199
Fig. 11.8	Calculated carbon loading corresponding to gas loading	
	(Stehmann et al. 2017a)	200
Fig. 11.9	Carbon loading and conversion dependent on the equilibration time for adsorption of DMC onto Norit RB4 (Stehmann et al.	201
E 11 10	2017b)	201
Fig. 11.10	conversion dependent on temperature for adsorption of DIVIC	201
Fig. 11.11	Decomposition rate and methanol concentration at steady	201
1 ig. 11.11	state occurring during a fixed bed adsorption of DMC onto	
	activated carbon SC40 at 30 °C	202
Fig 11 12	Exhaust gas cleaning of the mobile shredder (a) and analysis	202
115. 11.12	of the resulting carbon loading and composition of electrolyte	
	adsorbed by carbon (b) (Stehmann et al. 2017a)	203
Fig. 11.13	Recommended setup for off gas cleaning with adsorption	-00
8	including heating and purge gas, based on	
	(Mersmann et al. 2005)	204
Fig. 12.1	Composition of a generic battery system of an electric vehicle	
U	(Diekmann et al. 2016)	208
Fig. 12.2	Scheme of the function principle of a zig-zag sifter (filled	
U	dots: high density, unfilled dots: low density)	209
Fig. 12.3	Cumulated distribution of the separating parameter of	
-	different materials of a crushed and dried battery module	
	(Diekmann et al. 2016)	209
Fig. 12.4	Composition and components of the heavy parts fraction	211
Fig. 12.5	Change of the cumulated distribution of fragments of a battery	
	module after different process steps. The cumulated	
	distributions relate to the light product after classification and	
	to the residue after sieving (Diekmann et al. 2016)	212
Fig. 12.6	Yield of the coating materials with/without 2nd crushing and	
	mixing step and resulting impurities. Modified from	
	(Diekmann et al. 2016)	212
Fig. 12.7	Mass output of separator and aluminum in light and heavy	
	product of the 2nd air-classification without 2nd crushing step	
T	(Diekmann et al. 2016)	213
Fig. 12.8	Mass output of separator and aluminum in light and heavy	
	product of the 2nd air-classification with 2nd crushing step	01 4
E'. 10.0	(Diekmann et al. 2016)	214
F1g. 12.9	Product fractions of the separation processes and their	014
	compositions	214

Fig. 12.10	Mass output of aluminum and copper foil in light and heavy product after separation via air-classification; data obtained	
	from (Mämpel 2013)	215
Fig. 12.11	Mass output and content of Al and Cu foil in accept and reject	
	fraction of an optical separation (1st run); data obtained from	
	(Mämpel 2013)	216
Fig. 12.12	Mass output and content of Al and Cu foil in accept and reject	
	fraction of an optical separation (2nd run); data obtained from	
	(Mämpel 2013)	216
Fig. 13.1	Schematic illustration of the material process chain of the	
C	proposed recycling concept starting from electrode processing	
	(Krüger et al. 2014)	220
Fig. 13.2	SEM-images of re-synthesized NCM materials from a pure	
C	metal salts b rejects material and c cycled material as source.	
	The images were taken at an acceleration voltage of 3 kV	
	(Krüger et al. 2014)	223
Fig. 13.3	X-ray powder diffraction patterns of the reference, rejects and	
C	cycled NCM materials in different stage of aging (Krüger	
	et al. 2014)	225
Fig. 13.4	Schematic cutaway illustration of a Swagelok [®] type T-cell	
C	with a three-electrode setup in a fully assembled state. The	
	magnification shows the electrode stack placed between the	
	current collectors in the sequence from left to right: metallic	
	lithium/separator/graphite coating/NCM coating/aluminum	
	foil representing a half-cell setup. The reference electrode	
	equipped with metallic lithium is placed perpendicular to the	
	electrode stack, separated by a separator membrane	
	(Rothermel et al. 2016)	226
Fig. 13.5	Cycling Performance of reference NCM material compared to	
	material with electrode rejects and cycled NCM as resource.	
	Cycling was performed at 1C in a 1 M LiPF ₆ EC:DMC 1:1	
	(wt/wt) electrolyte with lithium as reference and counter	
	electrode. The potential range was 3.0-4.2 V versus Li/Li ⁺	
	(Krüger et al. 2014)	227
Fig. 13.6	C-rate test of the recycled materials originating from rejects	
	NCM and cycled NCM electrodes compared to the reference	
	material. The NCM/graphite full cells were investigated in an	
	LiPF ₆ EC:DMC 1:1 (wt/wt) electrolyte in a voltage region	
	from 3.0 to 4.2 V (Krüger et al. 2014)	227
Fig. 13.7	Decomposition temperatures of specific surface oxygen	
	groups. Adapted from Ref. (Collins et al. 2015; Fuente et al.	
	2003; Figueiredo et al. 1999)	228

