


TEXTS AND READINGS 
IN MATHEMATICS 35 

Mathematical Foundations of 
Quantum Mechanics 



Texts and Readings in Mathematics 

Advisory Editor 
C. S. Seshadri, Chennai Mathematical Institute, Chennai. 

Managing Editor 
Rajendra Bhatia, Indian Statistical Institute, New Delhi. 

Editors 
R. B. Bapat, Indian Statistical Institute, New Delhi. 
V. S. Borkar, Tata Inst. of Fundamental Research, Mumbai. 
Prob al Chaudhuri, Indian Statistical Institute, Kolkata. 
V. S. Sunder, Inst. of Mathematical Sciences, Chennai. 
M. Vanninathan, TIFR Centre, Bangalore. 



Mathematical Foundations of 
Quantum Mechanics 

K. R. Parthasarathy 
Revised with the assistance of 

M. Krishna 

~HINDUSTAN 
U Llli U BOOK AGENCY 



Published by 
Hindustan Book Agency (lndia) 
P 19 Green Park Extension 
New Delhi 110 016 
lndia 

email: info@hindbook.com 
www.hindbook.com 

ISBN 978-81-85931-59-3 ISBN 978-93-86279-28-6 (eBook) 
DOI 10.1007/978-93-86279-28-6 

Copyright © 2005, Hindustan Book Agency (India) 

Digitally reprinted paper cover edition 2011 

No part of the material protected by this copyright notice may be repro­
duced or utilized in any form or by any means, electronic or mechanical, 
including photocopying, recording or by any information storage and 
retrieval system, without written permission from the copyright owner, who 
has also the sole right to grant licences for translation into other languages 
and publication thereof. 

All export rights for this edition vest exclusively with Hindustan Book 
Agency (India) . Unauthorized export is a violation of Copyright Law and is 
subject to legal action. 

ISBN 978-93-80250-12-0 



Contents 

Preface 1 

Chapter 1. PROBABILITY THEORY ON THE LATTICE OF 
PROJECTIONS IN A HILBERT SPACE 3 

1.1. Gleason's theorem 3 
1.2. Observables and expectation 17 
1.3. Wigner's theorem 23 
1.4. Covariant description of a quantum mechanical system 32 
1.5. Observables arising from a covariant description 34 
1.6. Hahn-Hellinger theorem 35 

Chapter 2. SYSTEMS WITH A CONFIGURATION UNDER A 
GROUP ACTION 45 

2.1. Position as an observable 45 
2.2. Examples of imprimitivity systems 47 
2.3. The imprimitivity theorem of Mackey for transitive group 

actions 51 
2.4. Equivalence of canonical imprimitivity systems 61 
2.5. Irreducibility of canonical imprimitivity systems 68 
2.6. Existence of p. u.a representations 69 
2.7. An alternative description of the induced representation 73 
2.8. Inducing in stages 76 

Chapter 3. MULTIPLIERS ON LOCALLY COMPACT GROUPS 87 
3.1. Borel multipliers on generallocally compact groups 87 
3.2. Multipliers on compact groups 92 
3.3. Symmetrie multipliers on abelian groups 93 
3.4. Multipliers on semidirect products 94 
3.5. Multipliers on Lie groups 96 
3.6. Multipliers on lRn x lRn and 1['n x 1['n 100 
3.7. Multipliers on semisimple Lie groups 103 
3.8. Multipliers on a semidirect product of a vector space and a 

linear Lie group 107 
3.9. The Galilean group and its multipliers 111 

iii 



iv CONTENTS 

3.10. The inhomogeneous Lorentz group and its multipliers 117 

Chapter 4. THE BASIC OBSERVABLES OF A QUANTUM 
MECHANICAL SYSTEM 127 

4.1. Projective unitary antiunitary representations of semidirect 
products when the normal component is abelian 127 

4.2. Projective unitary representations of the covering group of 
the Galilean group 133 

4.3. A description of observables of a quantum mechanical 
system covariant under the action of the Galilean group 141 

4.4. The Hamiltonian of an N-particle system 144 
4.5. Projective unitary representations of the connected 

component of the Poincare group 151 
4.6. A description of observables of a quantum mechanical 

system covariant under the action of the connected 
component of the Poincare group 157 

