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Preface 

In 1902 the French mathematician Henri Lebesgue wrote his famous dis­
sertation Integrale, Longueur, Aire (Integral, Length and Area). Since 
1914 the theory of the Lebesgue measure has become a part of the under­
graduate curriculum in analysis in all the technologically advanced coun­
tries of the world. In 1933 the Russian mathematician A. N. Kolmogorov 
wrote the famous book Grundbegriffe der Wahrscheinlichkeitsrechnung 
(Foundations of Probability) in which he formulated the basic axioms of 
probability theory. The appearance of Measure Theory by P. R. Halmos 
and An Introduction to Probability Theory and Its Applications by W. 
Feller in 1950 made both subjects accessible to all undergraduate and 
graduate students in mathematics all over the world. 

The present book has been written in the hope that it will provide the 
impetus to introduce in undergraduate and graduate programmes both 
measure theory and probability theory as a one-year course. Since the 
study of probability theory in its advanced stage depends on a knowledge 
of measure theory, special effort has been made to integrate the two 
subjects into a single volume. 

The material of the book grew out of the lectures delivered by the 
author to M. Sc. students at the Centre of Advanced Study in math­
ematics in the University of Bombay, M. Stat. students of the Indian 
Statistical Institute, Delhi, and M. Sc. students at the Indian Institute 
of Technology, Delhi. 

The book is divided into eight chapters. Chapter 1 deals with com­
binatorial probability and the classical limit theorems of Poisson and 
Laplace-De Moivre. It provides a motivation for extending measures 
from boolean algebras to a-algebras. Chapter 2 is devoted to extension 
of measures from boolean semi algebras and classes of topologically im­
portant subsets to a-algebras. Chapter III deals with properties of borel 
maps from a measure space into a separable metric space. In particular, 
Lusin's theorem and the isomorphism theorem are proved. Extension of 
measures to projective limits of borel spaces is also studied. Chapter 4 



deals with integration, Reisz's representation theorem that integration 
is the only linear operation on good function spaces, and properties of 
function spaces arising out of a measure space.. Chapter 5 contains a 
discussion of measures and transition measures on product spaces. The 
Lebesgue measure in Rk, the change of variable formula for Lebesgue 
integrals and construction of infinitely differentiable functions are also 
considered. Chapter 6, which is the longest in the book, introduces 
the notion of conditional expectation through orthogonal projection and 
avoids the customary use of the Radon-Nikodym theorem. The Radon­
Nikodym theorem and the Lebesgue decomposition are deduced as a 
corollary of a more general decomposition theorem due to von Neu­
mann. Convergence of conditional expectations in various senses, the 
idea of regular conditional probability, ergodic theorems and ergodic de­
composition are also treated in this chapter. Chapter 7 gives a brief 
introduction to weak convergence of probability measures and charac­
teristic functions. The last chapter introduces the construction of Haar 
measure on a locally compact group and invariant and quasi invariant 
measures on homogenous spaces. The Mackey-Weil theorem on groups 
with a quasi invariant measure is also proved. For the benefit of the 
student a number of exercises are included. Connections between mea­
sure theory and probability theory on the one hand and various topics 
like functional analysis, statistics, ergodic theory, etc., on the other are 
indicated through Remarks, Examples and Exercises. 

New Delhi, 1977 K.R.P. 



Preface to the Revised Edition 

Probability theory had a humble origin during the middle of the seven­
teenth century in the study of games of chance whereas measure theory 
was born in the quest to understand Fourier series in the beginning of the 
twentieth century. To borrow a phrase attributed to Mark Kac and its 
adaptation by my friend Luigi Accardi, probability theory and quantum 
probability are respectively measure and operator theory with a soul. 
This sentiment is well brought out in A. N. Kolmogorov's "Foundations 
of Probability" (1933) and von Neumann's "Mathematical Foundations 
of Quantum Mechanics" (1932). A recognition of this aesthetic aspect 
depends very much on a good understanding of measure theory. Owing 
to recent explosive developments in probability theory from the view 
point of applications there is a similar need among a wide spectrum of 
scholars ranging from economists to engineers and physicists to psychol­
ogists. Furthermore, measure theory has its ramifications in topics like 
function spaces, operator theory, generalized functions, ergodic theory, 
group representation, quantum probability etc. 

