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Preface 

The logarithmic connection between entropy and probability was first enun­
ciated by L.E. Boltzmann (1844-1906) in his kinetic theory of gases. His 
famous formula for entropy S is S = k log W (as engraved on his tombstone in 
Vienna) where k is a constant and W is the number of possible microstates 
corresponding to the macroscopic state of a system of particles in agas. 
Ignoring the constant k and replacing log W by -log P(E) where P(E) is the 
probability of an event E in the probability space (n, F, P) of a statistical 
experiment, C. E. Shannon (1916- 2001) looked upon -logP(E) as a measure 
of the information gained about the probability space from the occurrence of 
E. If X is a simple random variable on this probability space assuming the 
values al , a2, ... , ak from a finite set with P( X = aj) = Pj for each j then the 
famous Shannon entropy H(X) = - Lj Pj log Pj is the expected information 
about (n, F, P) gained from observing X. Cent red around this idea of 
entropy a mathematical theory of communication was woven by Shannon in 
a celebrated pair of papers in the 1948 volume of the Bell System Technical 
Journal. Here Shannon established two fundamental coding theorems about 
the optimal compressibility of a text in its storage and the optimal capacity of 
a channel in communicating a text after encoding. 

The modern approach to information theory is to view a text in any al­
phabetic language as a finite time realization of a stochastic process in discrete 
time with values in a finite set (calIed alphabet) and consider the quantity 
-~ log P(XO , Xl, ... , Xn-l) as the rate at which information is generated by the 
text Xo , Xl, ... , Xn-l during the per iod [0, n -lJ. Under fairly general conditions 
this rate exhibits an asymptotic stability property as n becomes large. Through 
the papers of B. Mcmillan, A. Feinstein, L. Breiman, J. Wolfowitz and others 
it is now known that an appeal to this stability property enlarges the scope 
of Shannon's coding theorems. This gets enriched further by exploiting the 
Kryloff-Bogoliouboff theory of disintegrating an invariant probability measure 
into its ergodic components. The first three chapters of this little book are 
devoted to Shannon's coding theorems and their enriched versions. However, 
we have not touched upon the coding theorems in their most general form as 
presented in the book of Te Sun Han [14J . 



A decade after the appearance of Shannon's famous work, A. N. Kol­
mogorov (1903- 1987) demonstrated, rat her dramatically, how the not ion of 
the expected rate of generation of entropy or information assumes an intel­
ligence of its own and yields a nonspectral invariant for the classification of 
dynamical systems. Since very little extra effort is involved in presenting this 
beautiful work I have taken the liberty of including it as a small digression. 

In 1932, while laying the mathematical foundations for quantum me­
chanics, John von Neumann (1903- 1957) introduced the fruitful notion of en­
tropy for the state of a quantum system. If p is the density operator of the 
state of a quantum system then its von Neumann entropy S(p) is defined 
by S(p) = -Tr p log p. Through the work of A. S. Holevo, B. Schumacher, 
W . D. Westmoreland and others as outlined in the book of Nielsen and Chuang 
[24] the reader can recognize the role of von Neumann entropy in attempts to 
formulate and establish quantum versions of the coding theorems of Shannon 
when classical messages are encoded as quantum states and decoding is done 
by generalized measurements. Our last and the fourth chapter is devoted to 
a self-contained account of these coding theorems in the quantum avatar as 
described in the elegant work of A.Winter in his 1999 paper [48]. 

A large part of the first three chapters of this book does not use anything 
more than Chebyshev's inequality. The ergodic theorem, martingale theorem 
and decomposition of an invariant probability measure into its ergodic compo­
nents are used in arriving at the more sophisticated versions of the classical 
coding theorems. The last chapter demands not hing more than a knowledge of 
operators in a finite dimensional Hilbert space. 

The preseot exposition has evolved through the courses of lectures I had 
given at the Indian Statistical Institute, Calcutta in 1961, the Tata Institute of 
Fundamental R esearch, Mumbai in 2001 and 2002, the Institute of Mathemat­
ical Sciences, Chennai in 2001 and 2005, the Ramanujan Institute of Advanced 
Study in Mathematics at the University of Madras in 2005 and Chungbuk Na­
tional University, Cheongju, Korea in 2005. I am grateful to C. R. Rao who 
suggested to me in 1959 the study of information theory for my PhD thesis and 
J. Radhakrishnan, R. Parimala, R. Balasubramanian, M. Krishna, V. Arvind, 
S. Parvathi , K. Parthasarathy, V. Thangaraj and Un Cig Ji who were instru­
mental in organising these lectures in a congenial atmosphere. I thank Anil 
Shukla for his elegant TEX of my notes with patience in spite of my repeated 
requests for changes and corrections. Thanks to the careful proof-reading by P. 
Vanchinathan a significant control over the number of grammatical, typograph­
ical and TEX errors has been exercised. The support given by my colleagues at 
the Delhi Centre of the Indian Statistical Institute is gratefully acknowledged. 

