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Preface 

The birth act of the analytic theory of Dirichlet series 
00 

(0.0.1) A(s) = L ann-s 

n=l 

can be rightly claimed to be the Diriehlet Arithmetie Progression The
orem. In that case, the arithmetieal function is n f-t an, the indieator 
function of the integers n congruent to q mod b for some given pair (q, b) 
of coprime integers, and its properties are reflected in a subtle way in the 
"analytic" properties of the function A, although far Dirichlet the vari
able s remains real. Later on, in the case of the zeta function, Riemann 
in his celebrated Memoir allowed complex values for sand opened the 
way to the proof by Hadamard and de la Vallee-Poussin of the Prime 
Number Theorem. 

The utility of those Dirichlet series for the study of arithmetieal func
tions and of their summatory function 

A*(x) = Lan 
n-::;x 

was widely confirmed during the first half of the twentieth century, with 
the expansion of tauberian theorems, including those related to Fourier 
and harmonie analysis, in the style ofWiener, Ikehara, Delange, etc ... The 
hope was of course that progress on those series would imply progress 
on the distribution of primes, and perhaps a solution to the Riemann 
hypothesis, the last big question left open in Riemann's Memoir. 

A parallel aspect also appeared in the work of H.Bohr, where the 
series (0.0.1) and their generalization 

(0.0.2) 
00 

Lane->-ns 
n=l 

began to be studied for themselves. In partieular, Bohr proved a fun
damental theorem relating the uniform convergence of a Diriehlet series 
(and therefore almost-periodicity properties) and the boundedness of its 
sum A in so me half-plane. This naturally led hirn to his famous quest ion 
on the maximal gap between abscissas of uniform and absolute conver
gence. Surprisingly, this quest ion turned out to be very deep, and led 
hirn to develop fairly sophisticated tools of other branches, either of com
plex or harmonie analysis or of diophantine approximation, through the 
Kronecker approximation theorem (what is called nowadays the Bohr 
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point of view : the unique factorization in primes is seen as the linear in
dependence of the logarithms of those primes). The central importance 
of this theorem in the theory of Dirichlet series was quickly recognized 
by hirn. A solution to his question, found by Bohnenblust and Hille in a 
famous paper of the Annals, was obtained along the lines suggested by 
Bohr. Many not ions of harmonic analysis (Littlewood's multilinear in
equality, p-Sidon sets, Rudin-Shapiro polynomials, etc) were underlying 
in that work. 

The Kronecker theorem (simultaneous, non-homogeneous, approxi
mation) points at two other aspects : on the one hand, at ergodic theory 
through its formulation and proof, which will be used again in the final 
chapter on universality. On the other hand at diophantine approxima
tion, which as a consequence is very present in the book. In particular, a 
thorough treatment of the continued fraction expansion of areal number 
is presented, as weIl as its ergodic aspects through the Gauss map (er
godic theory again). This in turn allows a sharp study of the abscissas 
of convergence of classes of Dirichlet series, which extends a previous 
study by Hardy-Littlewood for the (easier) case of Taylor series. The 
simultaneous approximation is still not weIl understood, except in so me 
cases as the sequence of powers of some given real number, like the Euler 
basis e, through the use of Pade approximants. A detailed presentation 
of those approximants, and their applications to a streamlined proof of 
the transcendency of e, is given in Chapter 3. 

Needless to say, the hope of solving Riemann's hypothesis through 
the study of series (0.0.1) has not been completely met, in spite of many 
efforts. But along the lines of Bohr, Landau (also S.Mandelbrojt as con
cerns the series (0.0.2)) and others, those series continued to be studied 
for themselves. Then came aperiod of relative lack of interest for that 
point of view, about from 1960 to 1995, with several noticeable excep
tions, among which the Voronin theorem (1975) which emphasized the 
universal role of the zeta function, even if it made no specific progress 
on the Riemann hypothesis. It seems that the subject was rat her sud
denly revived by an important paper of Hedenmalm, Lindqvist, and Seip 
(1997), where several of the forgotten properties of Dirichlet series were 
successfully revisited for the solution of a hilbertian problem dating back 
to Beurling (Riesz character of a system of dilates of a given function), 
and new Hilbert and Banach spaces of Dirichlet series defined and stud
ied. That paper stimulated aseries of other, related, works, and this is 
part of those works, dating back to the last 30 years, which is exposed 
in those pages. 

The aim of this introductory book, which has the ambition of being 
essentially self-contained, is therefore two-fold: 
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(1) On the one-hand, the basic tools of diophantine approximation, 
of ergodie theory, harmonie analysis, probability, necessary to 
understand the fundamentals of the analytic theory of Dirichlet 
series, are displayed in detail in the first chapters, as well as 
general facts about those series, and their products. 