Fig. 13.8	Potential faradaic and electrostatic reactions of Li ⁺ cation and PF6 ⁺ anion with carboxilic, quinone and pyrone surface	
Fig. 13.9	oxygen groups. Adapted from Ref. (Collins et al. 2015) Electrochemical cycling of the Panasonic CGR18650CH Li-ion MH12210 cell until 70% SOH. The charge/discharge	229
	cycling was performed with a constant charge current of 0.44 A (1C) and a constant discharge current of 2.2 A (1C). The charging and discharging cut-off voltages were set to 4.2 and 3.0 V respectively in accordance with the manufacturers	
	specifications	229
Fig. 13.10	TGA and DSC analysis of the untreated negative electrode coating from a <i>CGR18650CH Li-ion MH12210</i> cell after electrochemical ageing (70% SOH) and as delivered (100% SOH). The amount of samples: 27.143 ± 0.271 mg (70%	
	SOH), 27.640 \pm 0.276 mg (100% SOH); inert atmosphere (flow): argon (100.0 mL min ⁻¹); sample pan: alumina (90 uL): temperature ramp: 10.0 \pm 0.1 °C min ⁻¹ (Rothermel et al.	
	2016)	230
Fig. 13.11	SEM image of the negative electrode originating from the <i>CGR18650CH Li-ion MH12210</i> cell (100% SOH) (Rothermel	
Fig. 13.12	et al. 2016) SEM image of the thermally treated graphite originating from the <i>CGR18650CH Li-ion MH12210</i> cell (100% SOH). White colored (less electronically conductive) particles distributed	231
	over the particle surface can be observed	
Fig. 13.13	(Rothermel et al. 2016) Energy dispersive X-ray analysis (EDX) image of the thermally treated graphite originating from the CGR18650CH	232
	Li-ion MH12210 cell (100% SOH) shown in section a for the	
	shown as well (Rothermel et al. 2016)	233
Fig. 13.14	SEM image of graphite originating from the CGR18650CH Li-ion MH12210 cell (100% SOH) after subcritical carbon dioxide assisted electrolyte extraction with acetonitrile	255
	addition as a co-solvent and subsequent thermal treatment.	
	The particle surface is free from crystallites observed in	
Fig. 13.15	Fig. 13.12 (Rothermel et al. 2016) SEM image of the thermally treated graphite originating from the CGR18650CH Li-ion MH12210 cell (100% SOH) after	233
	supercritical carbon dioxide assisted electrolyte extraction and	
	subsequent thermal treatment. The particle surface is free from crystallites observed in Fig. 13.12 (Rothermel et al. 2016)	234

Fig. 13.16	Raman spectrum of the thermally treated non-extracted graphite originating from the CGR18650CH Li-ion MH12210 cell (100% SOH). Integrated peaks D and G are shaded in grey. Laser wavelength: 532 nm; laser power: 15 mW; diffraction grating: 330 gr mm ⁻¹ ; total acquisition time: 25 s (5 image frames 5 s per frame) (Pothermel et al. 2016).	236
Fig. 13.17	Raman spectra of thermally treated graphite without electrolyte extraction (non-ex.), graphite after subcritical carbon dioxide assisted electrolyte extraction with acetonitrile addition as a co-solvent and subsequent thermal treatment (subcCO ₂) and graphite after supercritical carbon dioxide assisted electrolyte extraction and subsequent thermal treatment originating from the CGR18650CH Li-ion	230
	MH12210 cell (70% SOH/100% SOH). Laser wavelength: 532 nm; Laser power: 15 mW; Diffraction grating: 330 gr mm ⁻¹ ; Total acquisition time: 25 s (5 image frames, 5 s per frame) (Rothermel et al. 2016)	237
Fig. 13.18	Constant current discharge capacities and Coulombic efficiencies curves of thermally treated non-extracted graphite originating from the <i>CGR18650CH Li-ion MH12210</i> cell (70% SOH/100% SOH) used as WE in a half cell	
	setup. Measurements were performed using a three-electrode setup with metallic lithium as RE and CE. Electrolyte: SelectiLyte TM LP47 (1 M Lithium hexafluorophosphate in EC:DEC 3:7); WE: graphite/Super C65/Na-CMC (90/5/5); discharging cut-off potential: 1.5 V versus Li/Li ⁺ ; charging cut-off potential: 0.02 V versus Li/Li ⁺ ; specific current: 186 mA g ⁻¹ , 0.5C (three initial formation cycles 37 mA g ⁻¹ , 0.1C); temperature: 20 °C (Rothermel et al. 2016)	238
Fig. 13.19	Constant current discharge capacities and Coulombic efficiencies of the graphite originating from the <i>CGR18650CH</i> <i>Li-ion MH12210</i> cell (70% SOH/100% SOH) after subcritical carbon dioxide assisted electrolyte extraction with acetonitrile addition as a co-solvent and subsequent thermal treatment used as WE in a half cell setup. Measurements were performed using a three-electrode setup with metallic lithium as RE and CE. Electrolyte: SelectiLyte TM LP47 (1 M Lithium hexafluorophosphate in EC:DEC 3:7); WE: graphite/Super C65/Na-CMC (90/5/5); discharging cut-off potential: 1.5 V versus Li/Li ⁺ ; charging cut-off potential: 0.02 V versus Li/Li ⁺ ; specific current: 186 mA g ⁻¹ , 0.5C (three initial formation guales 27 mA g ⁻¹ , 0.1C); termerentum, 20.8C	
	(Rothermel et al. 2016)	240