Taking all the aspects mentioned above into our view the manuscript 
for the 1977 edition of the book was prepared by using the notes based 
on the M.Sc. and M.Stat courses which I taught at the University of 
Bombay, 1.1. T., Delhi and the Delhi Centre of the Indian Statistical In­
stitute. It was typed on an ancient mechanical typewriter and printed by 
a publisher, not very much accustomed to the delicate needs of a subject 
like mathematics. However, the main aim of bringing out an inexpensive 
local edition and making the study of probability and measure occupy 
a visible position in our graduate and undergraduate programmes was 
achieved. Unfortunately, the book disappeared from the market around 
1982. Students who took courses based on this book have communi­
cated their appreciation on several occasions and also expressed their 
disappointment at its nonavailability in the market. The present, albeit 
infinitesimally revised, edition with several corrections has been skilfully 
TEXed by Anil Shukla and printed by the most competent professional 



publisher in India in the field of mathematics and, I believe, it would go 
a long way in helping students get a firm foothold in the twin themes 
of probability and measure and understand the sentiments expressed 
above. To Anil Shukla and the Hindustan Publisher I offer my sincere 
thanks. 

New Delhi, 2005 K.R.P. 
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Chapter 1 

Probability on Boolean AIgbras 

1.1 Sets and Events 

In probability theory we look at all possible basic outcomes of a sta­
tistical experiment and assume that they constitute a set X, called the 
sample space. The points or elements of X are called elementary out­
comes. We shall illustrate by a few examples. 

Example 1.1.1. The simplest statistical experiment is one with two 
elementary outcomes, for example, tossing a coin where the outcome is a 
head or a tail; observing the sex of a new born baby where the outcome 
is male or female; examining whether a manufactured item is defective 
or not, etc. 

In these cases we denote the basic outcomes by 0 and 1. It is cus­
tomary to call them failure and success respectively. The sample space 
X contains exactly two points, namely, 0 and 1. 

Example 1.1.2. Throw a die and observe the score. The die has 
six faces and the possible scores form the set X = {I, 2, 3, 4, 5, 6}. 

Example 1.1.3. Go on tossing a coin till you get the first head and 
observe the outcome at every stage. If we denote head by H and tail by 
T, any elementary outcome of this experiment is a finite sequence of the 
form TTT . .. T H. The sample space consists of all such finite sequences. 

Example 1.1.4. Shuffle a pack of cards and observe the order from 
top to bottom. The space X consists of 52! permutations. 

Example 1.1.5. Observe the atmospheric temperature at a specific 
place. The elementary outcomes are just real numbers. Thus the sample 
space is the real line. 
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Example 1.1.6. Observe the pressure and the temperature of a gas 
in a box. Here X may be assumed to be the plane R2. 

Example 1.1. 7. Observe the temperature graph of the atmosphere 
during a fixed hour. The sample space X may be identified with the set 
of all continuous curves in the interval [0,1]. 

Let A c X be any subset of the sample space X of a statistical 
experiment. The performance of the experiment leads to the observation 
of an elementary outcome x which is an element of X. If x E A, we say 
that the event A has occurred. If x tI- A, we say that the event A 
has not occurred or, equivalently, X - A (the complement of A) has 
occurred. From a practical point of view not every event may be of 
interest. For example, in Example 1.1.5 above, consider the event' the 
temperature measured is a transcendental number'. Such an event is 
not of any practical significance. However, an event of the kind 'the 
temperature measured lies in the interval [a, bl' is of value. We can sum 
up this discussion as follows: there is a collection F of subsets of the 
sample space, the events corresponding to the elements of which are 
of 'practical value'. We assume that such a collection F of events or 
subsets of the sample space X is clearly specified. We simply say that F 
is the collection of all events concerning the statistical experiment whose 
sample space is X. By an event we mean an element of F. 

We shall now examine what are the natural conditions which the 
collection or family F of all events should satisfy. Let A c B c X be 
such that A, B E F. If x E A, then x E B. In other words, whenever A 
occurs B also occurs. Thus set theoretic inclusion is equivalent to the 
logical notion of implication. 