(2) On the other-hand, in the last two chapters, especially in Chap
ter 6, more recent and striking aspects of the analytic theory 
of Dirichlet are presented, as an application of the techniques 
coined before. 

One fascinating aspect of that theory is that it touches many other 
aspects of number theory (obviously!) but also of functional, harmonie 
or complex analysis, so that its detailed comprehension requires a certain 
familiarity with several other subjects. Accordingly, this book has been 
divided in seven chapters, which we now present one by one. 

1. Chapter one is a review of harmonie analysis on locally compact 
abelian groups, with its most salient features, including Haar measure, 
dual group, Plancherel and Pontryagin's theorems. It also insists on 
so me more recent aspects, like the uncertainty principle for the line or a 
finite group (Tao's version), and on the connection with Dirichlet series 
(embedding theorem of Montgomery and Vaughan). 

2. Chapter two presents the basics of ergodic theory (von Neumann, 
Oxtoby and Birkhoff theorems) with special emphasis on the applications 
to the Kronecker theorem (whose precised forms will be of essential use 
in Chapter 7), to one or multi-dimensional equidistribution problems, 
and also to so me classes of algebraic numbers (Salem numbers). 

3. Chapter three deals more specifically with diophantine approximation 
(continued fractions) in relationship with ergo die theory (Gauss trans
formation, which is proved to be strong mixing) and aims at giving a 
classification of real numbers according to their rate of approximation 
by rationals with controlled denominator. This classification is given by 
a theorem of Khintchine, fully proved here. As a corollary, the tran scen
dency of the Euler basis e is completely proved. 

4. Chapter four presents the basics of general Dirichlet series of the 
form (0.0.1), with the Perron formulas and the way to compute the 
three abscissas of simple, uniform, absolute, convergence, and with so me 
comments and examples on a fourth abscissa (the holomorphy abscissa). 
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Several classes of examples are examined in detail, including the series 

(0.0.3) 
00 -8 n 

LllnOl1 
n=l 

according to the diophantine properties of the real number o. An exact 
formula for the abscissa of convergence of this series is given in terms 
of the continued fraction expansion of O. The problem of products of 
Dirichlet series and some of its specific aspects, is examined in depth, 
with emphasis on the role of the translation 1/2. And the Bohr point 
of view, which allows to look at a Dirichlet se ries as at a holomorphic 
function in several complex variables, is revisited, with some applications 
like the form of Wiener's lemma for Dirichlet series (Hewitt-Williamson's 
theorem). The chapter ends with a striking application of this point of 
view to a density result of Jessen and Bohr. 

5. Chapter five is a short intermediate chapter establishing the basics 
of random Dirichlet polynomials through a multidimensional Bernstein 
inequality and an approach due to Kahane. It will play, technically 
speaking, an important role in the rest of the book. The tools introduced 
here remain quite elementary, but will turn out to be sufficient for our 
purposes. 

6. Chapter six is the longest of the book. It is devoted to the detailed 
study of new Banach spaces of Dirichlet series (the 1tP-spaces), which 
extend the initial work of Bohr and turn out to be of basic importance 
in completeness problems for systems of dilates in the Hilbert space 
L2 (0, 1), and see m to open the way to new directions of study, like those 
of Hankel operators (Helson operators) in infinite-dimension. A complete 
presentation of arecent, very sharp, version of the Bohnenblust-Hille 
theorem, is also given, using the tools of the previous chapters as well 
as tools borrowed from number theory, in particular the properties of 
the function 'ljJ (x, y), the number of integers ~ x which are free of prime 
divisors> y. 

7. Chapter seven gives a complete proof of the universality theorems of 
Voronin (zeta function) and Bagchi (L-functions), and needs in passing 
areminder of some properties of those functions in the critical strip. 
This complete proof is long and involved, but some essential tools (like 
the Birkhoff-Oxtoby ergodic theorem) have already been introduced in 
the previous chapters. New, important, tools are an extended version of 
Carlson's identity seen in Chapter 6, and hilbertian (Bergman) spaces of 
analytic functions. Those two results have the advantage of showing the 
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pivotal role of zeta and L-functions in analysis and function theory, in the 
wide sense, and more or less independently of the Riemann hypothesis. 