Indian Statistical Institute 
Delhi Centre 
New Delhi - 110016 
India 

K. R. Parthasarathy 
January 2007 



Preface to the revised edition 

The essential feature of the revised edition is the inclusion of a new chapter 
devoted to the Knill-Laflamme theory of quantum error correction and its 
consequences in the construction of t-error correcting quantum codes. Our 
approach is based on the unification of classical and quantum error correcting 
codes through imprimitivity systems for finite group actions. 

Many typographical error corrections and some minor changes have been 
made in the text of the first edition. 

I have greatly benefited from discussions with V. Arvind and Harish 
Parthasarathy. Ajit Iqbal Singh has rendered valuable help in carefully reading 
the manuscript and suggesting many improvements. Anil Kumar Shukla has 
Texed the revised manuscript showing tremendous patience in fulfilling my re­
quests for repeated changes in the text. The continued support of my colleagues 
in the institute has enabled the completion of this revision in reasonable time. 
To all of them I express my sincere thanks. 

Indian Statistical Institute 
Delhi Centre 
New Delhi - 110 016 
India 

K. R. Parthasarathy 
September 2012 
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Chapter 1 

Entropy of Elementary 
Information Sources 

1.1 Uniquely decipherable and irreducible codes 

We begin with an elementary analysis of maps from a finite set into the free 
semigroup generated by another finite set and develop a terminology appropri­
ate to information theory. 

Consider any finite set A of cardinality a denoted as #A = a. We say 
that A is an alphabet of size a and call any element x in A as a letter from the 
alphabet A. Any element W = (Xl, X2, .. . , xn ) in the n-fold cartesian product 
An of copies of Ais called a word of length n, the latter denoted by l(w). It is 
customary to express such a word as w = XIX2 ... Xn by dropping the brackets 
and commas. Denote 

00 

S(A) = U Ar 
r=l 

and for any WI = XIX2 ... Xnl E Anl, W2 = YIY2 ... Yn 2 E An2 define the product 
word WIW2 by WIW2 = XIX2.·· Xnl YIY2· .. Yn 2· Thus l(WIW2) = l(wI) + l(w2). 
Clearly, this multiplication is associative.1t makes S(A) a semigroup without an; 
identity element. We call S(A) the free semigroup or word semigroup generated 
by the alphabet A. 

Let A, B be alphabets of sizes a, b respectively. A one-to-one (or injective) 
map f : A ~ S(B) is called a code with message alphabet A and encoding 
alphabet B. When B is the two point set {O, I} such a code f is called a binary 
code. Any word in the range of a code f is called a basic code word. Start with 
a code f : A ~ S(B) and extend it uniquely to a map j : S(A) ~ S(B) by 
putting 
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for any word w = XIX2 ... X n in S(A) . Then f is said to be a uniquely deci­
pherable code if its extension j is also one to one. The code f is said to be 
irreducible if for any two letters x and y in A , f(y) #- f(x) and f(y) cannot 
be expressed as f(y) = f(x)w for any word w in S(B). A simple examination 
shows that an irreducible code is uniquely decipherable. 

We shall now establish a necessary condition for a code f : A -+ S(B) to 
be uniquely decipherable. 

Theorem 1.1.1 (Sardinas and Patterson [40]) Let A, B be alphabets of sizes 
a, b respectively and let f : A -+ S(B) be a uniquely decipherable code. Then 

L b-l(f(x» :::; 1. 
xEA 

where l(w) denotes the length of the word w. 

Proof. Let 

L max {l(f(x)) I xE A}, 

er = #{xll(f(x))=r} . 

