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Preface 

The idea of writing a text book on combinatorics has been on my mind for a very 
long time. The question was that of judgment in deciding which topics are to be con-
sidered basic and must be included as also the organization of the material. I hope 
that the reader will find both the content and the organization of material in this book 
sufficiently interesting and coherent. 

Whether combinatorics consists of merely techniques (read, a slightly derogatory, 
tricks) or also encompasses a sequence of theorems that can properly be perceived to 
be purporting some deep theory is not clear. The truth lies somewhere in between. To a 
section of the mathematical ~ommunity, combinatorics is nothing more than a pastime 
of solving puzzles. Cleverness is an acknowledged essential ingredient of creating all 
mathematics. That appears to be more so in case of combinatorics where cleverness 
is seemingly the only tool required to achieve the goal. However, "Mathematics is not 
cleverness" declares the objecting section of the mathematical community. When a 
mathematician, working in some other area of mathematics uses the expression, "that 
is combinatorial", it sometimes means clever but at times also means that it amounts to 
messy computations devoid of any theory and an ennui inducing exercise. It is the au-
thor's intention to show to the reader that combinatorial techniques can be well studied 
and that these techniques, are far more systematic and sophisticated than the puzzles 
and tricks that they engulf and encompass. 

In terms of the material presented here, I have loosely followed the contents of the 
texts by Brualdi, Liu, Krishnamurty and Cohen [13, 36, 35, 18]. In terms of style as 
well as contents, I am highly impressed by the book on combinatorics by van Lint 
and Wilson [57]. A large part of modem combinatorics seems to have its origin in the 
gambling problems ofthe last few centuries European society, particularly in the work 
of Laplace and de Moivre. Questions in probability, therefore, form a right setting for 
combinatorial problems, both in terms of understanding and historical perspective. An 
algebraization of the discipline was obtained in the concept of generating functions 
championed by Euler, the founder of modem combinatorics. This paved a way for the 
systematic use of algebra in combinatorics. To many people, algebra itself is a discrete 
discipline. Algebra has played such a major role in modem combinatorics that the 
present state of knowledge and direction in combinatorics make it appear as if it were 
all the time a subtopic of algebra. This, to me, appears a serious shortcoming on the 
pedagogical aspects of the combinatorial discipline. It is not my intention to suggest 
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here that the role of algebra has been overestimated. On the contrary, algebra makes 
things very systematic and smooth. My assertion mainly pertains to the pedagogy of 
combinatorics, where. I believe that overuse of algebraic language pushes the reader 
into a jungle of symbols and the sophisticated write-up drives him away rather than 
inviting him to the plain cleverness ofcombinatorics. This also amounts to losing some 
historical perspective. A lack of knowledge of the framework of discrete probability 
on the part of a mathematician and more importantly on the part of a combinatorialist 
is a serious shortcoming. I have been driven by the article of Mumford [43] where a 
strong appeal in favour of stochasticness is made. Wherever possible. the book will 
also try to connect the material under consideration with other areas of mathematics 
particularly number theory. analysis and topology. The rigid distinction between pure 
and applied (or applicable) mathematics as well as the distinction between discrete and 
continuous mathematics is fast vanishing and in this regard, I am highly impressed by 
Concrete Mathematics of Knuth, Graham Knuth and Patashnik [27). 

I have been associated with the Mathematics Olympiad activity in India for more than 
two decades. That has certainly influenced my choice of problems and exercises, some 
of which are borrowed from the Olympiad contests including the International Math-
ematical Olympiad, the IMO. However, the major contribution to the contents of this 
book has come from teaching the combinatorics course at the University of Mumbai 
besides at the University of Florida, Central Michigan University and the Michigan 
Technological University. Besides the books mentioned in the earlier paragraphs, I 
have been impressed by the article on Polya theory by de Bruijn, [4] and the essays in 
[33]. 

Every chapter discusses a famous and important result in Combinatorics which 
demonstrates the tremendous power of some of the very simple ideas. Organization of 
chapters in the book is as follows. The first six chapters could torm a semester course 
at an undergraduate level. These include the basics of counting parameters (Chapter 
J), listing coml,inatorial objects (Chapter 2), combinatorics of permutations (Chap-
ter 3) and the basic inclusion exclusion principle (Chapter 4). Chapter 5 and Chapter 
6 deal with probability and random variables respectively. Chapters 7, 8 and 9 have 
material for the Olympiad level audience and contain a large number of.exercises. 
Many situations of the occurrence of parity arguments in combinatorics are discussed 
in Chapter 7. This chapter also includes the Gauss quadratic reciprocity law. Chapter 
8 is on pigeonhole principle and after discussing Ramsey theory, this chapter also in-
cludes various Erdos-Szekeres theorems that use pigeonhole principle in some form. 
Chapter 9 deals with geometric results that have combinatorial flavour and includes 
the Euler equation, classification of regular polytopes, tilings and Sperner's result on 
triangulations. The first nine chapters can form a semester course at a slightly ad-
vanced level. Chapter 10 deals with Stirling and Catalan numbers. Chapter 11 is on 
recurrence relations and Chapter 12 deals with generating functions. Besides standard 
material on generating functions, this chapter discusses at some length the coin ex-
change theorem and the Dirichlet generating functions. I have separated the partition 
theory of integers by making it an independent Chapter 13. This chapter ends with the 
Euler pentagonal theorem and the material here should be useful to people interested 
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in combinatorial number theory. Chapter 14 can be viewed as a forerunner to Chapter 
15 but it can also be of independent interest since it shows the use of group action as a 
major tool in tinite group theory. This chapter includes the class equation, Sylow theo-
rems, automorphisms of symmetric groups and the classification of finite subgroups of 
the orthogonal groups in 2 and :3 dimensions. Chapter 15 deals with Polya's theory of 
enumeration where a large number of examples are discussed and it also includes de 
Bruijn's generalization of Polya theory. Chapter 16 deals with the systems of distinct 
representatives and includes the Birkhoffvon Neumann theorem on doubly stochastic 
matrices and Dilworth's theorem on posets. Finally, I would like to emphasize that 
wherever possible, I have tried to draw a comparison between the combinatorics of 
infinite and finite. This is particularly visible in Chapters 7 and 9 where an idea of 
infinite version of Ramsey results and the Euclidean Ramsey theory respectively are 
discussed as well in the last chapter 16 where the "Rado selection principle is discussed. 