Each of the seven chapters is continued by quite a few exercises, of 
reasonable difficulty for whoever has read the corresponding chapter. We 
hope that they can bring additional information, and be useful to the 
reader. 
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1 A review of commutative harmonie analysis 

1.1. The Haar measure 

1.1.1. Locally compact abelian groups. This chapter might be skip
ped at first reading. But we have the feeling that a minimal knowledge 
of basie facts in harmonie analysis is necessary to understand certain 
aspects ef the analytic theory of Dirichlet series, especially those con
nected with almost-periodicity, ergodie theory, the Bohr point of view 
to be developed later, and also universality problems. Therefore, in this 
introductory chapter, we begin with reminding several basic results of 
commutative harmonie analysis. Those results, although standard by 
now, are not so easy to prove, and deserve a careful treatment. 

Let G be an additive abelian group equipped with a Hausdorff topol
ogy T, which is compatible with the group structure. This means that 
the operations of the group (addition and inverse) are continuous for 
that topology. We then say that G is a topologieal group. Throughout 
that book, the topology T will be locally compact, and G will be called a 
locally compact, abelian group (in short, a LCA group). In most cases, 
G will indeed be compact. Abasie example is that of the compact multi
plicative group ']I' of unimodular complex numbers, that is the unit cirele 
of the complex plane C. This particular group plays a fundamental role 
in the theory. 

For a E C, we will denote by Ta the operator of translation by a (a 
homeomorphism of G, also acting on functions), namely 

(1.1.1) Tax = X + a, Taf(x) = f(x + a). 

A simple and useful result is the following : 

Proposition 1.1.1. Let G be a topological group and H a subgroup of 
G. If H has non-empty interior, H is open and closed in G. 

Proof: Let a be interior to Hand V a neighbourhood of 0 with 
a + V c H. For any b E H, we have b + V = (b - a) + (a + V) c H, 
showing that His open, as well as its cosets x + H . Now, we can write 
G as a disjoint union G = H U E, where E is a union of cosets mod H 
and is open. So that H = G\E is elosed. 0 
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1.1.2. Existence and properties of the Haar measure. A basic 
fact, expressing the strong ties between the topology and the group 
structure, is the following theorem : 

Theorem 1.1.2. A locally compact abelian group G always possesses 
a non-zero, positive and regular Borel measure m which is translation 
invariant, i. e. 

(1.1.2) fc J(x)dm(x) = fc f(Tax)dm(x) Vf E L 1(G, m), Va E G. 

This measure (also written dx) is unique up to multiplication by a positive 
scalar and we write L 1(G) instead of L 1(G,m). 

A very simple proof can be found in [881 (page 570-571) in the case of 
a compact, metrizable, group, abelian or not. A clear and modern proof 
can be found for the general (abelian, but not necessarily metrizable) 
case in [34], Chapter 9. This generality will sometimes be needed, as 
shown by the forthcoming examples. The measure m is called the Haar 
measure of G. Three important properties of mare the following : 

Proposition 1.1.3. The Haar measure verifies : 

(1.1.3) m(V) > 0 for each open non-void set V c G. 

(1.1.4) m( -B) = m(B) for all Borel subsets of G. 

(1.1.5) m( G) < 00 {=::} G is compact . 

Indeed, suppose that m(V) = O. Let K C G be a compact set. 
This set can be covered by finitely many translates of V, and therefore, 
m(K) = O. But since m is regular, we have m(G) = sUPKcG m(K) 
so that m( G) = 0, which is absurd. Now, the measure m defined by 
m(B) = m( -B) is translation-invariant, therefore m = cm where c is a 
scalar. Let then V be a compact and symmetrie neighbourhood of 0, so 
that by (1.1.3) we have 0 < m(V) < 00. The equation cm(V) = m(V) 
therefore implies c = 1 and m = m. Suppose that G is not compact, 
and observe that (just take x outside the compact set K - L) : 

(1.1.6) If K, LeG are copac t , there exists xE G; (x+L)nK = 0. 

Now, let V be a compact neighbourhood of 0, so that m(V) > 0 by 
(1.1.3). Using (1.1.6), we can inductively find a sequence (xn ) C G such 
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that the translated sets Xj + V are disjoint. Therefore, for any n 2: 1 : 
n n 

m(G) 2: m[ U(Xj + V)] = Lm(xj + V) = n x meV), 
j=1 j=1 

and this shows that m( G) = 00. If G is eompaet, m is clearly finite 
and we always normalize it to have m(G) = 1, i.e. m is a probability 
measure. 0 

In the general ease, let M (G) be the set of regular, eomplex Borel 
measures on G, normed with the total variation of measures. By the 
Riesz representation theorem, M (G) ean be isometrieally identified with 
the dual of the Banach spaee Co(G) of eontinuous functions f : G -+ C 
whieh tend to zero at infinity, namely : 

Ve > O,:3K c G, K eompaet ; x ~ K ===? If(x)1 ~ e. 

