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Editorial Note 

It gives me immense satisfaction that we could assemble a group of distinguished 
scholars at this Institute to conduct a seminar on the history of mathematics in India, 
leading to the publication of this volume. This whole endeavour owes very much to 
the initiative and commitment of David Mumford. I am very glad that this provided 
also an occasion for having amidst us the renowned indologist Frits Staal. 

It is fitting that this volume is dedicated to the memory of the two outstanding 
scholars David Pingree and K. V. Sarma who have made pioneering contributions 
to this field. 

It is my pleasant duty to thank all those who have contributed to this volume, 
as well as to the one invisible contributor Jayant Shah (Northeastern University, 
Boston) for his critical reading of all the material in this volume. 

C.S. Seshadri 
Director 
Chennai Mathematical Institute 



Preface 

It was a great privilege to participate in the Seminar Topics in the History of Indian 
and Western Mathematics which took place at the Chennai Mathematical Institute in 
January and February 200S. I am a newcomer in this area and cannot read Sanskrit, 
but I had the opportunity to listen and learn from Sanskrit scholars, mostly Indian but 
one Western (Staal) and absorb their various perspectives. It has been very exciting 
to me over the last five years to learn something of the distinctive Indian approach 
to mathematics, from its beginnings in Vedic times to its wonderful achievements 
in algebra and the Calculus, just prior to the waves of Western invasions starting in 
the 16th century. 

Today, there is a major resurgence of scholarship in Indian mathematics and 
astronomy both in India and the West, led, on the one hand, by a widespread wave 
of renewed interest in India in Sanskrit studies and on the other hand, by the school 
created by my late colleague David Pingree. Until recently, nearly all articles and 
books on the History ofIndian Mathematics and Astronomy were nearly impossible 
to find in the West. But now, new translations and critical editions with commentary 
of many of the extant manuscripts are being published and widely distributed in the 
West as well as in India. 

This volume contains analyses of many of the most important topics in Indian 
Mathematics and Astronomy, taken from talks at this seminar. Let me sketch some 
of the ideas from each chapter, highlighting topics which seemed to me especially 
significant. I will follow a roughly chronological order. 

Dani's chapter deals with the oldest extant Indian mathematical works, the 
Sulbasl1tras, or "Rules of the Cord", which date from as early as c.SOO BCE. These 
are manuals on the geometry needed for erecting the fire altars central to Vedic ritual. 
Dani describes in detail their techniques of geometric algebra, their construction 
for a square whose area is the sum of those of two given squares or whose area is 
the same as that of a given rectangle. These anticipate many of the constructions 
which appear later in Book 11 of Euclid's Elements, with knotted cords replacing 
the Greek's use of straight edge and compass. In particular, "Pythagoras's" theorem 
is described here well before Pythagoras. (But note that it also occurs as early as 
c.1S00 BCE on Babylonian tablets.) Dani then goes on to describe their approximate 
constructions of circles whose area is that of a given square and vice versa. His last 
section deals with the rational approximation given for the square root of two given 
in three of the four Sulbasutras. Like the Babylonian approximation, it is accurate 
to roughly one part in a million. Dani describes a striking geometric method, first 
proposed by Datta, by which this approximation might have been found. But he also 
proposes that, since they were using very long ropes to actually layout fire altars, it 
is not impossible that they could have carried out a continued fraction-like algorithm 
using two ropes and repeatedly taking multiples of the shorter away from the longer. 
The idea that such algorithms have a very long history connects to Dutta's article. 



x Preface 

Staal-the other Westerner besides myself in this seminar-considers the origins 
of the number zero and proposes a link of the mathematical zero with the linguistic 
zero markers which were invented by the great grammarian Pill)ini. The foundations 
of modem computer science as well as linguistics go back to Pill)ini (c.400 BCE). 
PaI).ini invented formal grammar with abstract variables for various parts of an 
utterance and recursive rewrite rules. Sanskrit grammar was well-known to all the 
mathematician-astronomers and is a plausible source for many ideas which were 
later developed in more mathematical ways. Staal focuses on the Sanskrit word 
lopa, "something that does not appear", as a precursor to the idea of zero. As he 
has written in other works, Sanskrit grammar appears to grow out of the precisely 
formalized Vedic rituals. Astonishingly, the Vedas dealt with possible enactments 
of a ritual in which one participant fails to utter some required sentence. The verbal 
root lup- of lopa is used to describe this failure: a zero in the ritual. Thus the original 
zero could be the priest's lapse. 