Fig. 13.20	Constant current discharge capacities and Coulombic	
	efficiencies of graphite originating from the CGR18650CH	
	Li-ion MH 12210 cell (70% SOH/100% SOH) after	
	supercritical carbon dioxide assisted electrolyte extraction and	
	subsequent thermal treatment used as WE in a half cell	
	setup. Measurements were performed using a three-electrode	
	setup with metallic lithium as RE and CE. Electrolyte:	
	SelectiLvte [™] LP47 (1 M Lithium hexafluorophosphate in EC:	
	DEC 3:7): WE: graphite/Super C65/Na-CMC (90/5/5):	
	discharging cut-off potential: 1.5 V versus Li/Li ⁺ : charging	
	cut-off potential: 0.02 V versus Li/Li ⁺ : specific current:	
	186 mA σ^{-1} 0.5C (three initial formation cycles 37 mA σ^{-1}	
	0.1C): temperature: 20 °C (Rothermel et al. 2016)	241
Fig 13.21	Constant current and constant notential discharge canacities	211
115. 15.21	and Coulombic efficiencies of the recycled cathode material	
	used as WF. Measurements were performed using a	
	three-electrode setup with metallic lithium as the CE and RE	
	Recycled LiNi, Co., Mn, O. (NCM) is used as the WE	
	Electrolyte: Selectil yteTM I D47 (1 M Lithium	
	hevefluorophosphate in EC:DEC 3:7): WE:	
	NCM/DVdE/Super C65/SEC 6L (87/5/4/4): discharging	
	cut off potential: 3.0 V versus Li/Li ⁺ : charging cut off	
	potential: 4.3 V versus Li/Li ⁺ : specific current: 150 mA a^{-1} 1	
	C (three initial formation cycles 30 mA g^{-1} 0.2C); constant	
	c (unce initial formation cycles 50 mA g $^{\circ}$, 0.2C), constant potential charging step: 1 h; temperature: 20 °C (Krüger et al	
	2014: Rothermel et al. 2016)	212
Fig 13.22	Constant current discharge capacities and Coulombic	242
rig. 1 <i>3.22</i>	efficiencies of a full cell. Measurements are performed using a	
	three electrode setup with metallic lithium as the DE	
	Decycled graphite originating from the CCP18650CH Li ion	
	MH12210 coll (70% SOH/100% SOH) after subgritical	
	mH12210 cell (70% SOH/100% SOH) alter subclitical	
	addition as an advant and subsequent thermal treatment is	
	addition as co-solvent and subsequent thermal treatment is	
	used as the CE. Recycled $\text{Lini}_{1/3}\text{Co}_{1/3}\text{vin}_{1/3}\text{O}_2$ is used as the WE. Electrolyter Selectil vite M L D47 (1 M L DE in EC) DEC	
	2:7): counter clostrode: graphits/Super C65/No CMC	
	(00/5/5), WE, NCM/DV/4E/Super C65/SEC (1. (87/5/4/4))	
	(90/3/3); WE: NCM/PVdP/Super Co3/SFG-oL (87/3/4/4);	
	discharging cut-on voltage: 4.25 v; charging cut-on voltage: $1.7 V_{\rm cut}$ are the summation 150 m A e^{-1} 1C (three initial	
	1.7 V; specific current: 150 mA g , 1C (uncer mutai	
	(D_{ref}) (Dethermal et al. 2016)	244
E.a. 14.1	(Kounermei et al. 2010)	244
Fig. 14.1	2D model for accurational sofety in the recycling of	248
г1g. 14.2	sr-model for occupational safety in the recycling of	250
		230