An elementary first level course could include the first eight chapters in that order. 
Chapters 3 throl\gh II are more suited for Mathematical Olympiad students. A course 
with emphasis on generating functions and recurrence relations should follow Chap-
ters 3, 4, 10, II, 12 and 13. Advanced Chapters in the text are Chapters 12 through 
16. The author believes that the strength of the text also lies in the very large number 
of exercises at the end of each chapter. The exercises are at various levels of difficulty 
and range from very simple to more advanced such as Euler convergence (Exercise 
6.31) and Conway's soldiers in the desert (Exercise 11.45). 

I trust that the book will prove useful and interesting to a wide range of mathematical 
and non-mathematical community. 

Sharad S. Sane 
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Chapter 1 

Basic counting 

1.1 Introduction 

A large part of combinatorics is concerned with counting. As such this is not a very 
difficult activity, at least in principle. However, lack of clarity can very much make the 
counting obscure. The material covered in this chapter forms a basis for all the other 
chapters in this book because it sets the basic counting parameters required throughout 
the book. We begin by introducing the following elementary principles. 
A man wants to travel from place A to place B either by a bus or by a train. He knows 
that there are five different buses he can choose from and three different trains that he 
take to go from A to B. Obviously then, there are eight different. ways in which he can 
travel. If there are three different sized apples and two different sized mangoes on a 
table, then the number of ways of picking up one fruit among these is 3 + 2 = 5. We 
have: 
Addition Principle: If the first box contains m objects and the second box contains n 
objects, then the number of ways of choosing one object from either of the two boxes 
is m+ n. 
In a purely set-theoretic language, the addition principle tells us about the order of the 
union of two disjoint sets X and Y, if we know the number of objects in each of them. 
The main point to note here is that the sets must be disjoint. For example, The order 
of the set of numbers less than 30 that are either prime or perfect squares is obtained 
by finding the possibilities of the occurrences of the two events separately and then 
adding them and hence the answer is 10 + 5 = 15. However if we wish to find the 
order of the set of numbers below 30 that are divisible by 2 or 3, the required number 
is not 14 + 9. 
Multiplication PrinCiple: If the first box contains m objects and the second box con-
tains n objects, then the number of ways of choosing a pair of objects, the first from 
the first box and the second from the second box is mn. 
While the addition principle gives union of two disjoint sets, the multiplication prin-
ciple gives the (order of) the Cartesian product of two sets. For example, suppose that 
in order to go from A to B, one must pass through C. Ifthere are five ways of going 
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from A to C and three ways of going from C to B, then there are fifteen ways of going 
from A to B. 
There is a slightly more profound but equally basic technique that is applied in com-
binatorics. Suppose in a classroom where the students occupy seats on the benches 
arranged in Tn rows and n columns, not all the seats on all the benches are filled. If 
you wish to count the total number of students in the class, then there are two ways of 
doing it. You could fix a row and carefully count the number of students in that row. 
Do this for each row and then sum over all the rows. You could then ask your friend to 
do the same thing fixing a column first and then summing over all the columns (do not 
forget to count yourself if you are occupying a seat on some bench!). The two numbers 
must be equal. This elementary observation leads to: 
Two-Way Counting: Let S be a subset of the Cartesian product of two sets A and B. 
Let, for a in A, Ra denote thi! subset {y E B: (a, y) E S}. Similarly, for b in B, let 
Cb denote the subset {x E A: (x, b) E S}. Then 

All throughout this book, we denote the order or cardinality of a set T by / T /. Since 
most of the sets we deal with are finite the word size will also be used to denote this 
number. Also, the Cartesian product of two sets X and Y (denoted by X x Y) consists 
of 1.' II the pairs (x, y) for which x is in X and y is in Y. The innocuous technique of 
two-way counting has a large number of applications in branches of Combinatorics 
such as graph theory and design theory. We illustrate this with an application. 

Example 1.1.1. A graph G is a pair (V, E) where V is the set of vertices and E the 
set of edges. An edge is an unordered pair of vertices. We denote an edge e by the 
pair (xy) or (yx) with the understanding that the edge e is an edge between the two 
vertices x and y. In that case, we say that e is incident with x (and also with y). An 
edge of the form (xx) is called a loop. Ifwe have two edges e and e' such that both 
are equal to (xy), then e, e' are called double edges (or multiple edges, in general) 
between x and y. For x in V, d(x), the degree of the vertex, is simply the number 
of edges (xy) with y in V. Here, we count a loop (xx) twice and hence it contributes 
two to the degree of x. In the first part in Figure 1.1, we have a loop at x, two loops at 
y and a double edge between x and z. A graph G is called a simple graph ifit has no 
loops or multiple edges. The second part in Figure 1.1 is a simple graph. In the first 
graph, the degrees of x, y, z, ware 6, 5, 2,1 respectively while the second graph has 5 
vertices of degree 2 each and one vertex with degree O. 