Raja Sridharan, R. Sridharan and M. D. Srinivas's chapter concerns another 
area of Indian mathematics: the combinatorics which was inspired first by the 
study of Sanskrit prosody and later by the study of musical patterns, both tonal 
and rhythmic. PaI).ini was followed by PiIiga!a (c.300 BCE) who studied Sanskrit 
prosody. Sanskrit was traditionally written in verse and memorized. Each line had 
a characteristic pattern of short and long syllables. PiIiga!a devised a way to order 
all patterns of short and long syllables in a line with n syllables, and, using this, 
(i) to compute the number describing each pattern, (ii) to reconstruct the pattern 
from its number and finally (iii) to compute the number of patterns with a fixed 
number of short, respectively, long syllables. The first and second use the binary 
number system and the third involves calculating the binomial coefficients. This 
beautiful foundation led to much further combinatorial work which the authors 
survey. For instance the Fibonacci numbers arose when they asked how many 
sequences have a given total length if long syllables are given length 2 and short 
length 1. VirahaIika discovered the Fibonacci numbers and their recursion relation 
in the 7th century (well before Fibonacci!). Recursion seems to be a general theme 
which runs through much of Indian mathematics. Most of their chapter concerns the 
generalization to musical phrases and to musical rhythms, where the combinatorics 
gets more complex and more interesting. This story is beautifully described by the 
authors. 

My own chapter concerns the introduction of negative numbers both in India, in 
China, in Greece and in modern Europe. The full arithmetic of negative numbers 
appears in Brahmagupta's Briihma-sphu!a-siddhiinta in the 6th century and pre
sumably arose much earlier, maybe even in the accounting practices described in 
Kau!ilya's Arthaiiistra. In contrast, the first place where this is correctly described 
without hesitation I in modern Europe is in Wallis's Treatise on Algebra in 1685. 

I Other Westerners wondered whether (-I) . (-I) might be taken to equal -I. 
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This seems to me a stunning example of how far two mathematical traditions can 
diverge-though converging in the end. 

Dutta's contribution concerns Indian arithmetic and algebra. More specifically, 
it concerns three algorithms. The first, called ku!!aka (the pulverizer) constructs, 
for all positive integers a, b, positive integers x, y such that ax - by equals plus 
or minus the greatest common divisor c of a and b. The first half of the algorithm 
is the same as the Euclidean algorithm, successive subtraction of the less from the 
greater, and the second half works backwards to find x and y-just as we do today. 
This second step was not taken by the Greeks. Kugaka appears first in rather cryptic 
form in the Aryabha!fya (499 CE) and soon after more explicitly in the works of 
Bhaskara I and Brahmagupta. They use it to construct all positive integral solutions 
of linear equations ax - by = d, a, b, d of positive integers. This had long been 
a concern because of the ancient Vedic method for making sense of the relative 
periods of the day, the lunar month, the year and the periods in planetary motion: 
that at the beginning of the present Kaliyuga, all the planets, the sun and moon were 
all lined up in one spectacular conjunction. 