If A, B E F, consider the sets Au B, An B and X-A. Note 
that the occurrence of one of the events A, B is equivalent to saying 
that the experiment yields an observation x belonging to A u B. It is 
natural to expect that Au B is also an event. The occurrence of both 
A and B means that the experimental observation x belongs to An B. 
The nonoccurrence of A means that x lies in X-A. So it is natural 
to demand that F is closed under finite union, finite intersection and 
complementation. Nothing is lost by assuming that the whole space X 
and hence its complement, the empty set 0 also belong to F. This leads 
us to the following. 

Definition 1.1.8 A collection F of subsets of a set X is called a 
boolean algebra if the following conditions are satisfied: 
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(1) If A,B E F, then AUB E F and AnB E F; 

(2) If A E F, the complement X - A E F; 

(3) the empty set 0 and whole space X belong to :F. 

3 

Remark 1.1.9 Hereafter throughout the text we shall write A' (read 
A prime) for the complement X - A of the set A. For any two subsets 
A, B of X we shall write AB for the intersection An B, A -- B for the 
set AB' and A~  for the symmetric difference (A - B) U (B - A). 

Example 1.1.10. Let X be any nonempty set and let F be the 
class of all subsets of X. Then F is a boolean algebra. 

Example 1.1.11. Let X = R be the real line and let the family I 
be defined by 

I {all intervals of the form( -00, +(0), 

(-00, a], (a, (0), (a,b], wherea,b E R}. 

Then the collection 

F {A: A C R,A = Ui=lAi,Ai E I,Ai n Aj = 0 
for i =I- j, for some positive integer n} 

is a boolean algebra. (Here we consider the empty set as the interval 
(a, b] when b 2: a.) 

Example 1.1.12. Let Y be any set and let X be the space of 
all sequences of elements from Y, i.e., any x E X can be written as 
x = (Yl, Y2, ... ) where Yi E Y for every i = 1,2, .... Let A be any subset 
of the cartesian product Y x Y x ... x Y, taken k times. A subset C eX 
of the form 

C = {x = (Yl, Y2, .. ·) : (Yip Yi2'···' Yik) E A}, 

(where il < i2 < ... < ik are fixed positive integers) is called a k­
dimensional cylinder set. Then the collection F of all finite dimensional 
cylinder sets is a boolean algebra. 

Going back to the relation between the language of set theory and 
the language of events we summarise our conclusions in the form of a 
table. Let F be a boolean algebra of subsets of the sample space of a 
statistical experiment so that F is the collection of all events. Then we 
have the following dictionary : 
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Language of events 
A is an event 
event A implies event B 
event A does not occur 
one of the events A, B occurs 
both the events A and B occur 
event which always occurs 
event which never occurs 
events A and B cannot occur 
at the same time 

Language of set theory 
AEF 
AcB 

A' 
AUB 
AB 
X 
o 

AnB=0 

1.2 Probability on a Boolean algebra 

Consider a statistical experiment whose elementary outcomes are de­
scribed by a sample space X together with a boolean algebra F of sub­
sets of X. Let the experiment be performed n times resulting in the 
elementary outcomes Xl, X2,' .. ,Xn E X. Let A c X be an element of 
F. Let 

Pn(A) = m(A)/n 

where m(A) is the number of elementary outcomes Xi that lie in the set 
A. The number Pn(A) may be called the frequency of occurrence of the 
event A in the given n trials. First of all we note that A ----+ Pn(A) is a 
map from F into the unit interval [0, 1]. It is clear that 

(i) Pn(A U B) = Pn(A) + Pn(B) if A n B = 0, A, B E F; 

(ii) Pn(X) = 1. 

It follows from property (i) that 

k 

Pn(AI U A2 U ... U Ak) = L Pn(Ai) if Ai n Aj = 0 
i=l 

for all i oF j and AI, A 2, . .. Ak E F. We say that Pn is a nonnegative 
finitely additive function on F such that Pn(X) = 1. If there is a 'sta­
tistical regularity' in the occurrence of the observations X I, X2, ... , we 
expect that, for A E F, Pn(A) will stabilise to a number p(A). If it is 
indeed so, then the map A ----+ p(A) will share the properties (i) and (ii). 
:\10tivated by these considerations we introduce the following definitions. 
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Definition 1.2.1. Let {Aa, a E I} be a family subsets of a set X, 
where I is some index set. Such a family is said to be pairwise disjoint 
if Aa n Ae = 0 whenever a i= (3 and a, (3 E I. 