Ifwe sum over all the degrees in the graph G, then the result must be an even number 
since this simply counts each edge two times. We thus can not have a graph on 7 
vertices with each vertex of degree 3. 
We use the term an n-set to mean a set of order n. Likewise a k-subset will mean 
a subset of order k (similar term also applies to a superset). A k-permutation of a 
set S is an ordered k-tuple of elements of S. Thus a k-permutation is a sequence 
(Xl, :1:2, ... , Xk) where the k elements are all different (and come from S) and with 
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an understanding that (X2' Xl, ... ,Xk) is notthe same as (Xl, X2, . .. ,Xk). How many 
k-permutations does an n-set have? The first element can be chosen in n ways since 
any of the n elements can be the first element. Having chosen the first element, the 
second can be chosen in n -1 ways (out of the remaining n -1 elements). Proceeding 
in this manner, we have the last, i.e., the k-th element chosen in n - (k - 1) ways . 

• 
~ ____ w 

Figure 1.1: A graph and a simple graph 

Lemma 1.1.2. The number of k-permutations of an n-set is given by: 

P(n,k) = n(n-l)···(n-k+l) 

A slight trouble with the argument is what happens if k exceeds n. The answer then 
should be zero, which is what it obtains in the formula given in Lemma 1.1.2. The 
most important case (in Lemma 1.1.2) occurs here when k equals n. In that case we 
call an n-permutation of an n-set simply a permutation (of an n-set S) and P( n, n) is 
denoted by n! (pronounced n factorial; the exclamation is probably due to the fact that 
n! is very large even for moderate values of n) which is equal to the product of all the 
integers from 1 to n. 
Example 1.1.3. If a class has 15 students and if 5 prizes (first, second, third, fourth 
and fifth) are to be given to some 5 students among them, then the number of ways 
of doing this is P(15, 5) which equals 3,603,600. However, if the class has 10 boys 
and 5 girls, then the number of ways in which three prizes are to be separately given to 
boys and tWo prizes separately given to girls is equal to P(lO, 3) x P(5, 2) = 14,400 
by using the multiplication principle. 

Notice that a permutation is an ordered selection of objects (from a set). In a similar 
manner, an unordered selection of k objects from a set of n objects is called a k-
combination. We denote the number of k-combinations of an n-set by C (n, k). If n is 
a positive integer, then C(n, 0) equals 1 and C(n, k) is 0 for all k > n. Since a set, 
by definition, is an unordered collection, a k-combination of a set is simply a k-subset 
of the given n-set. 

Example 1.1.4. Consider the problem in 1.1 .3 and suppose that we are merely in-
terested in selecting three boys and two girls to distribute the prizes (without ranking 
them). Then the required number is C(lO, 3) x C(5, 2) = 1,200. 
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Lemma 1.1.5. Let n be a positive integer and let k be a non-negative integer. Then 

pen, k) n(n - 1)··· (n - k + 1) 
G(n, k) = P(k, k) = k! 

Proof Make a two-way counting. How many k-permutations does an n-set have? 
We first select a k-subset in G(n, k) ways and then order (permute) the elements of 
the chosen k-subset in P(k, k) ways. But this number is just pen, k) which obtains 
the required formula using Lemma 1.1.2. Also, the statement trivially holds if k > n. 
D 

A large number of problems of (elementary) combinatorics are solved by determining 
whether the required answer is a combination or a permutation. Since n! = n x (n -
1) x ... x 2 x 1, we write [nJk to denote pen, k) = n(n - 1)··· (n - k + 1) and call 
it thefallingfactorial. By convention, a! = 1. We then have: 

G(n k) =-= [nJk = 
, k! 

[nJk(n - k)! 
k!(n - k)! 

n! 
k!(n - k)! 

Observe the arithmetical symmetry between k and n - k in the above formula. This, of 
course, is a reflection of the fact that G(n, k) and G(n, n - k) are the same numbers: 

Lemma 1.1.6. 1fk is a non-negative integer and n a positive integer such that k ~ n, 
then G(n, k) = G(n, n - k). 

Proof Let S be an n-set. In choosing a k-subset A of S, we are also rejecting an 
(n - k)-subset of S, namely the (n - k)-subset B which is the complement of A in 
S. It is like this. Any time you select k elements of S, ask your friend to select the 
remaining n - k elements of S. The process is reversible. If your friend picks up 
n - k elements, then you pick up the remaining k elements. This sets up a bijection 
(one-to one correspondence) between the set of k-subsets (that you select) and the set 
ofn - k-subsets (that your friend selects). Hence we have G(n, k) = G(n, n - k). 

D 

1.2 Bijections 

If we have an alphabet consisting of only three letters a, band c and we wish to form 
words of length 5 using the three letters of our alphabet, then the number of ways of 
doing this is 3 x 3 x 3 x 3 x 3 = 35 = 243. Similarly the number of binary sequences 
(i.e., sequences of a's and l's) of length n is 2n. Interestingly, this also indirectly 
counts the total number of subsets ofa set ofordern. Let T = {I, 2, ... , n}. Through-
out this book, we use the symbol [nJ to mean the set {I, 2, ... , n}. For each subset X 
of T associate a binary sequence b x of length n where b x has 1 in the position i if i 
is in X and has a in the i-th position if i is not in X. For example, if n = 5, and if 
X, Y, Z are respectively the empty set, the set {2, 3, 5}, and the set {I, 2, 3, 4, 5}, then 
the corresponding sequences b x, by and b z are 00000, a 11 a 1 and 11111 respectively. 
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This procedure obtains a pairing of the members of the set of all the subsets of T with 
the members of the set consisting of all the binary sequences of length n. Since the 
latter set has size 2n, we readily have: 

Corollary 1.2.1. The total number of subsets of a set of order n is 2n. 

As the discussion preceding Corollary 1.2.1 shows, more is true than what is stated 
in Corollary 1.2.1. Namely, we actually have an explicit bijection between the two 
sets: The set of all the subsets of an n-set and the set of all the binary sequences of 
length n. The proof technique used here is called proof by bijection. This is among 
the most powerful and elementary techniques of combinatorics and a substantial part 
of combinatorial activity today is devoted to finding ingenious bijections to count the 
number of objects under certain stipulations. We recall that a bijection is an injective 
(one-to-one) and surjective (onto) function. An interested reader is encouraged to look 
up the book by Stanton and White [50], where a large number of results are proved us-
ing bijections. One important point to observe here is that the proofs that use bijection 
are genuinely combinatorial in nature. An example of this is furnished in the proof of 
Lemma 1.1.6. We content ourselves with giving some obvious bijections. 