The eonvolution >. * p., of >. and p., in M(G) is the element a of M(G) 
defined on Borel sets E by : 

aCE) = fc A(E - x)dp.,(x) = fc p.,(E - x)d>'(x), 

equivalently J fda = J J fex + y)d>.(x)dJ.L(Y)· 

One ean define an involution p., 1-+ jl on M (G) by the formula : 

p,(E) = J.L( -E). 

Onee equipped with the variation-norm, eonvolution, and involution, 
M (G) is a eommutative, unital (the unit being the Dirae measure 80 

at the origin), stellar (meaning that Iljll! = IIJ.LII) Banach algebra. But 
this is not a C* -algebra: the equation IIJ.L * jlll = 11p.,11 2 does not hold in 
general. The Banach spaee LI (G) = LI (G, m) is a closed ideal of M (G), 
the ideal of measures whieh are absolutely eontinuous with respect to 
m. It is itself a eommutative Banach algebra onee equipped with the 
eonvolution f * 9 as multiplieation : 

(f * g)(x) = fc fex - y)g(y)dm(y) = (g * f)(x), 

for almost every x E G. We have Ili * glll ~ Ilflllllglh and the algebra 
LI (G) is unital if and only if G is eompaet. This is an involutive algebra 
wit the indueed involution defined by i(x) = fe-x), i.e. we have 
Ililll = Ilflll. ButthisisnotaC*-algebraeither: theequationllf*ilh = 
Ilflli does not hold in general (see the exerciees). Another important 
property of Ll (G) is the following general fact: 
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Theorem 1.1.4. Let f E LP(G),l :s; p < 00. Then, the mapping 
a f-t Taf : G ~ LP( G) is (uniformly) continuous. 

Proof: The result holds, by uniform continuity, for h E Coo(G), 
the space of functions : G ~ C which are continuous and compactly 
supported. This space is dense in LP( G) since p < 00. And by translation 
invariance of m, we clearly have : 

IITaf - flip :s; 211h - flip + IITah - hll p, 

which gives the general result, since IITaf - Tblil p = IITa-bf - flip, 0 

We will see that the spectrum of LI (G) can be identified, whereas a 
complete description of the spectrum of M (G) is difficult to obtain, and 
to work with ([74]). To that effect, we first have to define the dual of a 
LCA group. 

1.2. The dual group and the Fourier transform 

1.2.1. Characters and the algebra V(G). The dual group G or r 
of the LCA group G is the group of all continuous morphisms "( : G ~ 1', 
i.e. 

h(x)1 = 1; "((x + y) = "((xh(Y) Vx, y E G. 

The elements of rare called the (continuous, or strang) characters of 
G. Sometimes, we will consider all the characters, continuous or not, 
on G. They are called the weak characters. The set f, equipped with 
the natural multiplication of characters, is itself an abelian group (Jor 
multiplication) whose zero element is the character identical to one. And 
"(-1 = 'Y for each "( E f. This group appears naturally for the following 
reason : 

Theorem 1.2.1. The spectrum L of the Banach algebra L 1(G) can be 
naturally identified with r, in the following sense : 

(1) Each"( Erdefines h'Y E L by the formula 

h'Y(f) = fc "(( -x)f(x)dm(x). 

(2) Each element hEL is of the form h = h'Y' 

Generally, Ja"((-x)f(x)dm(x) is denoted by lh) and is called the 
Fourier transform of f at T If G is compact and moreover f E L2 (G), 
we see that lh) = (1, "(), the scalar product of fand "(. In view of 
Theorem 1.2.1 (see [114], page 7 for a detailed proof), we will naturally 
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equip f with the Gelfand topology of 12, which is the weak-star topology 
inherited from the dual space Y of L 1(G). This makes f a compact 
Hausdorff space if 12 is unital, which happens if and only if Gis discrete, 
and a locally compact Hausdorff space in the general case (since 12 U {O} 
is weak-star-closed and therefore weak-star-compact in the unit ball of 
Y). But this topology is fairly abstract and difficult to describe, and we 
will see later a more concrete and tractable definition. It is first useful to 
study in detail this Fourier transform, whose main properties are listed 
in the simple, following theorem, and with obvious notations : 

Theorem 1.2.2. The Fourier transform on LI (G) verifies : 

(1) If fE L 1(G), 1 E Co(f) and 1111100 :::; IIfl11 
(2) If'l =J ,2, there exists f E L 1(G) n L 2(G) ; 1hd =J 1(r2) 
(3) For any , E f, there exists f E L 1(G) n L 2(G) ; 1(r) =J 0 

(4) If f,g E L 1(G), r;g = 19 
(5) f *, = 1hh; fJ = ,(a)1 and ;y;j(r) = 1(r,o). 