The second and third algorithms are concerned with "Pell' s" equation x 2 - DyZ = 
1 which quite plausibly arose in the search for good rational approximations x / y 
to J D. The second algorithm, due to Brahmagupta and called the Bhavana, is 
equivalent, in modem terms, to the law for multiplication of the algebraic integers 
x + yJD. As they put it, ifx2 - Dy2 = m, u2 - Dv2 = n, thens = xu + Dyv, t = 
xv + yu solves S2 - Dt2 = mn. They now played with solutions ofthe equations 
x 2 - Dy2 = m for various m and several centuries later, they did indeed find 
an algorithm which always finds solutions with m = 1, the Cakrava.la. Thus 
they had a complete theory of Pell's equation, modulo one point-a proof that 
this worked. It is interesting that the standard proofs in modem texts are non
constructive whereas the Indian mathematicians focused instead on seeking on 
constructive methods and never studied non-constructive arguments. Their idea of 
mathematics was closer to that of applied mathematicians and computer scientists 
than that of pure mathematicians. Indeed the siddhantas (treatises) where these 
algorithms were written down were manuals for actually calculating astronomical 
events. 

Ramasubramanian and Srinivas take up the story of Indian work on Calculus. 
I personally feel this is a story which deserves to be much more widely known 
in the West. Their chapter outlines the millennium long history of these discover
ies, culminating in the complete analysis of the basic calculus of polynomial and 
trigonometric functions, their integrals and derivatives and power series for sine, 
cosine and arctangent-and, of course, applications of these to astronomy. The path 
they took to this is quite disjoint from the path that was taken, first by Archimedes 
and later by Newton and Leibniz. It is extremely unlikely that any of Archimedes' 
work on, e.g. the Riemann sum for the integral of sine, made its way to India. 
Instead the Indian work seems to have taken off with their discovery of the second 
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order finite difference equation for sine in the 5th century CE or earlier (the discrete 
analog of the result that sine solves the harmonic equation y" + y = 0.) This appears 
cryptically in the Aryabha!fya, and clearly soon after, as is well described in Section 
5 of Ramasubramanian and Srinivas's chapter. Also, early was an interest in sum
ming powers of natural numbers which is described in Section 4. This early work 
revolves around finite differences and the corresponding sums, much like Leibniz's 
starting point for calculus. But the application to astronomy made it clear by the 
10th century that one needed to calculate the "instantaneous velocity" as well as its 
finite difference approximation (see Section 6). In the 12th century, Bhaskara 11 used 
these ideas to rediscover Archimedes' derivation of the formula for the area and 
volume of a sphere. This derivation reduces the problem to computing the integral 
of sine. But, interestingly, as an applied mathematician, he completes the proof by 
numerically summing his sine table--even though he knows quite well that cosine 
differences are sines and could have done it this way. The numerical method was 
apparently more convincing! 

The crowning achievements of this work are due to a major genius who is nearly 
unknown in the West: Miidhava, who lived in a village in Kerala in the 14th century. 
Only a small fragment of his work survives, but, fortunately, his and his school's 
work was written up in an unusual expository form in the local language, Malayalam, 
by Jye~!hadeva in the 16th century-still over a century before Newton and Leibniz 
did their work. This book, the Yukti-bhii~ii has only now been translated into English 
by K. V. Sarma with commentary by the authors of this chapter and M. S. Sriram. The 
first volume was released with some ceremony during our seminar. The work of the 
Kerala school is described in Part 2 of the present chapter. Let me only mention that 
in addition to deriving the power series for sine and cosine and the 'Gregory' series 

7C 1 1 1 
-=1--+---+··· 
4 357 

their numerical bent appears again in finding a series of ways to estimate the 
remainder so that this becomes a practical tool for calculating 7C. This led them to 
much more rapidly converging series such as: 

7C 3 1 1 1 
-=-+-----+--- ... 
4 4 33 - 3 53 - 5 73 - 7 

7C 

16 P +4·1 35 + 4·3 + -55,....+-4-.-5 

Divakaran's article proposes the compelling thesis that recursion is the central 
theme and technique that runs through all the Indian work in mathematics. He traces 
this to PiiI;lini's grammatical rules and even earlier to Vedic ritual. He points out 
that the whole idea of decimal place-value notation can be seen as a way to describe 
integers recursively. Recursive generation of larger and larger numbers leads to a 