4.7. The Schrödinger operator of a one electron atom 160 
4.8. The Schrödinger operator of a two electron atom 164 

Bibliography 169 



Preface 

This is abrief introduction to the mathematical foundations of quan­
tum mechanics based on lectures given by the author to Ph.D.students at 
the Delhi Centre of the Indian Statistical Institute during the years 1980-
1985 in order to initiate active research in the emerging field of quantum 
prob ability. The material in the first chapter is included in the author's 
book "An Introduction to Quantum Stochastic Calculus"published by 
Birkhauser Verlag in 1992 and the permission of the publishers to reprint 
it here is acknowledged. Apart from quantum prob ability, an under­
standing of the role of group representations in the development of quan­
tum mechanics is always a fascinating theme for mathematicians. In this 
context the books by G.W.Mackey [8] and V.S.Varadarajan [11] have 
exerted a considerable infiuence in my pedagogical approach to the sub­
ject. Graduate students to whom I had recommended these books feIt 
somewhat uncomfortable with them and I hope these notes would prove 
to be more encouraging in getting a quicker introduction to this theme. 

The first chapter deals with the definitions of states, observables 
and automorphisms of a quantum system through Gleason's theorem, 
Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity 
theorem and the theorem of inducing representations of groups in stages 
are proved directly for projective unitary antiunitary representations 
in the second chapter. Based on a discussion of multipliers on locally 
compact groups in the third chapter all the well-known observables of 
classical quantum theory like linear momenta, orbital and spin angular 
momenta, kinetic and potential energies, gauge operators etc., are de­
rived solely from Galilean covariance in the last chapter. A very short 
account of observables concerning a relativistic free particle is included. 
In conclusion, the spectral theory of Schrödinger operators of one and 
two electron atoms is discussed in some detail. 

I have benefited greatly from discussions with R.Bhatia, M.Krishna, 
P.L.Muthuramalingam and K.B.Sinha in writing these notes. The first 
three participated actively in the preparation of an earlier version and 



2 Preface 

correcting innumerable mistakes. To all of them I express my sincere 
thanks and I take the responsibility for all the surviving errors. Finally, 
I thank M.Krishna for revising the notes, organising the TEXing and 
making it possible to bring out this edition in the form of a lecture note 
volume. 

I am grateful to Mr.V.P.Sharma for typing the originallecture not es 
and Mrs.T.S.Bagya Lakshmi for typing apart of the current version. 
Generous support from the Institute of Mathematical Sciences, Chennai 
in the completion of the revised version during the period 19 June - 31 
July 2005 is gratefully acknowledged. 

K.R.Parthasarathy 
August 2005, New Delhi 



CHAPTER 1 

PROBABILITY THEORY ON THE LATTICE 
OF PROJECTIONS IN A HILBERT SPACE 

1.1. Gleason's theorem 

In classical probability theory one assumes that all the events con­
cerning a statistical experiment constitute a Boolean iT-algebra and de­
fines a probability measure as a completely additive non-negative func­
tion which assigns the value unity for the identity element of the iT­

algebra. Invariably, the iT-algebra is the Borel iT-algebra Ex (i.e., the 
smallest iT-algebra generated by the open subsets) of a ni ce topological 
space X. Under very general conditions it turns out that all probabil­
ity measures on Ex constitute a convex set whose extreme points are 
degenerate probability measures. 

We observe that Ex admits a null element, namely 0, a unit element, 
namely X, a partial order ~ and operations union (U), intersection (n) 
and complementation ('). We shall, in this chapter, develop an analogous 
prob ability theory by replacing the iT-algebra Ex of events by a lattice of 
projections on a Hilbert space H. Most of the computations of quantum 
mechanics is done in such a lattice. 

Let H be areal or complex separable Hilbert Space and let P(H) de­
note the set of all orthogonal projection operators on H, where 0 denotes 
the zero projection and I denotes the identity operator. If PI, P2 E P(H) 
we say that PI ::; P2 if the range of PI is contained in the range of P2. 
Then ::; makes P(H) a partially ordered set. For any operator A on 
H let R(A) denote its range. For {Pa,et E T} c P(H), let a~TPa be 
the orthogonal projection on the smallest closed linear span of all the 
subspaces R(Pa), et E T. Let a~TPa be the orthogonal projection on 

a~TR(Pa)' For any P E P(H),I - P is the orthogonal projection on 
the orthogonal complement R(P).l of the range of P. We may compare 
0, I,::; V,I\ and the map P ----+ 1- P in P(H) with 0, X, c, u, n and 
complementation ' t' of standard set theory in the space X. The chief 

3 



4 1. LATTICE OF PROJECTIONS 

distinction lies in the fact that U distributes with n but V need not dis­
tribute with 1\. For example in the real Hilbert space IR2 , let PI, P2 , P3 

be the projections on the one dimensional subspaces 81 ,82,83 respec­
tively. See Figure 1. We have 81 n 82 = 81 n 83 = 0,82 + 83 = IR2 . 