Let us denote by A(f) the subspace of Co(f) formed by functions of 
the form g(r) = 1(r) for some f E L 1(G). This set is called the Wiener 
algebra of f. We have the following corollary of Theorem 1.2.2 : 

Corollary 1.2.3. The space A(f) is a dense, self-adjoint, subalgebra of 
Co (f), stable under translation and multiplication by a character. 

Proof: Using the items of Theorem 1.2.2, we see that A(r) is a 
subalgebra, which separates yoints of rand has no common zeros. If 

9 = 1 E A(f), so does g = J as we easily see. Therefore, the complex 
Stone-Weierstrass theorem for locally compact spaces applies and A(r) 
is uniformly dense in Co(f). 0 

1.2.2. Topology on the dual group. Here is now an alternative de
scription of the topology on f ([114], pages 10-11). One interest of this 
description is that it shows the follo~ing : the set f, which is so far an 
abelian group and a locally compact Hausdorff space, is indeed a locally 
compact abelian group. 

Theorem 1.2.4. The natural topology on f is that of uniform conver
gence on compact subsets of G. More precisely, K, C being compact 
subsets of G and f respectively, and r a positive number, we have : 

(1) The function (x,,) f--t ,(x) is continuous on G x f. 
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(2) Let N(K, r) = b E f ; 11 - ,(x)1 < r for all x E K}. Then, 
N(K, r) is an open subset of f. 

(3) The family of all sets N(K, r) and their translates is a base for 
the topology of f. 

(4) Let M(C, r) = {x E G ; 11 - ,(x)1 < r for all , E Cl. Then, 
M(C, r) is an open subset of G. 

(5) fitself is a locally compact abelian group. 

Proof: (1) Let (xo, '0) E G x f. By Theorem 1.2.2, there is fE L 1(G) 
such that f( '0) i- 0, and we can write, near (xo, '0) : 

,(x) = f:}b). 
fb) 

The denominator is continuous at (xo, ,0) by Theorem 1.2.2. The nu
merator as weIl, since setting 9 = Txof, we see that : 

. --- --- --- --- --- ---ITxfb) - Txofbo) I :S ITxfb) - Txofb)1 + ITxofb) - Txofbo) I 

:S IITxf - Txoflh + 19b) - g(,o)l, 
and the right-hand-side tends to 0 as (x, ,) ---> (xo, '0), by Theorems 
1.1.4 and 1.2.2. 

(2) Now, fix ,0 E N(K, r). For each x E K, there are open neigh
bourhoods Vx and W x of x and ,0 respectively such that : 

y E Vx and , E W x ===? lJ(y) - 11 < r. 

Let VX1 ' ••• ' VXp be a finite covering of K and W = n~=1 W Xj • The set 
W is a neighbourhood of ,0 and W c N(K, r), so that N(K, r) is open 
in f. 

(3) Conversely, let V be a neighbourhood of ,0. We may assume that ,0 = 1. By definition of the Gelfand topology on f, there are functions 
h, ... , fn E L 1(G) and E > 0 such that 

n 

(1.2.1) W = nb; IJjb) - Jj(l)1 < cl c v. 
j=1 

By density, we may assume that h, ... , fn E Coo(G), so that they vanish 
outside a comp:.tct set K c G. If r < E/maxj Ilfjl11, one easily checks 
that N(K, r) _ W C V, since 

IJj(J) - Jj(l)1 :S 1 11 - ,(-x)llfj(x)ldx = 111- ,(x)llfj(x)ldx < E. 

(4) The same proof applies to M(C, r), with a significant difference : 
the sets M(C, r) and their translates will turn out to be a base for the 
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topology of G. But so far we are unable to establish that fact, which 
will be proved and used later, and have to content ourselves with the sets 
N(K,r). 

(5) The obvious inequality 

11- 51 (x)52 (x)1 ::; 11- 51(x)1 + 11- 52 (x)l, \/51,52 Er, \/x E G 

shows that [')'1 x N(K,r/2)][1'2 x N(K,r/2)] c 1'11'2 x N(K,r). This 
and the previous description of the topology of r shows that the map 
hl,1'2) r-+ 1'11'2 is continuous, so that r is a LCA group. 0 

1.2.3. Examples and basic facts. Let us now list, sometimes without 
proof, some basic examples and facts ab out Haar measures and dual 
groups. 