Definition 1.2.2. Let F be a boolean algebra of subsets of a set X. 
A map m : F ----+ [0,00] is said to be finitely additive if 

m(A U B) = m(A) + m(B) whenever A, BE F and An B = 0. 

It is said to be countably additive if for any sequence {An} of pairwise 
disjoint sets belonging to F 

00 

m U~ IA  = L m(An), if U~  An E F. 
n=l 

A map p : F ----+ [a, 1] is called a probability distribution on F if it is 
finitely additive and p( X) = 1. 

We shall now introduce a few examples. 

Example 1.2.3. Let X be a finite or countable set and let F be the 
boolean algebra of all subsets of X. Let {Xl, X2, ... } be an enumeration 
of all the points of X. Let {PI, P2, ... } be a sequence of nonnegative 
numbers. For any A c X, let 

m(A) = L Pj· 

j:XjEA 

Then it is clear that m is a count ably additive function on F. If 2: Pj = 
j:XjEX 

I, m is a probability distribution on F. 

Example 1.2.4. Let F be a monotonically increasing real valued 
function defined on the real line R. Let 

m((a, b]) = F(b) - F(a) if a < b and a, bE R. 

Write F(+oo) = lim F(a) and F(-oo) = lim F(a). Put 
a->+oo a->-oo 

m(( -00, a]) 

m((b, +(0)) 
m(( -00, +(0)) 

F(a) - F(-oo), 

F(+oo) - F(b), 

F(+oo) -F(-oo). 
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Then m is a finitely additive set function defined on the class I of inter­
vals (Example 1.1.11), i.e., 

k 

m (U]=Jj) = L m(Ij ) 
j=l 

whenever h, h, ... ,!k and U]=lIj belong to I and the family {Ij, 1 ::::; 
j ::::; k} is pairwise disjoint. Let now A be any set of the form 

A = U~ IT (1.2.1) 

where h, h, ... ,h belong to I and are pairwise disjoint. Define 

k 

m(A) = L m(IT). 
T=l 

Now the question arises whether m is well defined. For, it is quite 
possible that A is also of the form 

A = U~  Fs (1.2.2) 

where F1, F2 , ... ,Fl belong to I and are pairwise disjoint. Thus A has 
two representations (1.2.1) and (1.2.2). However, 

Indeed, we have 

k I 

Lm(IT) = Lm(Fs) 
T=l s=l 

IT = IT n A 

Fs = Fs n A 

U~ IT n Fs), 

U~  nIT). 

(1.2.3) 

We note that the family I is closed under finite intersection. Since m is 
additive on I, it follows that 

I 

m(IT) Lm(IT nFs), 
s=l 

k 

m(Fs) L m(Fs nIT). 
T=l 
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Now (1.2.3) is an immediate consequence of the above two equations. 
This argument implies that rh is a well defined finitely additive map 
on the boolean algebra F of all subsets which are finite disjoint unions 
of intervals from I. In other words, corresponding to every monotonic 
increasing function F on R, one can construct a unique nonnegative 
finitely additive function on the boolean algebra F of Example 1.1.11. 
This becomes a probability distribution if 

lim F(b) - F(a) = 1. 
~  

a-----,o-oc 

Proposition 1.2.5. Let m be a nonnegative finitely additive func­
tion on a boolean algebra F of subsets of X. If A c B and A, B E F, 
then m(A) ::; m(B). If A J , A 2, ... Ak E F, then 

k 

m (U7=IAi ) ::; L m(Ai). (1.2.4) 
i=l 

Proof. To prove the first part we observe that 

B = AU (BA') if A c B. 

Since F is a boolean algebra A and BA' are disjoint subsets belonging 
to F. Hence 

m(B) = m(A) + m(BA') 2: m(A). 