Hence (PI 1\ P2 ) V (PI 1\ P3 ) = 0, PI 1\ (P2 V P3 ) = PI. This failure 
of distributivity in P(H) has very important consequences as we shall 
observe in the book. 

s, 

S2 

s, 

FIGURE 1 

Definition 1.1.1. Astate is a map f.t : P(H) ---7 [0,1] satisfying 
the following properties: 

(i) f.t(0) = 0, f.t(I) = 1; 

(ii) f.t (. c:: Pi) = I:f.t(Pi ) whenever PiPj = 0 for every i 0:1 j. 
z = 1 i=1 

Example 1.1.2. Let T be any non-negative compact self-adjoint 
operator on 1i of trace unity. Define 

f.t(P) = tr T P. 

Then f.t is astate on P(H). 

Example 1.1.3. Let 1i = ]R2 and let f(O), 0 :::; 0 :::; ~ be a func­
tion satisfying 0 :::; f (0) :::; 1 for all O. Define astate f.t f as follows: 
f.tf(O) = 0, f.tf(I) = 1; ifle is a line through the origin making the angle 
o with the x axis and Pe is the orthogonal projection on le then 

_ { f(O) if 0:::; 0 < ~, 
f.tf(Pe) - 1 - f(O) if ~:::; 0< Ti. 
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Since every orthogonal projection is either 0,1 or 2 dimensional and the 
only 2 dimensional projection is I it is clear that f-t is astate. 

When dirn H 2: 3 the situation changes drastically and every state is 
determined by a non-negative self-adjoint operator of trace unity as in 
Example 1.1.2. This is precisely Gleason' s theorem. 

Remark 1.1.4. It may be noted that if f-t and v are two states and 
o :::; p, q :::; 1, p + q = 1 we can define a new state pf-t + qv by the equation 
(pf-t+qv)(P) = pf-t(P)+qv(P) for all PE P(H). ThenPf-t+qv is called 
a mixture of f-t and v. Thus the set of all states on P(H) is a convex 
set. We may compare astate on P(H) with a probability measure on a 
a-algebra. 

Definition 1.1.5. A frame function f of weight W for a sepa­
rable Hilbert space H is a complex-valued function defined on the unit 
sphere of H satisfying (i) f(x) = f(>"x) for all scalars >.. of modulus 
unitYj (ii) for every complete orthonormal basis {Xj, j = 1,2,"'} the 

00 00 

infinite series 2:= f(xj) converges absolutely and 2:= f(xj) = W. A 
j=l j=l 

frame function f is said to be regular if there exists a bounded operator 
T such that f(x) = (Tx, x) where (.,.) denotes inner product. 

It may be noted that for every state f-t on P(H) we can define a 
frame function fJ.L by putting fJ.L(x) = f-t(Px ) where Px is the orthogonal 
projection on the one dimensional subspace generated by the unit vector 
x. Conversely if f is any non-negative frame function of weight unity 

00 

then we can define astate f-t f by the identity f-t f (P) = 2:= f (x j) where 
j=l 

{Xj,j = 1,2,"'} is any complete orthonormal basis for the range of P. 
Thus, in order to prove Gleason's theorem we have to only show that 
every non-negative frame function of unit weight is regular. 

Lemma 1.1.6. Every infinitely differentiable frame function in ]R3 

is regular. 