Fig. 15.1	Conceptual model with system boundaries for economic assessment	256
Fig 15.2	Past and future development of the electric vehicle stock in	250
115. 15.2	Furone (EU28 + Norway) for three market scenarios	257
Fig 153	NPV and payback period for different market scenarios and	237
115. 15.5	nrice scenarios	261
Fig. 15.4	Composition of NPV for realistic market scenario and realistic	201
11g. 15.4	price scenario	262
Fig. 15.5	a Negative and b positive contributions to NPV of input and	202
11g. 15.5	a Negative and b positive contributions to NFV of input and	
	bulput factors in the realistic market scenario and realistic	262
E 15 6	Dreal and analysis for discharge with an array provider	205
Fig. 15.0	Break-even analysis for discharge with energy recuperation	
	(compared to discharge without energy recuperation) with	202
D' 15 7	regard to electricity price	263
Fig. 15.7	Break-even analysis for mechanical processing with	
	extraction (compared to mechanical processing with thermal	
	drying) with regard to price difference for electrode coating	
	powder with and without fluoride impurities in different	
	market scenarios	264
Fig. 15.8	Minimum required gate fees to make the process	
	economically feasible (NPV ≥ 0) for the case that value of	
	cathode coating powder is zero	264
Fig. 16.1	Framework for the analysis of environmental effects of	
	recycling. Based on the work by Geyer et al. (2015). Dotted	
	red arrows represent the avoided material flow	269
Fig. 16.2	Cradle to gate embodied energy for the production of one	
	kilogram battery pack. LFP: LiFePO ₄ , NCM:	
	LiNi0.4Co0.2Mn0.4O2, LCO: LiCoO2, LMR-NCM:	
	0.5Li ₂ MnO ₃ 0.5LiNi0.44Co0.25Mn0.31O ₂ , HT:	
	hydrothermal, SS: solid state. Data taken from	
	Dunn et al. (2015a)	272
Fig. 16.3	Cradle to gate embodied energy for the production of different	
0	cathodes materials. Data taken from Dunn et al. (2015a)	273
Fig. 16.4	Changes in exergy values for materials in different life cycle	
0	stages	273
Fig. 16.5	Change in separation effort within the material separation	
	processes for lithium-ion batteries	276
Fig 16.6	Process chain developed in LithoRec. Based on Diekmann	
119. 10.0	et al. (2017)	277
Fig 167	Modeled energy and material flows from the LithoRec	277
1 15. 10.7	process	278
Fig. 16.8	Power operation profiles for the unit processes considered in	210
1 ig. 10.0	LithoRec	270
		219

Fig. 16.9	Energy portfolio classification for the mechanical treatment	
	processes in LithoRec	280
Fig. 16.10	Results of the Life Cycle Impact Assessment performed	
	within the LithoRec project	284

List of Tables

Table 4.1	Battery cells, modules, systems investigated at the time of the research	60
Table 4.2	Most important battery data to be known for	00
	overdischarging	61
Table 4.3	Concentration analysis of the different samples	70
Table 4.4	Assessment of the discharge devices with four	
	crucial criteria	73
Table 5.1	List of disassembly elements	91
Table 5.2	Disassembly steps and necessary tools	
	(Wegener et al. 2014)	93
Table 5.3	Criteria catalogue (Herrmann et al. 2012)	94
Table 6.1	Experimental accuracy analysis of direct positioning control	
	(Trentlage 2014)	120
Table 6.2	Positional deviations during object recognition	
	(Küthe 2015)	122
Table 8.1	Model electrolyte composition that is used in the	
	simulations	140
Table 8.2	Concluded data of drying experiments	150
Table 8.3	Composition of condensate and model composition of	
	electrolyte	151
Table 9.1	Parameters for the IC analysis	158
Table 9.2	Parameter for the solvent screening	160
Table 9.3	Parameter for the influence of mass ratio of solvent	
	to solid	161
Table 9.4	Parameter for the temperature influence experiments with	
	PHEV 1 batteries from Electrocycling GmbH	162
Table 9.5	Parameter for the temperature influence experiments with	
	Panasonic CGR 18650 batteries.	163
Table 9.6	Parameter for four stage extraction	164
Table 9.7	Parameters for the determination of the temperature	
	influence for aqueous extraction	166