To prove the second part we note that 

U7=IA i = U7=IBi , 

where BI = AI, B2 = A A~  ... , Bi = A A~ IA~  A~  ... , Bk = 
A A~  A~  A~  Then B I , B 2,··· are disjoint sets belonging to F 
and Bi C Ai, for all i = 1,2, ... ,k. Hence 

m (U7=IA i ) m (U7=IBi ) 

k 

L m(Bi) 
i=l 

k 

< Lm(A). 
i=l 
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This completes the proof. D 

Remark 1.2.6. Property (1.2.4) is called finite subadditivity . If m 
is countably additive (1.2.4) holds with k = 00, provided U~  Ai belongs 
to :F. The same proof goes through. When k = 00, (1.2.4) is called the 
property of countable subadditivity . 

1.3 Probability Distributions and Elementary Random 
Variables 

Consider a statistical experiment, the performance of which leads to an 
observation x in the sample space X. Very often one is not interested 
in the exact observation but a function of the observation. We shall 
illustrate by means of a few examples. 

Example 1.3.1. Consider an individual performing an experiment 
with two elementary outcomes called 'success' and 'failure' (see Example 
1.1.1). Suppose he gets a rupee if success occurs and loses a rupee if 
failure occurs. Then his gain can be expressed through the function J 
defined by 

J(O) = -1, J(l) = +1, 

where 0 and 1 denote the outcomes failure and success respectively. 

Example 1.3.2. Suppose r objects are distributed in n cells. As­
sume the objects to be distinguishable from one another. Observe the 
configuration. It should be noted that more than one object can occupy 
a cell. Then the sample space X of all possible configurations contains 
nr points. For each configuration x E X, let J(x) be the number of 
empty cells. 

Example 1.3.3. Let a bullet be shot from a gun and let the ex­
periment consist of observing the trajectory of the bullet. For every 
trajectory x, let J (x) be the coordinates of the point at which the bullet 
hits the ground. 

From the above examples we understand that the value of the func­
tion depends on the outcome which is subject to chance. Thus the 
value of the function varies in a 'random' manner. Till we make further 
progress in the subject we shall consider functions on X, which take only 
a finite number of values. 

Let J : X -----t Y be a map from the sample X into a set Y. Let F be a 
boolean algebra of subsets of X, on which we shall consider probability 
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distributions. Suppose we wish to raise the following question: what is 
the probability that the experiment yields as elementary outcome x E X 
such that the function f (x) takes a given value y E Y? Consider the set 

{x: f(x) = y} = f-l({y}). 

If we wish to find the probability of the above event, it is necessary that 
f- 1 ({y}) E F. For this reason we introduce the following definition. 

Definition 1.3.4. Let X be a sample space with a boolean algebra 
F of subsets of X. A map f : X ---+ Y is called a Y-valued simple random 
variable if f takes only a finite number of values and, for every y E Y, 

f-l({y}) E F. 

If Y is the real line we shall call f a simple random variable. We denote 
by S(X, F) the set of all simple random variables. 

For any set A c X, let 

{
I if x E A, 

XA(X)= Oifxrf.A. 

Then XA is called the characteristic or indicator function of the set 
A. If A E F, XA is a simple random variable assuming two values, namely 
o and 1. If aI, a2, ... ,ak are real numbers and AI, A 2, ... ,Ak E F, then 

k 

l: ajXAj is a simple random variable. Conversely every simple random 
j=l 
variable can be expressed in this form with Aj's pairwise disjoint. It is 
clear that 

XAUB 

XAXB 

IXA - XBI 

XA + XB - XAB, 

XAB, 

XAb.B, for all A, B eX. 

In particular, it follows that the set S(X, F) of all simple random vari­
ables is an algebra under the usual operations of addition, multiplication 
and scalar multiplication. 

Definition 1.3.5. By a boolean space we mean a pair (X, F) where 
X is a set and F is a boolean algebra of subsets of X. By a boolean 
probability space we mean a triple (X, F, P) where (X, F) is a boolean 
space and P is a probability distribution on F. If s is a simple random 
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variable on (X, F) and P is a probability distribution on F, we define 
the integral of s with respect to P as the number 

L ai P (s-l ({ ai})), 

where the summation is over all the values ai which s can take. ~  

denote this number by the symbol J sdP or simply Es when P is fixed. 
Es is also called the expectation of s with respect to P. 