PROOF. Let F denote the space of all frame functions in ]R3. We 
shall represent any point p on the unit sphere 8 2 by its spherical polar 
coordinates (e, rjJ), 0 :::; e < 'Ir, 0 :::; rjJ < 2 'Ir . See Figure 2. Thus any 
function f on 8 2 can be viewed upon as a function of e and rjJ which is 
periodic in e of period 'Ir and periodic in rjJ of period 2 'Ir • Let 0 3 denote 
the group of all rotations in ]R3 ab out the origin O. For any g E 0 3 

let 9 0 (e, rjJ) be the point obtained by applying 9 to the point (e, rjJ). 
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Let now f be any infinitely differentiable frame function. If g~ and g~ 
denote rotations through an angle a about the x and z axis respectively, 
then 

g~ 0 (B, </J) = (B, </J + a) mod (1f,21f) 
g~ 0 (B, </J) = (B', </J') 

where (B, </J) and (B', </J') are related by the equation 

(~ co~ a Si~ a) (:~~ ~ ~~~:) = (:~~~: ~~~ :;) 
o - sm a cos a cos B cos B' 

For any rotation 9 it is clear that f(g 0 (B , </J)) is also a frame function. 

Further F is a linear space. Thus 

(1.1.1) f (g~ 0 (B, </J)) = f ( B , </J + a) E F for all a, 

(1.1.2) d~ f(g~ 0 (B , </J))la=o = sin </J ~~ + cot B cos </J ~~ E :F. 

Hence for every integer n, 

(1.1.3) fo27r f(B , </J+a)e-inada = ein</> fo27r f(B , a)e-iMda = ein</> fn(B), 

say, is an element of F which is differentiable. 

We shall now investigate frame functions of the form F(B)ein</> where 
F is differentiable. Applying (1.1.2) we obtain 

(1.1.4) (F' (B) sin </J + in F( B) cot B cos </J ) ein</> E :F. 

Changing </J to </J + ~ in this relation we get 

(1.1.5) (F' (B) cos </J - in F( B) cot B sin </J ) ein</> E :F. 

Multiplying (1.1.4) by i and adding and subtracting from (1.1.5) we 
conclude 

(1.1.6) 

F( B)ein </> E F, 

(F'(B) - nF(B) cot B)ei(n+l)</> E F, 

(F'(B) + nF(B) cot B)ei(n-l)</> E:F. 

In the plane </J = 0 we find that F( B) and nF( B) cot B are frame functions. 
Hence there exist constants a and b such that 

F(B) +F (B+~) = a, 

F( B) cot B + F (B + ~) cot (B + ~) = b, if n # O. 
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Solving for F(8) we get 

(1.1. 7) F(8) =asin2 8+bsin8cos8 }ifni- O 
F ' (8) = a sin 28 + b cos 28 

7 

Now consider a frame function of the form F( 8)einrP , n i- 0 where F 
is given by (1.1.7) and the orthonormal basis (8, q;), (8+~, q;), (~, q; + ~). 
Then there exists a constant c such that 

F(8)einrP + F (8 +~) einrP + F (~) eimr/2einrP = c 

for all 8, q;. Hence 

C = 0, a(l + in) = O. 

Applying the middle relation in (1.1.6) with F, F ' from (1.1. 7) and 
using the same orthonormal basis we obtain b(n + i n +l ) = O. 

In other words bi-O implies that n = ±l and a = o. If b = 0, 
then a sin2 8einrP E Fand the middle relation in (1.1.6) implies that 
aei (n+l lrP (2 - n) sin 8 cos 8 E F. Applying (1.1.6) again we conclude 

a=O 
b=O 

if 

if 

n= ±l or Inl > 2, 

Inl ~ 2. 

Now consider a frame function of the form F(8). Then (1.1.6) implies 
that F' (8)eirP is a frame function. Hence 

F' (8) = a sin2 8 + bsin 8 cos 8 for some a, b. 

Thus 

F( 8) = Cl + C2 (8 - ~ sin 28) + C3 sin2 8 

for some constants CI, C2, C3. Since Cl + C3 sin2 8 is a frame function but 
8 - ~ sin 28 is not, if follows that C2 = O. Thus the most general differ­
entiable frame function is of the form 

f(8, q;) = al + a2 sin2 8 + a3eirP sin 8 cos e + a4e-irP sin e cos e 
+ ase2irP sin2 e + a6e-2irP sin2 e. 