Preface xiii 

clear conception of infinitely large and its inverse, to a conception of the infinitely 
small and of the limiting process. The bulk of his article, however, focuses on the 
extensive use of recursion in the Kerala work on Calculus. Like Newton, he sees 
the introduction of power series as an algebraic analog of decimal expansions (xn 
being the analog 10") and he discusses at length the power series expansion 

1 23 --=l-x+x -x + ... 
l+x 

found in the Yukti-bha~a. He then describes the huge step which one finds in the 
Yukti-bha~a: recursive proofs based on induction: they derive the integral of xn 
using induction on n. Finally, he discusses the derivation of the power series for 
sine and cosine in the Yukti-bha~a and notes that it is derived by first converting the 
known difference equations for sine in terms of cosine and cosine in terms of sine 
into a summation form. This is the exact analog of converting differential equations 
into integral equations. Jye~!hadeva, starting with a crude approximation, then 
recursively back-substitutes each approximation into the summation form to get a 
better one. Passing to the limit, he gets the power series. This back substitution is 
exactly what we do today to solve Fredholm integral equations. 

Finally, M. S. Sriram's Chapter addresses the planetary models in Indian As
tronomy. As mentioned above, mathematics was usually studied together with 
astronomy and the two subjects advanced hand in hand. His article concentrates 
on their last model which is due to NIlakaJ?!ha c.l500 CE, who worked at roughly 
the same time as Copernicus in the West. His model is explained at length in the 
Ga"(lita-yukti-bha~a and is described with modem formulas in Sriram's chapter. The 
most interesting issue is here is the historical movement from geocentric models 
to heliocentric models. In fact, NIlakaJ?!ha's model is 'essentially' heliocentric. In 
his model, one starts with the mean sun moving in the ecliptic circle. Then for each 
planet, one takes a plane centered at the mean sun but inclined to it to different 
amounts for each planet and intersecting it at the appropriate nodes. And in each of 
these planes one places the corresponding planet on the Ptolemaic approximation to 
the ellipse: an eccentric circle. Once one overcomes the dense tangle of compound 
Sanskrit words, a very modem model shines through. 

These articles together cover a substantial portion of the exciting History of 
Indian Mathematics and Astronomy. Only a fraction of this has become generally 
known to mathematicians in the West. Too many people still think that mathematics 
was born in Greece and more or less slumbered until the Renaissance. Therefore, I 
hope that this book may serve as a way of bringing to the international mathematical 
community a deeper knowledge of the riches in Indian Mathematics. To scholars, 
however, there is another message: there is much work still to be done to study, edit 
and translate the many ancient manuscripts still surviving in libraries all over India. 
One hopes for a deeper and broader picture of the more than two millennium long 
history when every one of these has been looked at and analyzed. 

David Mumford 





David Pingree, 1933-2005 

KimPlofker 

David Edwin Pingree (2 January 1933-11 November 2005) employed the fifty years 
of his scholarly career investigating the development of mathematics, astronomy 
and the related exact sciences from ancient Mesopotamia to early modem Europe 
and India. He published editions, translations and studies of source texts in Akka
dian cuneiform, Greek, Latin, Sanskrit, Arabic and Persian, on subjects ranging 
from infinite series and interpolation techniques to astral magic and iconography 
in astrological texts. He was professionally affiliated with Harvard University as 
an undergraduate (B.A. in Classics and Sanskrit, 1954), graduate student (Ph.D. 
in Sanskrit and Indian Studies, 1960), and Junior Fellow (to 1963); the Univer
sity of Chicago as a faculty member in the Oriental Institute and Departments of 
History, South Asian Languages, and Near Eastern Languages (1963-1971); and 
Brown University as a professor in the Departments of Classics and the History 
of Mathematics (1971-2005). Over the course of his immensely productive career 
he received many honors, including a Fulbright Scholarship, a Guggenheim Fel
lowship, and membership in severalleamed societies, among them the American 
Academy of Arts and Sciences, the American Philosophical Society, and the Insti
tute for Advanced Study at Princeton University. Pingree was awarded the title of 
"Abhinavavarahamihira" by the government of Uttar Pradesh in 1979, and in 1981 
was one of the first recipients of the MacArthur Fellowship (popularly nicknamed 
the "Genius Grant"), together with co-honorees including the philosopher Richard 
Rorty, the paleontologist Stephen Jay Gould, and the computer scientist Stephen 
Wolfram. His total scholarly output comprised several dozen monographs and sev
eral hundred research articles, reviews, encyclopedia entries, and other works. 