Proposition 1.3.6. If s = 2::7=1 aiXAi , where AI, A 2, . .. , Ak are 
disjoint sets in F and aI, a2, ... , ak are real numbers then 

k J sdP = L aiP(Ai). 
i=l 

(1.3.1) 

Further 

(i) J(as1 + bs2 )dP = a J SldP + b J s2dP for any two simple random 
variables Sl and S2 and any two real constants a and b; 

(ii) the function Q on F defined by 

Q(F) = J sxFdP, FE F 

is finitely additive, i.e., 

j 

Q (Ui=lFi ) = LQ(Fd 
i=l 

whenever H, F2 , ... , F j are pairwise disjoint elements in F; 

(iii) J sdP 2: 0 if P({x: s(x) < O}) = 0; 

(iv) inf s(x) S J sdP S sup s(x). 
xEX xEX 

Proof. Without loss of generality we may assume that the ai'S are 
distinct and U7=1 Ai = X. Then S-l ({ad) = Ai and the range of s 
is the set {a1,a2, ... ,ad. Hence (1.3.1) follows immediately from the 
definition of integral. To prove property (i) we may assume that 

k I 

Sl = LCl:iXAi ,S2 = L(3jXBj 

i=l j=l 
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where AI, A 2, ... ,Ak and B 1 , B 2, ... ,Bl are two partitions of X into 
disjoint sets belonging to F. Then 

k I 

aSl + bS2 = L L (aai + b{3j) XAiBj, 
i=1 j=1 

where the sets AiBj constitute another partition of X. Then 

J (asl + bs2)dP = L L(aai + bBj)P(AiBj ) 
J 

a ~  ~ A  
+b ~ ilj { ~ A  
a LaiP(Ad + b L{3jP(Bj ) 

j 

a J sldP+b J s2 dP. 

Here we have used the fact that P is finitely additive and 

UjAiBj = Ai(UjBj) = AiX = Ai, 

UiAiBj = (uiAdBj = XBj = B j . 

Property (ii) follows from property (i). Properties (iii) and (iv) follow 
from (1.3.1) immediately. 0 

Remark 1.3.7. It should be noted that property (ii) indicates a 
method of manufacturing new finitely additive functions on F from a 
given one by the process of integration. 

We shall now prove some elementary results by using the notion of 
expectation and its properties described in Proposition 1.3.6. 

Proposition 1.3.8. Let AI, A 2, . .. ,An be subsets of X, and let 

B = ~IA  Then 
n 

XB LXAi - L XAiAj + ... 
i=l l<;i<j<;n 

+ (-lr-1 L XAilAi2···Air+··· 
l<;il <i2 ... <ir <;n 

( l)n-l + - XA 1 A2 ... An , (1.3.2) 
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where Ail Ai2 ... Air stands for the intersection nj=l Ai). 

Proof. Let x belong to none of the Ai'S. Then XB (x) = 0 and every 
term on the right hand side of (1.3.2) is zero. If x belongs to exactly k 
of the sets A l , A 2 , . .. ,An then the rth term on the right hand side is 
(-lr- l ~  if r :S k and 0 otherwise. Thus the right hand side of (1.3.2) 
is 

;(-1),-1 G) = 1 - (1- l)k = 1. 

Then XB(X) = 1 and (1.3.2) always holds. This completes the proof. D 

Corollary 1.3.9. If P is a probability distribution on (X, F), then 
for any A l , A 2 , ... , An E F. 

n 

p(ur=lAd = I)-lr-1S1' , (1.3.3) 
1'=1 

where 
S1' = L P(Ail Ai2 ... Ad· (1.3.4 ) 

~  ··· ~  

Proof. Equation (1.3.3) follows from (1.3.2) by integration of both 
sides and Proposition 1.3.6. D 

Proposition 1.3.10. Let A l ,A2 , ... ,An be any subsets of X. Let 
B be the subset of all those points which belong to exactly k of the sets 
A l , A 2 , ... An· Then 

n 

XB = L( -lr-k (r) 
1'=k k 

[ L XA il A'2" .Air]. 
~  <i2< ... ~  

(1.3.5) 