Since the cartesian coordinates (x, y, z) and polar coordinates (e, q;) are 
related by x = sin e cos q;, y = sin e sin q;, Z = cos e it follows that f (e, q; ) 
is a quadratic form in x, y, z. In other words f is regular and the proof 
is complete. D 

Lemma 1.1.7. Every continuous frame function in IR3 is regular. 
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PROOF. Let 8 2 denote the unit sphere in ]R3 and let f : 8 2 ~ C be 
a continuous frame function. On the group 0 3 of rotations define the 
lifted function: 

1(g) = f(g(O, 0)) 
where (0,0) denotes the polar coordinates of the north pole. For any 
smooth function cP on 0 3 consider 

(1 * cp)(g) = J 1(h-1g)cp(h)dh. 

where dh denotes integration with respect to the normalised Haar mea­
sure of 0 3 . The~ (1 * cp)(gk) = (1 * cp)(g) for all rotations k about the 
z axis. Further f * cp is smooth. Thus there exists a smooth function 'ljJ 
on 8 2 such that 

(1 * cp)(g) = 'ljJ(g(O, 0)) for all g. 

Since frame functions constitute a vector space it also follows that 'ljJ 
is a smooth frame function. Thus 'ljJ is regular. choose a sequence of 
non-negative smooth functions CPn on G such that 

J CPn (g )dg 1 

r CPn(g)dg ~ 0 as n ~ 00, 

iN' 
for every neighbourh~od N~ of the identity in 0 3 , N' den~ting the com­
plement of N. Then 'ljJn = f * CPn converges uniformly to f as n ~ 00. In 
other words the corresponding 'ljJn converges uniformly to f as n ~ 00. 

Since each 'ljJn is regular it follows that f is regular. This completes the 
~~ 0 

We shall now establish a few lemmas leading to the result that every 
non-negative frame function in ]R3 is, indeed, continuous. We write for 
any map f : 8 2 ~ C and any neighbourhood V C 8 2 , 

Osc(j, V) = sup If(x) - f(y)l· 
x,yEV 

Lemma 1.1.8. Let f be a frame function defined on 8 2 . If for 
some point p there exists a neighbourhood Vp such that Osc(j, Vp) < 1] 

then for every point q there exists a neighbourhood Vq of q such that 
Osc(j, Vq) < 41]. 

PROOF. Without loss of generality we may take p to be the north 
pole and Vp to be the spherical cap with centre p and arc length e. See 
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Figure 3. Let qo be any point on the equator. Draw the great eircle pqo 
and eonsider the point r at distanee ~ from the equator along this great 
eircle. Construct a neighbourhood Vqo of qo so that for any q E Vqo 
the points at right angles to rand q along the great eircle rq fall in 
Vp . Denote the points by (r', q'). Note that the map q --t (r', q') is 
eontinuous in Vqo ' If ql, q2 belong to Vqo and the images are (ri, qi) and 
(r;, q;) respeetively then 

f(r) + f(rD = f(qi) + f(q~),i = 1,2. 

Taking differenee we have 

f(ql) - f(q2) = [f(rD - f(r;)]- [f(qD - f(q;)]· 

This implies Ose(j, VqJ < 27]. If s is any point on S2 then the equato­
rial eircles for p and s meet at a point qo. Then s lies on the equato­
rial eircle of qo. Henee we ean find a neighbour hood Vs of s such that 
Ose(j, Vs) < 47]. This eompletes the proof. 0 

Definition 1.1.9. Let p denote the north pole and N the northern 
open hemisphere in a unit sphere with centre O. For any p' E N - {p} the 
great circles on the equatorial planes corresponding to p and p' intersect 
at two points q, q'. The great circle qp' q' is called the east west great 
circle through p' and denoted by EWpl. The angles p' Oq and p' Oq' are 
~ each (See Figure 4). 

Lemma 1.1.10. Let zEN - {p}. Then the set 

U = {x: y E EWx n (N - {p}),z E EWy} 

contains a nonempty open set. 

PROOF. Without loss of generality we may assume that z has earte­
sian coordinates (eos (J, 0, sin (J). Let Yo = (~o, 7]0' (0) be a point in N - {p} 
such that the great circle ZYo is also EWyO whieh meets the equator at 
t. (See Figure 5). 

Let t = (eos 0:, sin 0:, 0) and let (l, m, n) be the direetion eosines of 
the normal to the plane zOt. Then 

l eos (J + mO + n sin (J 0, 

l~o + m7]o + neo 0, 

l eos 0: + m sin 0: + nO O. 

Eliminating l, m, n we have 

(1.1.8) (~o sin (J - (0 eos (J) sin 0: - 7]0 sin (J eos 0: = O. 
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Since t -'- Yo we have 

(1.1.9) T/o sin a + ~o cos a = O. 