Theorem 1.2.2. Let m and n be positive integers. Then there exists a bijection be-
tween any two of the following sets. 

(a) The set of all the functions from an n-set to an m-set. 

(b) The set of words of length n on an alphabet of m letters. 

(c) The set of n-tuples (sequences) with entries from an m-set. 

(d) The set consisting of all the ways of distributing n distinct objects into m distinct 
boxes (or cells). 

In each case, the cardinality of the set tn question is m n. 

Proof Let D = {I, 2 .... , n} be the n-set and let R = {TI' T2, .. " Tm}. Given 
any function f from D to R, we write down the sequence (1(1), f(2), ... , f(n)) of 
length n with entries from R. This process is reversible and clearly sets a bijection 
between the set in (a) with those in (b) or (c). For (d), let the m distinct boxes be 
denoted by B I , B 2 , ..• , Bm and let the n distinct objects be denoted by the elements 
of D. Given a function f from D to R, put object i in the box Bj if and only if 
f(i) = Tj. This obtains the required bijection. 0 

Recall that an injective function is a function f for which f(a) 
a = b. 

f(b) implies 

Theorem 1.2.3. Let m and n be positive integers. Then there exists a bijection be-
tween any two of the following sets. 

(a) The set of all the injective functions from an n-set to an m-set. 

(b) The set of words of length n on an alphabet of m letters with the condition that 
the word consists of distinct letters. 
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(c) The set of n-tuples (sequences) with distinct entries from an m-set. 

(d) The set consisting of all the ways of distributing n distinct objects into m distinct 
boxes (or cells) with the condition that no box holds more than one object. 

(e) The set of all the n-permutations of an m-set. 

In each case, the cardinality of the set in question is P(m, n) = [mJn. 

Proof Let D = {dl , d2 , •.. , dn } and let R be the set of integers 1,2, ... , m. Any 
n-permutation of R say, (a I, a2, ... , an) may be viewed as an injective function from 
D to R which sends d l to aI, d2 to a2, ... , dn to an (note that ai's are distinct and 
are ordered). This sets up a bijection between the sets in (e) and (a). For (b), we may 
think of an alphabet precisely consisting of the elements of R. Since (b) stipulates 
that words must consist of distinct letters, we have a bijection between the set in (a) 
and the set in (b). The bijection between (c) and (a) is similar and is left to the reader. 
For (d), treat the elements of D as the objects, and let B I , B2 , ... , Bm be the set of m 
(distinct) boxes. Given any permutation, i.e., a function say (aI, a2, ... , an) as above, 
put the object di in the k-th box Bk iff ai = k. All throughout this book, the term iff is 
used to mean "if and only if". It is easy to check that this sets a bijection between the 
set in (d) and the one in (a) (or (e». 0 

Definition 1.2.4. For a real number 0: and any non-negative integer k, 

( 0:) = 0:(0: - 1) .. · (0: - k + 1) 
k k! 

Pronounce (%) as 0: choose k. By convention, we let ~  equal 1. Thus, if 0: is a 
positive integer, then (%) is same as C(o:, k). As an example, 

( -1/2) = -1/2 x -3/2 x -5/2 = ~ 
3 6 3 X 24 

equals ~  For reasons that will become clear after we prove the following theorem 
(Theorem 1.2.5), the numbers ~  are called binomial coefficients. The two-line no-
tation given in Definition 1.2.4 that we follow throughout this book is the modern 
notation and the reader is strongly urged to follow it. At school level, one encounters 
expressions such as (x+y)2 = x 2+2xy+y2 and (x+y)3 = x 3+3x2y+3xy2+y3. 
Observe that the right hand sides of these equations are homogeneous polynomials in 
x and y, i.e., polynomials in which in each summand, the exponents of x and y add to a 
fixed number. This fixed number is called the degree of the homogeneous polynomial. 
We have the following theorem which dates back to at least the medieval times and 
was known to various civilizations. 

Theorem 1.2.5. (The Binomial Theorem) Let n be a non-negative integer. Then: 
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Proof We first apply the mUltiplication principle. Indeed, (x + y)n is simply 
(x + y)(x + y) ... (x + y), n times. Multiplying out all the terms amounts to doing 
the following. There are n boxes with each box containing both x and y. We choose 
x's from some boxes and y's from the remaining. If we choose x's from n - k boxes 
and y's from the remaining k boxes, then that obtains a summand xn-kyk. Thus 
we already know that the resulting polynomial is homogeneous of degree n. It just 
remains to find the coefficient of the term xn-kyk. Obviously, we have to choose 
n - k boxes for x (and hence the remaining k boxes for y). Since there are n boxes in 
all, the coefficient of xn-kyk must be ~  This completes the proof of the binomial 
theorem. 0 

For a brief history of the binomial theorem, refer to Knuth [34]. In the statement of 
the binomial theorem (Theorem 1.2.5), we did not specify as to what x and yare. 
In some sense, the reason for choosing to do so is that it does not matter. In other 
words given the usual laws of addition and multiplication (of natural numbers), the bi-
nomial theorem (Theorem 1.2.5) is an always true statement. This is expressed in the 
mathematical parlance by saying that the binomial,theorem is a 'formal identity' (or a 
combinatorial identity). This, in particular, means thaHhe statement of binomial theo-
rem is true if we let the variables (x and y) to be any real or complex numbers. But still 
more important is the fact that the theorem is a formal identity. To be mathematically 
more precise, the binomial theorem holds over any commutative ring with identity. 
All through combinatorics, we shall have occasions to meet many such formal iden-
tities, a combinatorial theory of which will be reasonably formulated and formalized 
in Chapter 12 on generating functions.An uninteresting proof of the binomial theorem 
(Theorem 1.2.5)involves induction on n via the use of Pascal identity. 