1.2.3.1. The dual of a compact group is a discrete one, and the dual of 
a discrete group is a compact one. 

1.2.3.2. id = Zd and if I' = (nI, ... , nd) E Zd, Z = (Zl,"" Zd) E 1['d we 
d n d have I'(Z) = ITj=l z/. The Haar measure m of 1[' acts on continuous 

functions by the formula 

f fdm= fl t ... flf(e2i7rtl, ... ,e2i7rtd)dtl ... dtd' 
J1f d Ja Ja Ja 

Similarly, id = 1['d. This last fact williater appear as a consequence of 
the Pontryagin duality theorem. More generally, if GI, ... , Gd are locally 
compact abelian groups with Haar measures ml, ... , md and dual groups 
r 1, ..• , r d, the product group G = GI X ... X Gd has the Haar measure 
m = ml 0 . ··0 md and its dual group is r = rl x ... x r d. 

1.2.3.3. 1[00 = Z(=) where the LHS is the product of countably many 
copies of 1[' and the RHS is the set of all sequences 1/ = (nI, . .. , nd, ... ) 
of integers which vanish for d large enough, with I'(z) = IT~l z7 j , all 
but a finite number of the factors being equal to 1. The Haar measure of 
1['= is the tensor product of countably many copies of the Haar measure 
of 1['. This fact has an obvious generalization to the countable product 
of compact abelian groups, as in example 2. 

1.2.3.4. id = ]Rd and if I' = (tl,"" td) E ]Rd, x = (Xl, . .. , Xd) E ]Rd we 

have I'(X) = ei I:1=1 tjXj. The Haar measure of]Rd is simply the Lebesgue 
measure on ]Rd. Those facts follow from thegeneral remark of example 2. 
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1.2.3.5. Let G be a compact abelian group with dual r. Then, we have 
the equivalence : 

(1.2.2) G metrizable ~ r countable. 

We use the following fact: if Xis a topologieal compact space and C(X) 
the space of continuous functions f : X --+ C equipped with the norm 
Ilfll= = SUPtE X If(t)l, we have the equivalence : 

(1.2.3) X metrizable ~ C(X) separable. 

Indeed, if the topology of X is defined by ametrie d, let (xn ) be a dense 
sequence of X, and 'Pn(x) = d(x, xn). The algebra generated by the 
'Pn is separable, and dense in C (X) by the Stone-Weierstrass theorem. 
Conversely, if (fn) is a dense subset of C(X), the distance d defined by : 

d(x y) = f T n Ifn(x) - fn(y)1 
, n=l 1 + Ifn(x) - fn(y)1 

is easily seen to define the topology of X. 
To prove (1.2.2), we observe that r c C(G) and that, if ,,(, "(' Er are 

distinct, we have by orthogonality : 

(1.2.4) II'Y - "(' 11 = ~ II'Y - "(' 112 = J2. 
Now, if r is countable, the set P of trigonometrie polynomials is sep
arable, and dense in C(G) by Theorem 1.3.4 to come. Therefore, G is 
metrizable by (1.2.3). Conversely, if Gis metrizable, C(G) is separable, 
and then r has to be countable in view of (1.2.4). This ends the proof 
of (1.2.2). 

1.2.3.6. Let IR be equipped with the Haar measure dx, the usual 
Lebesgue measure. Its dual r can be identified to IR, but then the Haar 
measure corresponding to the forthcoming inversion Theorem 1.4.1 is 
dx/2rr. Indeed, if f(t) = e- 1tl , one easily computes f(x) = 2/(1 + x2 ) 

and the change of variable x = tan t shows that 

1 1 ~ 41~ 1 - If(x)1 2dx = - cos2 tdt = 1 = If(t)1 2dt. 
2rr lR rr 0 lR 

1.2.3.7. If G = {Xl, ... , XN} is a finite abelian group with dual r = 
b1, ... , "(N} (isomorphie to G), and if we equip G with the normal

ized Haar measure m = -'N 2::[:1 8Xi ' the Haar measure on r corre
sponding to the inversion theorem is the non-normalized measure /-L = 
2::f=18"'/j as is easily checked. This corresponds to the fact that the 

matrix ()j\r'Yj(Xi))(i,j) is unitary. This example is very important for 

Dirichlet characters. 
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1.2.3.8. As an important specialization of example 3, we have the follow
ing : let C be the Cantor group, i.e. the compact abelian and metrizable 
group {-I, l}N of all choices of signs W = (cn)n>l with Cn = ±1 and co
ordinatewise multiplication, equipped with its normalized Haar measure 
m. Its dual group (discrete and countable) is called the Walsh group and 
can be described as the group of words WA indexed by the finite subsets 
of N* := {I, 2, ... } defined by 

WA(W) = rr cn(w), W0(W) = 1. 
nEA 

The co ordinate functions Cn are independent random variables on the 
probability space (C, m) and are sometimes called the Rademacher, or 
centered Bernoulli, variables. They will playa very important role in the 
study of random polynomials and random Dirichlet series. 