Then the left hand side of (1.1.1) can be expressed as 

L L b-l(f(x» L L b-l(f(x» 

xEA r=l x :l(f(x»=r 

r=l 

where P is the polynomial defined by 

L 

P(z) = Lerzr. 
r=l 

Define 
N(k) = # {j(w) Iw E S(A), l(j(w)) = k} , 

(1.1.1) 

the cardinality of the set of all code words of length k. Clearly, N(k) :::; bk for 
k = 1,2, .. . Thus the power series 

00 

F(z) = 1 + L N(k)zk 
k=l 

converges to an analytic function in the open disc {z I Izl < b- 1 } . Introduce 
the convention that N(O) = 1 and N(k) = 0 if k < O. Since every code word 
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J(w) of length k 2: 2 can be expressed as ](W1)!(X) for some W1 E S(A) and 
letter x E A where l(](wd) = k - rand l(J(x)) = r for some 1 :'S r :'S L it 
follows that 

N(k) = N(k - 1)C1 + N(k - 2)C2 + ... + N(k - L)CL if k 2: 1. 

Multiplying by zk on both sides of this relation and summing over k = 1, 2, ... 
we get F(z) -1 = F(z)P(z). Thus F(z) = (1- p(z))-l is analytic in the open 
disc {z I Izl < b- 1 } . In other words the polynomiall - P(z) has no zeros in 
the disc {z I Izl < b- 1 }. We also have 1 - P(O) = 1. Thus the real polynomial 
1- P(t) in the real variable tremains positive in [0, b-1 ). Hence 1- P(b- 1) 2: 0 
which is same as the inequality (1.1.1). 

o 
Our next result is a converse of Theorem 1.1.1. 

Theorem 1.1.2 Let m(x), x E A be a positive integer-valued function satisfying 

L b-m(x) :'S 1 
xEA 

(1.1.2) 

where b = #B. Then there exists an irreducible (and hence uniquely decipher­
able) code! : A -t S(B) such that m(x) = l(J(x)) '<I xE A. 

Proof. Define 

L maxm(x), 
xEA 

Ar {x I m(x) = r}, 
Cr #Ar , 1:'S r :'S L. 

Then A = UrAr is a partition of A into disjoint sets and Cl + C2 + ... + CL = a, 
the size of A. Then (1.1.2) can be expressed as 

This implies 

Thanks to the first inequality above we can and do select a subset Sl c B c 
S(B) such that #Sl = Cl :'S b. Suppose we have selected subsets Sj c Bj c 
S(B) such that #Sj = Cj and no word in Sj is an extension of any word in 
Sl U S2 U··· U Sj-1 for j = 2, ... , r - 1. The number of words in Br which are 
not extensions of any word in Sl U S2 U ... U Sr-1 is equal to br - C1br-1 -
c2br- 2 - ... - Cr-1b 2: Cr· Thus we can and do select a subset Sr c B r c 
S(B) such that #Sr = Cr. We continue this procedure till we reach SL. Then 
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U~=l Sr c S(B) is a subset of words in which no word is an extension of another 
and # U~=l Sr = Cl + C2 + .. . + CL = a. Let now f be any bijection from A 
onto U~=ISr. Then f is an irreducible code with the required properties. 0 

Remark 1.1.3 When b = 2, the inequality (1.1.2) is known as Kraft's inequality 
in the computer science literature. 

The proofs of Theorem 1.1.1 and Theorem 1.1.2 yield a necessary and 
sufficient condition for the existence of a uniquely decipherable code when the 
lengths of the basic code words are given. However, the choice of such a uniquely 
decipherable code is far from unique. In order to narrow down the choice of a 
uniquely decipherable code it is necessary to introduce an optimality criterion 
for the code by examining the statistics of frequencies with which the different 
letters of the alphabet A appear when a language with the alphabet A is used 
to write long texts. With this aim we introduce a formal definition. 

Definition 1.1.4 An elementary information source (EIS) is a pair (A, J.L) where 
Ais an alphabet and J.L is a probability distribution on A, Le., J.L : A -+ [0,1] is 
a map satisfying E J.L(x) = 1. 

xEA 
As an example we may consider A to be the union of the set of all 26 let-

ters a, b, . . . , Z of the English language, the set of all punctuation marks like full 
stop ., comma , , question mark ?, . . . etc and a symbol for the 'space' between 
successive words. By making an analysis of the frequencies with which letters 
from A appear in different pages of books one can construct a model distribu­
tion J.L so that the EIS (A, J.L) is an approximation of the English language. Such 
a model can be constructed for any language after a suitable alphabetization 
of its script. 