Theorem 1.2.6. (Pascal identity) Let nand k be positive integers. Then 

Proof Let X be an n-set and fix an element x of X. and let Y denote the set 
X - {x}. For any k-combination (i.e. a k-subset) A of X, either x is in A or x is not 
in A. In the first case if B is the set A - {x}, then B is a (k - I)-subset ofY and 
hence can be chosen in ~  ways, while in the second case, A is itself a k-subset 
of Y and hence can be chosen in n~  ways. The proof is complete by invoking the 
addition principle. 0 

It is also easy to see that Pascal's identity (Theorem 1.2.6) follows from the binomial 
theorem (Theorem 1.2.5) (if we have proved the latter without using the former as we 
did). Pascal's identity gives rise to the famous Pascal triangle, initial portion of which 
is drawn below. Each entry is obtained from the two entries directly above it as given 
Pascal's identity. This obtains all the binomial coefficients ~ , where n runs from I 
to 6 and the horizontal lines correspond to a fixed value of n. Note that Pascal triangle 
is an infinite triangle; only a finite portion of this triangle (from I to 6) is shown in 
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Figure l.2. A more familiar form of the binomial theorem (Theorem l.2.5) is: 

which is obtained by letting y = 1 in the binomial theorem. By making the substitu-
tion x = 1 in the above expression, we obtain: 

t (n) = 2n 

k=O k 

Stated in other words, the above identity tells us that a set of order n has 2n subsets 
in all. We have already seen this in Corollary 1.2.1. Again, the substitution x = - 1 
yields 

~  = L(2k:1) 
k k 

Thus, in any set the number of subsets of odd order is the same as the number of 
subsets of even order. 

Figure 1.2: Pascal Triangle 

A large number of identities involving binomial coefficients are actually proved either 
using a known combinatorial identity or a known polynomial expression such as the 
binomial theorem (Theorem 1.2.5) and manipulating it. For example, to prove that 

we observe that each summand on the left hand side (ignoring the sign) has the form 

~ (n -1) k k-1 
n(n -1) k-1 
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Hence the left hand side reduces to the alternating sum 

n-l ( ) n x L)-l)i n ~ 1 = 0 
>=0 

using the binomial theorem (Theorem 1.2.5). Similarly, to find n L k!l ~ , we take 
the familiar form of the binomial theorem and integrate both sides (as polynomials in 
x) w.r.t. x from 0 to 1. 

Example 1.2.7. A binary block code C of length n is a set of binary sequences of 
length n. For two words x = XIX2··· Xn and y = YIY2··· Yn we define the 
Hamming distance (or distance) between x and Y to be the number of i's where Xi 

and Yi differ. For example, let x = 1000110 and Y = 1101001. Then the Hamming 
distance between x and Y which we write as d(x, y) is 5. The distance d is a metric 
on the set of all the binary words of length n. For a word x, how many words are 
exactly at distance k from x? Since any such word differs from x at exactly k places, 
and since the length of a word is n, there are precisely G) words that are at distance k 
from x. The codewords are transmitted over a communication channel (which is like a 
telephone line). Since the channel is noisy (prone to make mistakes), the word that is 
received at the other end of the channel may not be the same as the transmitted word x. 
The person (or a device, called the decoder) at other side of the channel has, however, 
a list of all the codewords, i.e., the list of all the words in C. He tries to match the 
received word with a codeword that is nearest to it. If Y is the received word and z 
is the nearest codeword (word in the code C), then the decoder interprets this as "z 
must have been sent". It then follows that if it is known beforehand that the channel 
makes no more than r errors (i.e. at most r of the n positions can have O's and 1 's 
interchanged by the channel) and if any word is at distance less than or equal to r from 
at most one codeword, then we will be able to correct all the errors and recover the 
codeword that was sent. This is called the nearest neighbor decoding. (In the above 
case, d(x, y) ::; r, and hence, if z and x are different, then d(y, z) 2: r + 1, so that 
the decoder will recover x and not z). For this to happen, we must have the following 
condition satisfied: The distance between any two codewords must be at least 2r + 1. 
If we draw balls of radius r around each codeword, then no word should belong to two 
such balls. We call a code C with words of length n an (n, r )-code if any two balls of 
radius r drawn with centers at two codewords are disjoint from each other, i.e., contain 
no word in common. For a good code, we should have r as large as possible and also 
ICI as large as possible since having more codewords amounts to being able to send 
more information. The following gives an upper bound (called the Hamming bound) 
on the number of codewords in an (n, r )-code C. 

~  + G) + ... + ~  

For a proof, observe that there are 2n words in all (some of which are codewords). If x 
is a codeword, then a ball of radius r drawn around x contains no codeword other than 
x. Since the number of words at distance at most r from x is given by the denominator 
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of the right hand side of the above expression and since the total number of words is 
2n , a two-way counting produces the desired result. 

Definition 1.2.S. Let r be a real number. By lr J, we mean the largest integer less than 
or equal to r and by r r 1, we mean the smallest integer greater than or equal to r. 

Thus, l7r J = 3 while r 7r 1 = 4 and l7 J = r71 = 7. 
Theorem 1.2.9. Fix a positive integer n. Then the number of odd binomial coefficients 
among the n + 1 numbers: ~  , G) , ... '(n:':l) , ~  is a power of 2. 

Though a shorter proof of this theorem will be given as an exercise in Chapter 12 
(Exercise 12.55), we prefer to give the following elementary and elegant proof, which 
we break into seven parts. 