Eliminating a from (1.1.8) and (1.1.9) we get 

(1.1.10) (~6 + T/6) sin () - ~o(o cos () = O. 

Let 1/J(~, T/, () = (e + T/2) sin () - ~(cos (). Then 1/J(~, T/, 0) > 0 and 
1/J(~, T/, () < 0 when (1_(2)1/2 > ~ > (-1(1-(2)tan() and (> sin(). This 
implies that if we take a point x = (~, T/, () such that 1/J(~, T/, () < 0 then 
EWx meets the equator at a point t = (e,T/',O) where 1/J((,T/', 0) > O. 
Hence there exists an intermediate point Yo = (~o, T/o, (0) on EWx where 
(1.1.10) is fulfilled. Then z E EWyo . Thus 

U ~ {x = (~,T/,() E N - {p}, 1/J(~,T/,() < O}. 

Since 1/J is continuous U contains an open set. The proof is complete. D 

Lemma 1.1.11. Every non-negative frame function in ~3 is regular. 

PROOF. Let f 2: 0 be a frame function of weight W. Without loss 

of generality we mayassume that }~12f(x) = O. Let T/ > 0 be arbitrary. 
Choose p such that f(p) ::; T/. Let 0" be the rotation through ~ ab out the 
axis through p. Put g(x) = f(x) + f(O"x). Then g is a frame function 
of weight 2W. For any point q on the equator of p,g(q) = W - f(p). 
Let rEN - {p} and let s, t be two points on EWr n N - {p} such that 
s -'- t. If q is a point of intersection of EWr with the equator of p then 

2W 2: g(s) + g(t) = g(r) + g(q) 2: g(r) + W - f(p) 2: g(r) + W - T/. 

Hence 
g(r) ::; W + T/ for all rEN - {p}. 

In particular 

g(r) + W - T/ ::; g(s) + g(t) ::; g(s) + W + T/. 

Thus for any rEN - {p} and s E EWr 

(1.1.11) g(r) ::; g(s) + 2T/. 

Let ß = inf{g(x)lx E N - {p}}. Let zEN - {p} be such that g(z) ::; 
ß+T/. Let now xE N - {p} be such that there is a y E (N - {p}) nEWx 

and z E EWy . Then by (1.1.11) 

g(x) ::; g(y) + 2T/,g(y) ::; g(z) + 2T/. 

Thus 
ß::; g(x) ::; g(z) + 4T/ ::; ß + 5T/. 
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By Lemma 1.1.10 there exists a neighbourhood V such that 

Osc(g, V) :S 51]. 

By Lemma 1.1.8 there exists a neighbourhood Vp of p such that 

Osc(g, Vp) :S 201]. 

Hence for any x E Vp 

o :S g(x) :S g(x) - g(p) + g(p) :S 201] + 2g(p) :S 221]. 

11 

Since f(x) :S g(x) for all x we have 0 :S f(x) :S 221] for all x E Vp . Thus 
üsc(j, Vp ) :S 221]. By Lemma 1.1.8 every point q has a neighbourhood 
Vq such that Üsc(j, Vp) :S 881]. Since 1] is arbitrary it follows that f is 
continuous. The regularity of f is now immediate from Lemma 1.1.7. 
This completes the proof. D 

Lemma 1.1.12. If f is a non-negative regular frame function of 
weight W in areal Hilbert space, then for any two unit vectors x and y, 

If(x) - f(y)1 :S 2Wllx - yll· 

PROOF. Since f is regular there is a positive symmetrie operator T 
such that f(x) = (Tx, x). Then 

/f(x)-f(y)1 I(T(x+y),x-y)1 

< IITllllx + Yllllx - ylI 
< 2Wllx-ylI· 

D 

Definition 1.1.13. Let'H be a complex Hilbert space. A closed set 
S is said to be a completely real subspace if for all x, y E S, (x, y) is 
real and ax + by E S for all real a, b. 

Lemma 1.1.14. Let'H be a complex Hilbert space of dimension 2 
and let f be a non-negative frame function in 'H. If f is regular in every 
completely real subspace then it is regular in 'H. 

PROOF. Let sup f(x) = M. For any xE 'H, let 

F(x) = { IIxll 2 f (II~II) if x i= 0, 
o otherwise. 

Choose unit vectors X n such that 

!im f(x n ) = M, !im X n = Xo 
n----t(X) n----tCXJ 