In his research on the history of science, David Pingree was first and foremost 
what might be termed a "transmissionist": he was primarily interested in what he 
called the "kinematics" of scientific development, the ways that scientific ideas were 
passed from one culture to another, and how they were transformed in the process. 
The first awakening of his interest in the history of science as a field of research was 
due, as he described it, to just such a question of transmission from the medieval 
Indian exact sciences to their Greek counterpart. As a Fulbright scholar in 1955, 
reading a Byzantine Greek manuscript on astrology in the Vatican Library, he noticed 
marginal notes by a commentator that included technical terms transliterated from 
Sanskrit. This discovery eventually inspired his important studies of the influence 
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of Indian astrology on Arabic and Persian texts and consequently on the Greek 
astral science tradition of Byzantium. Pingree also explored the mirror image of 
this transmission in an earlier era, tracing the assimilation of Hellenistic horoscopic 
astrology into the Sanskrit discipline of yavana-jiitaka via the pre-Gupta Indo-Greek 
kingdoms in western India. This work, which became his doctoral dissertation and 
his first monograph, led directly to his prolonged collaboration with the great 
Assyriologist historian of science Otto Neugebauer, and to his study of Akkadian, 
Arabic and Persian in order to track similar exchanges of scientific knowledge 
through the entire four-thousand-year history of the great Eurasian development of 
the exact sciences. (Even erudition as deep as Pingree's was forced to submit to 
some limitations in this quest, however: to the end of his life he remained somewhat 
regretful, and slightly apologetic, that he had never found time to undertake learning 
Chinese.) 

Pingree's hypotheses about cross-cultural transmission of scientific ideas were 
frequently groundbreaking and sometimes controversial. A few of them were ten
tative speCUlations that never attained wide acceptance, such as his suggestion that 
the structure of Bhaskara ll's table of easy Sines (laghu-jyii) might reflect influence 
from Islamic trigonometry. Some were plausible inferences unproven by conclusive 
textual evidence that were accepted by most mainstream historians but strongly 
resisted by some others, such as his attribution of parts of the Sanskrit Jyoti~a
vediinga/Vediinga-jyoti~a to Babylonian mathematical astronomy techniques in the 
Achaemenid period or his derivation of Aryabha~a's planetary mean motions around 
500 CE from a hypothesized Greek source. Some were preliminary conclusions 
based on little-known textual sources that remain to be explored more fully, such 
as his deductions about the relationship of Mesopotamian and ancient Indian astral 
omen literature or about the recognition of Islamic optics in seventeenth-century 
Sanskrit astronomy. But most of his discoveries concerning scientific transmission, 
including his study of the Indian adoption of Hellenistic astrology, his exposition of 
the dependence of medieval Spanish astronomy on Indian sources, and his research 
on the reactions to Latin heliocentrism in eighteenth-century Rajasthan, were solidly 
established by masterly textual scholarship and have substantially transformed the 
standard narrative of scientific development. 

In light of the above-mentioned controversies, Pingree has sometimes been 
rashly relegated (by those acquainted with only a few isolated fragments of his 
work) to the company of reactionary Orientalists like the nineteenth-century John 
Bentley and G. R. Kaye who took it for granted that original scientific discoveries 
were by default, Greek, and that treatises in, say, Arabic or Sanskrit or Chinese 
must represent mere borrowings and imitations. Pingree himself, however, was far 
from sharing this ill-informed view, which he scornfully dismissed as the vice of 
"Hellenophilia" unworthy of a serious historian: 