1.3. The Bochner-Weil-Raikov and Peter-Weyl theorems 

1.3.1. An abstract theorem. The structure of stellar, Banach algebra 
of M (C) is interesting for us with a view to the following fundamental 
theorem. Let Adenote a commutative, stellar, unital Banach algebra 
with unit e, with dual space A* (in the sense of Banach spaces), involu
tion x f---t X and spectrum M. We recall that M is the set of non-zero 
homomorphisms 'P : A --+ C, which are automatically continuous with 
norm 1. This is a compact Hausdorff space with the usual Gelfand topol
ogy, namely the weak-star topology induced by A* on M. We denote 
by xh) = ')'(x) the Gelfand transform of x E A at ')' E M, and by 
r(x) := \\x\\oo the spectral radius of xE A. We then have the : 

Theorem 1.3.1 (Bochner-Weil-Raikov). Let L be a positive linear form 
on A, namely L(xx) 2: ° for all x E A. Then, we have : 

(1) L is continuous. 
(2) \L(x)\ :S L(e)r(x) and \L(xx)\ :S L(e)r(x)2 for alt xE A. 
(3) There is a positive measure fJ on M such that 

L(x) = 1M xh)dP,h), Vx E A. 

(4) If L(xx) =1= 0, there exists X E M such that X(x) =1= 0. 

Proof: (1) First note that e = e since e is also a unit for A. Now 
recall that, for t real and \tl :S 1, we have : 

00 00 

v'f=t = L antn with an real and L lanl < 00. 

n=O n=O 
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So that, if x E A and Ilxll :s: 1, we can write 
CXl 

e - xx = y2 with y = Y = L an (xx t. 
n=O 

This proves that L(e - xx) = L(yy) 2: ° and that L(xx) :s: L(e). More
over, the assumptions imply that the map (x, y) ~ L(xY) is a positive, 
hermitian, form on A, therefore we have the Cauchy-Schwarz inequality : 

IL(xy)12 :s: L(xx)L(yy). 

Taking y = e, we get, for Ilxll :s: 1, the following : 

(1.3.1) IL(x)1 2 :s: L(e)L(xx) :s: [L(e)f 

(2) Using (1.3.1) and then iterating, we get : 

IL(x)1 :s: L(e)1/2+1/4+ .. +1/2n [L(xx)2 n - 1 ] 1/2n 

:s: L( e) 1/2+1/4+··+1/2n IIL111/2n 11 (xx)2 n
-

1 11 1/2n . 
Recall that, according to the spectral radius theorem, r(x) is given by : 

(1.3.2) r(x) = lim IlxnI11/n. n-+CXl 
So that, letting n tend to infinity in the above, we get the first claimed 
inequality 

IL(x)1 ~ L(e)r(xx)1/2 ~ L(e)r(x). 

Indeed, if X E M, so does 'ljJ defined by 'ljJ(x) = X(x), and X(xx) 
X(x)'ljJ(x) , so that r(xx) :s: r(x)2. The second inequality follows by 
changing x into xx. 
(3) Let A the subspace of C(M) formed by Gelfand transforms of ele
ments of A. Define a linear form S on A by the formula S(X) = L(x). 
The preceding shows that S is well-defined and that 

IS(x)1 ~ L(e)llxII CXl . 
Therefore, S is continuous on A and IISII ~ L(e). The Hahn-Banach 
extension theorem and the Riesz representation theorem now show that 
there exists a regular, complex measure I-" on M, with 111-"11 :s: L(e), such 
that: 

L(x) = S(x) = 1M xh)dl-"h)· 

In particular, L(e) = S(l) = IM dl-"h) 2: 111-"11, so that I-" is positive with 
norm L(e). 
(4) If L(xx) =1= 0, item (1) shows that r(x) = 1IXIICXl =1= 0, which ends the 
~~ 0 
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1.3.2. Applications to harmonie analysis. An important consequ
ence of Theorem 1.3.1 is : 

Theorem 1.3.2. The Fourier transform f 1----4 1 : L 1 (G) ---> A(r) is 
injective. 