(a) Let p be a prime number. We say that p divides an integer u exactly m times 
if pm divides u but pm+l does not. Let n be natural number and let p a prime. 
Suppose p divides n! exactly m times. Then 

To prove this, write down n! as the product 1 x 2 x ... x (n - 1) x n. In 
'. that expression, the mUltiples of pare p, 2p, ... and hence l ~ J in number. The 
terms such as p2 should actually be counted two times and they have already 
been counted once. Again the multiples of p2 are p2, 2p2, ... and hence l?' J 
in number. For these numbers that have been already counted once, we need to 
add one for each such and hence we obtain the second summand. Then on to 
multiples of p3 and continuing in this fashion, we obtain the required result. 

(b) Given a non-negative integer n, an expression of the form arar-l ... alaO is 
called the binary representation of n if 

i=r 

n = L ai2i 
i=O 

and provided that each ai is 0 or 1. For the sake of uniqueness, We also stipulate 
that ar is not O. It is then easily seen (exercise) that the binary expansion of any 
non-negative integer is uniquely determined by that integer. 

(c) Let a, b, c be non-negative integers and let u be a positive integer. Suppose 
a = b + c. What can we say about ~ , ~  and ~  We leave it to the 
reader to check that 

~  ~  + ~  
except when the remaihders obtained on dividing b by u and c by u add to a 
number greater than 'or equal to u in which case the L.H.S. exceeds the R.H.S. 
by 1. 
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(d) Turning back to the binary representation in (b), if n has binary representation 
arar-l ... alao,then L;' J has binary representation arar-l ... aj (check this). 

(e) Now let n be a positive integer and let m and k be non-negative integers with 
n = m + k. Since ~  = ~  the number ~  will be odd (in view of (a) 
and (c)) if and only if 

~ J ~ J + l; J 
for all j. For example, with j = 0, if k and m are both odd, then ~  will have a 
power of 2 surviving and hence will not be an odd integer. 

(t) If we now let arar-l ... alaO, brbr- l ··· blbo and CrCr-l ... ClCO to be re-
spectively the binary representations of n, k, m (where, we may add zeros to the 
left of the representation so as to make them all of the same length) then using 
(d) and (e) the binomial coefficient ~  will be odd if and only if in writing 

with binary (i.e. modulo 2) addition, there is no carry at any stage of addi-
tion. (For example, in the usual lO-based system, a child with no knowledge 
of 'carry', will make the correct addition of23 and 45 but will not be able to add 
47 and 38 correctly!) 

(g) Let the binarY representations of nand k be as given above. Given n, if we 
,'have tit choose k so that the binary coefficient ~  is odd, then we must have 
a "nb carry" situation at. each level of addition in (t). Hence if ai is 0, then 
bi must be 0 (and hence Ci is 0), while if ai is 1, then bi can be either 1 or 
o (and correspondingly Ci will be 0 or 1 respectively to make the correct 
binary addition). In any case, each such i gives two choices for bi . Using the 
multiplication principle, tl1e number of odd binomial coefficients is a mUltiple 
of some l's and some 2's and is therefore a power of 2. 0 

For the sake of completeness, we give the following general form ofthe binomial 
theorem called Newton's binomial theorem. This can be proved using Taylor's 
theorem (in fact, it is just a power series expansion with a suitable radius of 
convergence). 

Theorem 1.2.10. Let a be real number and let x be a real number with absolute value 
less than 1. Then 

1.3 Counting objects with repetitions 

In the example of apples and mangoes given earlier (at the beginning of the present 
chapter), we had three apples (of different sizes) and two mangoes (of different sizes). 
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If the three apples were all identical and the two mangoes can not be distinguished 
from each other, and if we still have to pick up one fruit among these, in how many 
ways can that be done? The answer is not 5 but is 2 since picking up either of the 
two mangoes or anyone of the three apples makes no difference. In mathematical 
terms, we say that we are counting objects with repetition or objects are drawn with 
replacement or we are dealing not with a set of elements but a multi-set. A multi-set 
M = {al.xl, a2 .X2, ... , an.xn } is a collection of distinct objects Xl, X2, ... , Xn 

with the object Xi occurring ai times, iI, 2, ... ,n. Here ai's are all non-
negative integers and we say that ai is the multiplicity of the object Xi. The set 
S = {Xl, X2, ... ,Xn } will be called the underlying set of the multi-set M. We 
also allow the possibility of some or all ai's equal to 00. This is to be understood as 
'the object is available in unlimited supply'. We talk of permutations and combinations 
of a multi-set in the same way as that of a set. Initially, it might appear that the formu-
las for permutations and combinations of a multi-set might be as easy as those for sets 
and might even have straightforward relationships of the' kind given in the two Lem-
mas 1.1.2 and 1.1.5. It is not that simple. For example, if M = {4.Xl, 2,X2, 00.X3} 
then to pick up 10 objects of M, we need to consider different cases: we must pick up 
j copies of X2, where j equals 0, 1 or 2. The number of lO-combinations of M is then 
15. As another example, the number of r-permutations of the multi-set M = {oo.x} 
is just one for any value of r. 

Theorem 1.3.1. Let M be a multi-set consisting of r distinct objects, each with infinite 
multiplicity. Then the total number of d-permutations of M is rd. 

Proof This simply amounts to counting the number of sequences of length d on 
an alphabet that consists of r distinct letters. We never run short of any letter since it 
is allowed to repeat any number of times. Hence by Theorem 1.2.2 (c), the required 
number is rd. 0 

In defining the binomial coefficient ~ , we actually count the number of ways of 
putting n distinct objects into two distinct boxes labeled Bl and B2 such that the 
first box holds k objects and the second box holds the remaining n - k objects. Gen-
eralizing this situation prompts us to make the following definition of multinomial 
coefficient: The number of ways of putting n distinct objects in r distinct boxes 
B l , B2, ... , Br such that the i-th box Bi holds ni objects is called a multinomial 
coefficient and is denoted by n ,n ~ .... n,l Necessarily then, nl + n2 + ... + nr = n. 
Thus ~  = (k, ~  

Theorem 1.3.2. Let S be an n-set and suppose the n objects in S are to be put in 
r distinct boxes B l , B 2,'" ,Br such that the i-th box Bi contains ni objects with 
n 1 + n2 + ... + nr = n. Then the number of ways of doing this is equal to 

n! 