Let now (A, J.L) be an EIS and let B be an encoding alphabet with #A = a, 
#B = b. Consider any uniquely decipherable code f : A -+ S(B). Then l(J(x)) 
considered as a function of x E A is a positive integer-valued random variable 
on the probability space (A, J.L) with expectation 

Z(J) = lEl(J(.)) = L: l(J(x))J.L(x) 
xEA 

which is called the mean code word length of the code f. Write 

L(J.L) = min{I(J) I f : A -+ S(B) is a uniquely decipherable code} . 

In view of Theorem 1.1.1 and Theorem 1.1.2 we have 

L(J.L) = min {L: m(x)J.L(x) Im : A -+ Z+, L: b-m(x) :::; 1} 
xEA xEA 

(1.1.3) 

where Z+ = {1, 2, 3, ... }. It is desirable to construct a uniquely decipherable 
code f : A -+ S(B) for which Z(J) = L(J.L), Le., a code which has the least mean 
codeword length. 
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Our next result provides a good estimate of L(J-l). 

Theorem 1.1.5 Let (A, J-l) be an EIS and let b be the size of the eneoding 
alphabet B. Then 

- EXEA J-l(x) 10gJ-l(x) L() - E XEA J-l(x) 10gJ-l(x) 
log b S J-l < log b + 1. (1.1.4) 

Proof. Let m : A ~ Z+ be a map satisfying the inequality EXEA b-m(x) S 1. 
Define the probability distribution v on A by 

b-m(x) 

v(X) = =---~ 
'" b-m(y)· 
L...yEA 

Write T = EyEA b-m(y) so that T S 1. We have 

L m(x)J-l(x) = (log b)-l {-lOg T - L J-l(x) log V(X)} . 
xEA xEA 

(1.1.5) 

Without loss of generality we assume that J-l(x) > 0 V x. We write 

( V(X)){l(X) 
- LJ-l(x)logv(x) = - LJ-l(x)logJ-l(x) -log rr ~ 

xEA xEA xEA J-l 

Sinee a weighted geometrie mean does not exeeed the eorresponding weighted 
arithmetic mean we have 

rr (V(X)){l(X) S L v(x) J-l(x) = 1. 
xEA J-l(x) xEA J-l(x) 

Thus 
- L J-l(x) log v(x) 2': - L J-l(x) 10gJ-l(x). 

xEA xEA 

Sinee T S 1 it now follows from (1.1.5) that 

L m(x)J-l(x) 2': -(log b)-l L J-l(x) log J-l(x) 
xEA xEA 

whieh proves the left hand part of the inequality (1.1.4). 
To prove the right hand part of (1.1.4) eonsider the unique positive integer 

m(x) satisfying 

m(x) - 1 < -logJ-l(x) S m(x) 
log b 

for eaeh xE A. Onee again we assume that J-l(x) > 0 V x. Then 

xEA x 



6 Chapter 1. Entropy of Elementary Information Sources 

Hence by Theorem 1.1.2 there exists an irreducible (and hence uniquely deci­
pherable) code f : A -+ 8(B) for which l(f(x)) = m(x) V x. Hence 

Z(f) = L m(x)p,(x) 
xEA 

~ (1 _ log p,(X)) p,(x) 
L...J log b 
xEA 

< 

= 
- LXEA p,(x) logp,(x) 

. log b + 1, 

proving the right hand part of (1.1.4). o 

Remark 1.1.6 We can express the inequality (1.1.4) as 

- LXEA p,(x) log2 p,(x) L() - LXEA p,(x) log2 p,(x) 
--===.:.,:-'--,-:--:...=.-'--'--'- < p, < + 1. 

log2 b - log2 b 
(1.1.6) 

The special case of the binary alphabet B = {O, I} with b = 2 is of great 
practical importance. In this case (1.1.4) takes the form 

(1.1. 7) 

where 
(1.1.8) 

xEA 

is called the Shannon entropy of the EIS (A, p,) or, simply, the probability 
distribution ft. Thus H(ft) is the expectation ofthe randorn variable -log2 p,(.) . 
The variance of this randorn variable, narnely, 

O"~ = L p,(x) (log2 p,(x))2 - H(p,)2 
xEA 

is also a very useful quantity in the development of our subject. In fact the 
randorn variable - log2 p,(.), its expectation H (p,) and its standard deviation 0" Jl. 

play an important role in the understanding of coding theorems of information 
theory. 