Proof. Let x be a point which belongs to exactly m of the sets 
A l , A 2, ... An· If m < k, then XB(X) = 0 and every term on the right 
hand side of (1.3.5) vanishes. If m = k, XB(X) = 1. On the right hand 
side of (1.3.5) the term within square brackets is one if r = k and zero 
otherwise. Thus the right hand side is also unity. Now let m > k. Then 
XB(X) = O. The right hand side is 

~  ~  = (7)(1-1)m-k = O. 
1'=k 
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Thus (1.3.5) always holds and the proof is complete. D 

Corollary 1.3.11. Let P be a probability distribution on (X, F). 
Let AI, A 2 , . .. ,An be n events belonging to F, and let Pk be the prob­
ability that exactly k of the events AI, A 2 , ... ,An occur. Then 

n 

Pk = ~ ~ S  (1.3.6) 

where Sr is defined by (1.3.4). 

Proof. This is obtained by integrating both sides of (1.3.5) and 
using Proposition 1.3.6. D 

Example 1.3.12. Let X be the set of all permutations of the inte­
gers 1,2,3, ... ,N and let F be the boolean algebra of all subsets of X. 
Let P be the probability distribution which assigns the same probability 
J! to every permutation (see Example 1.2.3). Let Ai be the set of all 
permutations which leave i fixed. In this case 

P(A A A) (N - r)! ·f .. . 
il i2··· iT = >T' 1 21 < 22 < ... < 2r · 

Thus 
Sr = (N) (N - r)! = ~  

r N! r! 

Corollary 1.3.9 implies that, the probability that a 'random' permutation 
leaves at least one of the i's fixed is given by the expression 1 - ~ + 
1 ( l)N-l 
3f - ... + - N! . An application of Corollary 1.3.11 shows that the 
probability of exactly m of the elements 1,2, ... , N being fixed by a 
random permutation is given by the expression 

N 

Pm = ~  
1 [ 1 1 1 (_I)N-m] 

m! 1 - I! + 2! - 3! + ... + (N - m)! . (1.3.7) 

-1 

We also observe that Pm converges to ~ as N -----+ 00. For every fixed m. 
N, consider the experiment of selecting a random permutation x from 
the set X of all permutations of 1,2, ... ,N. Let f (x) be the number 
of elements in the set {l, 2, ... ,N} left fixed by the permutation x. 
Then f is a simple random variable taking values 0, 1,2, ... ,N. Then the 
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probability that f(x) = m is given by (1.3.7) for m :::::; N. As N --7 00, 

we get a distribution on the set of all nonnegative integers such that 
the probability for m is e-,l. This is a special example of many limit m. 
theorems to come in our subject. This particular limiting distribution 
is a special case of the Poisson distribution. 

Example 1.3.13. Suppose r objects (which are distinguishable from 
each other) are distributed randomly in n cells. The experiment consists 
in observing the configuration. Since any object can occupy any of the 
n cells there are n T possible configurations. Thus the sample space X 
consists of n T points. Let :F be the class of all subsets of X. Let Ai be 
the set of all configurations in which cell number i is empty. By random 
distribution of objects we mean that all configurations have equal prob­
ability n -T. Now we can ask the question: what is the probability that 
exactly k cells are empty? Let it be Pk. Let i1 < i2 < ... < i j . Then 

P (A i1 Ai2 ... Ad = (n - jr 
J nT 

In the notation of (1.3.4) 

Sj = ~  (1 _ ~  T 

By Corollary 1.3.11, 

Pk = t(-l)j-k(j) ~  (1- i)T 
j=k k] n 

(1.3.8) 

As in the preceding example the number of empty cells in any observed 
configuration x can be thought of as a simple random variable assuming 
the values 0,1,2, ... (n - 1). The probability that this random variable 
assumes the value k is equal to Pk given by (1.3.8). Its expectation is 
""n-l k 
uk=O Pk· 

We see that Pk is a function of rand n, namely, the number of objects 
and cells. We can ask the question: what happens when rand n tend 
to 00 in some suitable manner? Does Pk converge to a limit for every 
fixed k in such a case? 