Proof: Consider the unital subalgebra A = L1(G) + C80 of M(G). 
Fix a function cp in Coo(G), the set of continuous, compactly supported 
functions G ---> C. Then, define a linear form L = L p on that algebra by 
the formula : L(a) = (<,3 * cp * 0')(0), that is, if 0' = fdm + c80 E A : 

L(a) = (<,3 * cp * f)(O) + c(<,3 * cp)(O). 

This linear form is positive, since one easily sees that : L(a * 0-) = 
110' * cpll~· (Observe in passing that, by Cauchy-Schwarz, Fubini and the 
translation-invariance ofm, one has for 0' E M(G): cp*a E L 2 (G), with 
moreover Ilcp * 0'112 :::; Ilcp11211all)· Now, let f E L1(G), f -# O. Choose 
cp E Coo (G) such that 

(1.3.3) (J * cp)(O) = fc cp(-x)f(x)dx -# O. 

This implies that L(J * j) = Ilf * cpll~ -# 0 since f * cp is continuous, 
does not vanish at 0 by (1.3.3), and since the Haar measure charges all 
non-void open sets by (1.1.3). Therefore, by Theorem 1.3.1, there is a 
character h of A such that h(J) -# O. But the characters of Aare of the 
form: 

h(Jdm + c80) = lb) + C, for soe "( E r. 

Taking C = 0 here, we obtain h(J) = j( "() -# 0, which gives the result. 
o 

In functional analysis, the dual of a normed space has many elements 
thanks to the Hahn-Banach theorem. It turns out that the dual of a 
locally compact abelian group G has many elements as well. N amely, as 
a consequence of Theorem 1.3.2, we have the Peter- Weyl theorem in the 
abelian case : 

Theorem 1.3.3 (Peter-Weyl theorem). The dual r of any LCA group 
G separates the points of G, namely : 

(1.3.4) If x -# y, there exists "( Er; "((x) -# "((y). 
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Proof: Let x, y E G with x =I y. By the Tietze-Urysohn theorem, 
there exists r.p E Coo(G) such that r.p(x) =I r.p(y), that is Txr.p(O) =I Tyr.p(O). 
Applying Theorem 1.3.2, we can find, Ersuch that T::Pb) =I T;;Pb), 
equivalently : 

cPbh(x) =I cPbh(y), so that ,(x) =I ,(y). 

o 
Let us indicate some important consequenees of the Pet er-Weyl the

orem. We will denote by P be the algebra of trigonometrie polynomials 
on G, Le. the veetor spaee of functions generated by r. 

Theorem 1.3.4. If G is a eompaet abelian group, the set P of trigono
metrieal polynomials is uniformly dense in the space C(G) of eomplex, 
continuous functions on G. Conversely, if ~ is a subgroup of r separat
ing the points of G, we have ~ = r. 

Proof: The set P is a self-adjoint algebra, sinee the eonjugate of 
a eharaeter, and the products of two of them, is still a character. It 
separates points of G by the Pet er-Weyl theorem 1.3.3, and eontains 
the constant 1, the zero-eharaeter. Therefore, it is dense in C(G) by 
the Stone-Weierstrass theorem. Now, let Q be the set of trigonometrie 
polynomials generated by ~, i.e. the veetor space generated by ~. This 
is a self-adjoint algebra sinee ~ is a subgroup, and it separates points 
of G, therefore is uniformly dense in C(G) by the Stone-Weierstrass 
theorem again. Now, suppose that , E r\~, and let Q E Q. By 
orthogonality, we have : 

IIr - Qlloo 2: 11, - QI12 = (1 + IIQII~) 1/2 2: 1, 
whieh contradicts the uniform density of Q in C(G). o 

A nice partial eonsequenee of Theorem 1.3.4 is a kind of Hahn-Banach 
extension theorem for certain subgroups. A more eomplete deseription 
will be given onee we have the Pontryagin theorem at our disposal. 

Corollary 1.3.5. Let H be a subgroup of the LCA group G. Then: 
a) Any weak charaeter of Hextends to a weak eharaeter of G. 
b) If H is eompact or open, any eontinuous charaeter on Hextends to 
a eontinuous eharacter on G. 

Proof: a) We use a transfinite induction (or Zorn's lemma) as follows : 
Let (K,t5) be a maximal pair formed by a subgroup K with H c K c G 
and a weak eharaeter 15 on K extending ,. If K =I G, let x 1- K and L 
be the group generated by K and x. We separate two cases : 