Exercise 1.1.7 For any alphabet A let P(A) denote the set of all probability 
distributions on A. Then the following holds : 

(i) 0 ~ H(p,) ~ log #A V p, E P(A) . Here equality obtains on the left hand 
side if and only if p, is degenerate, i.e., p,(x) = 1 for so me xE A. Equality 
obtains on the right hand side if and only if p, is the uniform distribution 
on A, i.e., p,(x) = (#A)-l V xE A. 

(ii) For any pre-assigned value H for H{p,) the maximum of 0"Jl. is attained at 
a distribution of the form 

{ p if x = Xo, 
p,{x) = 2=L.f .../.. 

#A-l 1 X I Xo 
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where 0 :s: p :s: 1. In particular, 

max (Jp. = max VPQ {IOg2 E(#A - I)} 
p.EP(A) p21/2 q 

where q = 1 - p. Furthermore, 

< 

max(Jp. p. 

{~ + ~ log2(#A - I)} log2 e. 

7 

In particular there exist absolute positive constants k 1 and k2 (indepen­
dent of #A) such that 

(Hint: For both (i) and (ii) use the method of Lagrange multipliers.) 

Exercise 1.1.8 Let A = {O, I} and let f.tp(O) = 1-p, f.tp(1) = p where 0 :s: p :s: 1. 
Then (A, f.tp) is called a Bernoulli source. Its entropy H(f.tp) = -p log2 P -
(1 - p) log2(1 - p) is a continuous function of p in the unit interval [O,IJ. 
Here we interpret x log2 x to be 0 when x = O. Furthermore H(f.tp) increases 
monotonically from 0 to 1 as p increases from 0 to 1/2. Thus, for every 0 :s: 
() :s: 1, there exists a unique p(()) in the interval [0, 1/2J such that H(f.tp((J») = (). 
See figure below: 

(0,0) (0.5.0) 

P 

(1,0) 

Figure 1.1 
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Exercise 1.1.9 If (A, J.l) and (B, v) are two elementary information sources define 
their product (A x B, J.l ® v) by 

J.l ® v((x, y)) = J.l(x)v(y), xE A, y E B. 

Then H(J.l ® v) = H(J.l) + H(v) . 
If 0< h < 00 write h = lhJ + {h} where lhJ and {h} are respectively the 

integral and fractional parts of hand consider the alphabet 

A = {O, l} lhJ+1 

with the product probability distribution 

0lhJ 
J.l=J.l I /2 ®J.lp({h}) 

where J.lp(O) and J.lI/2 are as in Exercise 1.1.8. Then H(J.l) = h. In other words, 
for any 0 < h < 00 there exists a product of Bernoulli sources with Shannon 
entropy h . 

We now conclude this section with a heuristic discussion. The important 
inequality (1.1.7) teIls us that the Shannon entropy H(J.l) measures the amount 
of space (in terms of codeword length) needed for encoding or storing a 'mes­
sage' from the EIS (A, J.l). We may interpret H(J.l) as the expected information 
from (A, J.l). Now consider a general probability space (n, F, J.l). Such a proba­
bility space describes a statistical experiment. In such an experiment watch the 
occurrence of an event E E F. The occurrence of such an event throws light 
on the prob ability space and provides 'information'. Suppose this information 
is measured by a nonnegative quantity I(E) . If the event E is certain to occur, 
i.e., J.l(E) = 1 no information is gained by watehing E. In other words I(E) = 0 
whenever J.l(E) = 1. The rarer an event, its occurrence throws greater light on 
the probability space. In other words I(E) is a monotonie decreasing function 
of J.l(E). If EI and E2 are two independent events it is desirable to have the 
property I(EI n E2 ) = I(EI ) + I(E2 ). These properties are fulfilled if we put 
I(E) == -k log J.l(E) for some positive constant k. As a normalization we choose 
I(E) = 1 when J.l(E) = 1/ 2. This suggests that I(E) = -log2 J.l(E) is a suitable 
measure of the information provided by watehing the occurrence of the event 
E. 

When the sampie space n is partitioned into disjoint events Ej E F , 
j = 1, 2, .. . , n so that n = U']=I E j then (n, F, J.l) is approximated by (n, A, J.l) 
where A is the algebra generated by the events Ej , j = 1,2, . . . , n. This 
data gives rise to the elementary information source ({EI ,E2 , ... ,En },J.l) 
with the probability distribution J.l(Ej ) , j = 1, 2, ... , n and Shannon entropy 

n 
- L J.l( E j ) log2 J.l( E j ) which is the average information .provided by the ap­

j=l 

proximate experiment (n, A, J.l) . 