Proof Though a direct proof can be given, we prefer to make an induction on r, 
purely for pedagogical reasons. For r = 2, Lemma 1.1.5 and the discussion following 
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it show that the statement of the theorem is true. Let r > 3. Out of n objects, we may 
first choose nl objects to put in the first box BI in C(n, nd = ~  ways and then 
try to put the remaining n - nl objects in the other r - 1 boxes. Having performed the 
first task, that can be done in n ~~,~ ~,n  ways. Now using induction on r, 

Hence the required number equals 

(n - nd! 
n2!" ·nr ! 

n! 

o 

Corollary 1.3.3. Let M be a multi-set consisting of r distinct objects Xl, X2, ... ,Xr 
such that the i-th object Xi has multiplicity ni .. Let n = nl + n2 + ... + n r . Then tile 
total number of n-permutations of M is 

n! 

Proof We set up a bijection between the required set of all the ways of putting the 
elements of Sin r boxes and all the n-permutations of the multi-set 

First number the elements of S from 1 to n. If the element i is put in the box B j , 

then make an n-permutation in which the i-th place is occupied by Xj' Conversely, 
given an n-permutation of M, if we find the i-th place occupied by Xj then put the el-
ement i in the box B j • Hence the result is proved using bijection and Theorem 1.3.2. 0 

It is also possible to prove Corollary 1.3.3 without using Theorem 1.3.2. 

Theorem 1.3.4. (The multinomial theorem) Let n be a non-negative integer. Then: 

where the sum is taken over all the non-negative integers ni that satisfy the given 
stipulation. 

Proof We sketch three different proofs. 
First Proof Make induction on r using the fact that the assertion holds for r = 2, 
which is the binomial theorem (Theorem 1.2.5). 
Second Proof Make induction on n and use Pascal type identities. 
Third (direct) Proof Expand directly imitating the proof of the binomial theorem 
(Theorem 1.2.5) and use Theorem 1.3.2. 0 
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Theorem 1.3.5. Let M be a multi-set with r distinct objects Xl, X2, ... ,Xr each with 
infinite multiplicity. Let C(r, k) denote the number of k-combinations of M. Then 
C(r, k) = ~  

Proof Every k-combination is uniquely determined by a sequence bl , b2, ... , br 
where bi's are all non-negative integers and bl + b2 + ... + br = k. For each 
k-combination of M make a binary sequence of length k + r - 1 as follows. At the 
beginning, write bl zeros and follow this by a 1, then write b2 zeros and then write a 1 
and so on. There will be a final 1 separating the br - l zeros and the last br zeros. Thus 
the binary sequence will consist of exactly bl + b2 + ... + br = k zeros and r - 1 
ones. Conversely given a binary sequence of length k + r - 1 consisting of k zeros 
and r - 1 ones, we read the number of zeros to the left of the first one and call it bl , 

then the number of zeros between the first one and the second and call it b2 and so on. 
Finally the number of zeros to the right ofthe last one is br . For example, with r = 4 . 
and k = 6, the sequence 2,1,1,2 gives the binary sequence 001010100 while the 
binary sequence 100011000 must have come from (0,3,0,3). Since the number of 
binary sequences oflength k + r - 1 with exactly k zeros equals C(k + r - l.k), the 
result is proved using bijection. 0 

Let S be an r-set. We call S an ordered set if there exists an order < on the ele-
ments of S which is a total order (or a chain). That is, the elements of S can be written 
in the form CI, C2 .... , Cr where CI < C2 < ... < Cr. A sequence (Xl, X2,···, Xk) 
with entries from the set S is said to be a monotonically increasing sequence if 
Xl :::: X2 :::: ... :::: Xk. We then have 

Theorem 1.3.6. The following sets are in bijective correspondence. 

(a) The set of all increasing sequences of length k on an ordered set with r elements. 

(b) The set of all the ways of putting k identical objects into r distinct boxes. 

(c) The set of all the k-combinations of a multi-set with r distinct elements. 

In all the three cases, the cardinality of the set is C(k + r - 1, k). 

While we leave the proof of the above theorem to the reader, to conclude this section, 
we also note some interesting connections. 

C(r,k) = ~ ~  

Now let [r]k denote the product r(r+ 1) ... (r+k -1). This called the risingfactorial. 
We then have 

__ [r]k 
C(r, k) = k! 

Theorem 1.3.7. The number of ways of putting k identical objects into r distinct boxes 
with each box containing at least one object is ~ i  

Proof Follow the proof of Theorem 1.3.5. We have to find the totality of binary 
sequences of length k + r - 1 with no two 1 's adjacent and the sequences do not 
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begin or end with a 1. Given such a binary sequence remove one zero between every 
two adjacent 1 's and also one zero each from the left and the right ends. This leaves 
us with a binary sequence of length k - 1 with exactly r - 1 ones. The process is 
reversible. Since the number of binary sequences of length k - 1 with r - 1 ones is 
(;:::i) , the assertion is proved. 0 

Example 1.3.8. An application to Statistical Mechanics: In Statistical Mechanics, 
one encounters the situation of putting k particles into r distinct energy levels. The 
particles can thus be considered as objects and the different energy levels as distinct 
boxes or cells. Three different situations (statistics) are obtained by making three dif-
ferent assumptions. These are 

(a) Maxwell-Boltzman: Here the particles are all distinct and any number of part i-
cles can be put in any of the r boxes. The number of possibilities (as given by 
Theorem 1.3.1) is rk. 

(b) Bose-Einstein: Here the particles are all identical and any number of particles of 
particles can be put in any of the r boxes. The number of possibilities (as given 
by Theorem 1.3.6) is ~  .. 