Putting j - k = s in (1.3.8), an elementary computation shows that 

Pk ~  ~ ~ )' [(1 -S: k)' n'+' (1 _ s + ~ - 1 ) 
( S+k-2) ] x 1- n ... 1. (1.3.9) 
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Since 1 - x ::; e-X for 0 ::; x < 1, we have 

( s + k) r +k ( _ / ) s+k 1 - -- n S < ne r n 
n -

Thus the term within square brackets in (1.3.9) is dominated by (ne-r/n) sH . 

Let now rand n tend to 00 in such a manner that ne-r/n ----t A > O. 
Thus every term in the summation (1.3.9) has absolute value dominated 

(>"+1)s+k 00 (>..+1)8 
by f for all rand n sufficiently large. Since the series L I is s. s. 

s=o 
convergent we may take the limit in (1.3.9) under the summation sign. 
Since 

[( x)n] logn 
~~ 1 -;;, eX = 1 for all x ;::: 0, 

and 
lim (lOg n - ~  = log A, 

T',n----+CX) n 

we have 

lim 1 __ s _ n s+k = ( + k)r 
T,n---+oo n 

lim [(1- s + k)n eS+k]r/n ~  = AsH. 
T,n-HX) n 

Thus 
)..k 

1· ->.. 
1m Pk = e -k" 

T,n---+oo . 

The distribution on the set of all nonnegative integers with probabil­
ity for the single point set {k} equal to e->" ~~ is called the Poisson 
distribution with parameter A. 

Example 1.3.14. Consider now r indistinguishable objects being 
placed randomly in n cells. In this case a configuration corresponds to a 
vector (Xl, X2,' .. ,xn ) where Xi is the number of objects in the ith cell. 
If X is the sample space of all possible configurations we shall find out 
the number of points in X. We can look at a configuration as 

00 ... 0 I 00 ... 0 I ...... I 00 ... 0 
"--v--' "--v--' "--v--' , 

Xl X2 Xn 

where 0 denotes the object and I denotes a wall of the cell. Since there 
are n cells the number of vertical bars in the above picture is n - 1. 
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The total number of positions occupied either by an object or a bar is 
n-1 +r. Out of these, r positions are taken over by the objects. Thus the 
total number of configurations is (n-;+r). If all configurations are equally 
likely, then each point of X has probability (n !+r). This distribution is 

known as Bose-Einstein Statistics. This distribution, discovered by the 
physicist S. N. Bose in the context of quantum statistical mechanics, is 
basic in the theory of Bose-Einstein statistics. 

In the above problem, let Ai be the event that the ith cell is empty. 
Then for i1 < i2 < ... < i j , Ail Ai2 ... Aij is the event that the j cells 
i1 , i2, ... ,ij are empty. The number of such configurations is the number 
of ways in which r identical objects can be distributed in n - j cells. 
Thus 

P(AilAi2 ... AiJ= (n- j ;r-1)/ ~  

If Pk denotes the probability of exactly k cells being empty, then 

Pk ~ t.(-I?-kG) C) (n -j; r -1) / (n +; -1) (1.3.10) 

• -A Ak ExerCIse 1.3.15. In (1.3.10), Pk -----t e k! for k 0,1,2, ... , if 

n, r -----t 00 in such a manner that ~  -----t A. 

Example 1.3.16. Consider an urn with m white balls and n black 
balls. Choose a sample of k balls at random without replacement. This 
means that the probability for any sample of k balls out of the total 
of m + n balls is the same and hence is equal to (mtn). We now ask 

the question: what is the probability of r white balls occurring in the 
sample? If there are r white balls in the sample then there are k - r 
black balls in the same sample. Such a choice can be made in ~  ~  
ways. If we denote the required probability by Pr then 

- ~  ~  0 < r :::; min(k, m). 
Pr - (mtn) , -

The above distribution on the set of integers 0,1,2, ... min(k, m) IS 

known as the hypergeometric distribution. 

Exercise 1.3.17. Consider an urn with balls of r different colours. 
Let there be nl balls of the first colour, n2 of the second and so on. 