(c) Fermi-Dirac: Here the particles are all identical but no box can hold more than 
one particle. The number of possibilities is ~  

1.4 Two-way counting revisited: the de Bruijn-Erdos 
Theorem 

In this last part of the discussion on basic counting techniques, we give a somewhat 
sophisticated and deep application of two-way counting. The result known as the de 
Bruijn-Erdos theorem was proved by the authors using repeated applications of two-
way counting. This theorem first appears in the literature in 1948. However, Erdos 
knew its proof ten years prior to its appearance in print. But he did not publish it at 
that time because "It was considered relatively less important to do mathematics of 
that sort!" All the combinatorial proofs of the de Bruijn-Erdos theorem tend to be 
somewhat messy. A short proof (due to Conway) given in van Lint and Wilson [57] is 
discussed here. 
A (finite) incidence structure I is a pair I = (P, L) where P is (finite) set called 
the set of points and L is a set of subsets of P. Each member of L is called a line. 
A linear space is an incidence structure in which every pair of points is contained in 
a unique line (thus no two lines intersect in two or more points). To avoid obvious 
trivialities, we stipulate that every line has size at least two but no line contains all 
the points (in that case there will be no other line). Letting the number of points to 
be v and the number of lines to be b, what relationship do these two integers have in 
general? 
There are two special linear spaces of interest. A linear space is called a near pencil if 
some line has size v -1 (and hence necessarily other lines have size two each). In this 
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case, there is just one more point outside the line of size v-I and this point is on v-I 
lines each of size two. We thus have v = b. Clearly a near pencil can be constructed 
for all the values of v 2: 3. A more special linear space is what is called a projective 
plane. Here all the lines have the same size n + 1 tor some n 2: 2 and further any two 
lines intersect each other. This object is called a projective plane of order n. Figure 1.3 
shows a projective plane of order two and a near-pencil with v = 6. 

Figure 1.3: Fano Plane and Near-Pencil 

Answering the question posed in the previous paragraph, we have the following theo-
rem of de Bruijn and Erdos: 

Theorem 1.4.1. In a linear space I, we must have v ~ b with equality iff the linear 
space is a near pencil or a projective plane. 

Proof All the combinatorial proofs to the above theorem depend on one or more 
applications of two-way counting. We first make some elementary observations. For a 
point x of the linear space I under consideration, let r x denote the number of lines of 
I that contain x and for a line L of I, let k L denote the number of points contained in 
L. We proceed through the following claims. 

(a) If x (j. L, then rx 2: kL with equality iff each line containing x meets L. 

Proof For each y on L we must have a line containing both x and y and no 
two such lines can be identical for then the line L will intersect some line on x 
in two points. Further equality can hold iff there is no line containing x which is 
disjoint from L. 

(b) Every two lines meet each other (i.e. are not disjoint) iffor all x (j. L, rx = kL. 
This is obvious from claim (a). 

(c) We have 

L ry 
yEP 

Proof Make a two-way counting on the set S consisting of all the pairs (y, L) 
where y is a point on the line L. 
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At this point, we assume that b :S v and then prove that this leads to b = v and I 
must be a near-pencil or a projective plane. 

(d) Let Land M be two lines such that L U M = P. Then we have 

LnM =I=- 0; b = v 

and I is indeed a near pencil. 

Proof If L n M =I=- 0 then let {p} = L n M. It then follows that Land Mare 
the only lines containing p and hence every other line Z must intersect each one 
of Land M in a single point. In particular, we must have IZI = 2 for such a line 
Z. Let a = ILl ~ IMI = (3 ~ 2. We see that if L n M = 0, then v = a + (3 and 
b = 2 + a(3 while if L n M =I=- 0, then v = a + (3 - 1 and b = 2 + (a - 1)((3 - 1). 
In the former case, we get (using b :S v), (a - 1) ((3 - 1) + 1 :S 0 which is absurd 
and in the latter case, we get (a - 2) ((3 - 2) :S 0 showing that (3 = 2 and hence 
a = v-I showing that we have a near pencil as desired. 

(e), Let I ~ not a near pencil. Let every two lines have a non-empty intersection. 
Then I is a projective plane. 

Proof Let Land M be two lines. Using claim (d), we see that there is a point 
x tJ. L U M. Then the hypothesis implies that kL = Tx = kM showing that all 
the lines have the same number of points k = n + 1 where n ~ 2. Then all the 
points x also satisfy T x = n + 1 and we have a projective plane as desired. 

We now finish the proof of the theorem using the following clever argument of Conway 
as quoted il'" the book [57] by van Lint and Wilson. Using (b) and (d), it will suffice to 
show that Tx = kL for all the pairs (x, L) with x not on L. To that end, fix such a 
pair (x, L) with x not on L. Then (a) shows that Tx ~ kr and hence because of the 
assumption VTx ~ bkL, i.e. -VTx :S - bkL, i.e. v(b - Tx) :S b(v - kd. Thus 

1 > 1 
v(b - Tx) - b(v - kL) 

Then sum both sides ofthe inequality over all the elements of the set T consisting of all 
the pairs (x, L) with x not on the line L. Consider the L.H.S. of the above inequality. 
Fix a point x and sum the expression over all the lines not containing x. These are 
b - Tx in number, and then summing over all the points x must sum the L.H.S. to 1. 
Use two-way counting to change the order of summation and sum the expression on 
the R.H.S. over all the elements ofT to obtain 1 again. We thus have: 

1 1 
1="" > "" =1 ~ ~ v(b-Tx) - ~ ~ b(v-kL) x EP x !l.L L EL x!l.L 

Therefore equality must hold everywhere and T x 

not all L and we are done. 
= kL for all the pairs x, L with x 

o 

A slightly different proof of Theorem 1.4.1 will be given in Exercise 16.19. 