Hellenophiles, it might be observed, are overwhelmingly Westerners, displaying 
the cultural myopia common in all cultures of the world but, as well, the arrogance 
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that characterized the medieval Christian's recognition of his own infallibility and 
that has now been inherited by our modem priests of science ... If it is evident that 
for a historian the proposition that the Greeks invented science must be rejected, 
it necessarily follows that they did not discover a unique scientific method ... 
Babylonian and Indian mathematics are frequently criticized for relying not on 
proofs but on demonstrations. But without axioms and without proofs Indian math
ematicians solved indeterminate equations of the second degree and discovered the 
infinite power series for trigonometrical functions centuries before European math
ematicians independently reached similar results ... Those who deny the validity 
of alternative scientific methods must somehow explain how equivalent scientific 
"truths" can be arrived at without Greek methods. And in their denial they clearly 
deprive themselves of an opportunity to understand science more deeply. (Pingree, 
"Hellenophilia versus the history ofscience",lsis 83.4 (1992), 554-563) 

3 

It should be noted that the "infinite power series" referred to above were familiar 
to Pingree largely through the Sanskrit editions of the Kerala-school treatises pub
lished by his brilliant and indefatigable colleague K. V. Sarma. The historiographic 
approach that they, and the studies in the present work, espouse-namely, the careful 
exploration ofthe intellectual content of a scientific tradition within its own cultural 
context and in its encounters with other cultures-is what David Pingree recognized 
as the true vocation of a historian of science. 

Department of Mathematics, Union College, Schenectady NY, USA. 



K. V. Sarma (1919-2005)1 

M. S. Sriram 

Born at Chengannur in Kerala on 27 th December 1919, Krishna Venkateswara Sarma 
had his school education in Attingal near Thiruvananthapuram. He completed his 
B.Sc. degree with Physics as the major subject in 1940, from Maharaja's College 
of Science, Thiruvanathapuram. His family tradition of Sanskrit scholarship influ
enced Sarma to join the M.A. course in Sanskrit at Maharaja's College of Arts, 
Thiruvanathapuram, which he completed with distinction in 1942. During 1943-
51, he was in charge of the Manuscripts Section of the Kerala University Oriental 
Research Institute and Manuscripts Library. It is here that he acquired expertise in 
deciphering and critically editing palm-leaf and paper manuscripts of Sanskrit and 
Malayalam texts. During this period, he prepared an analytical catalogue of nearly 
50,000 manuscripts of the library. 

From 1951 to 1962, Prof. Sarma was in the Department of Sanskrit, University of 
Madras, where he was associated with the project of compiling the New Catalogus 
Catalogorum of Sanskrit Works and Authors, under the direction of the great San
skritist V. Raghavan.1t was also the time when his life-long pre-occupation with the 
Kerala school of Astronomy and Mathematics began to take shape and he started 
painstakingly collecting manuscripts on Astronomy, Astrology and Mathematics, 
critically editing and translating many of them. Some of his early publications in this 
genre were Grahaciiranibandhana of Haridatta, Siddhiintadarpa!la of NilakaJ).~a, 
Ve!lviiroha of Madhava, Goladfpikii and Grahanii~!aka of Parameswara. During 
this period, Prof. Sarma also came under the influence of the renowned scholarT. S. 
Kuppanna Sastri, in collaboration with whom he edited the main text of the Vakya 
system, Viikyakara!la, with the commentary of Sundararaja. 

At the invitation of Acharya Viswa Bandhu, Prof. Sarma moved in 1962 to 
the Visvesvaranand Institute of Sanskrit and Indological Studies of the Panjab 
University at Hoshiarpur. He served as the Director of the Institute during 1975-
80 and stayed on at the Institute till 1983. This period of his stay at Hoshiarpur 
was indeed very productive and he published more than 50 books, mostly on the 

I This is based on the obituary which appeared in Ind. Jour. Hist. of Sci. 41(2006). 231-246, which 
also includes a bibliography of publications of K. V. Sarma. 
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Kerala School of Astronomy. These include very important seminal works such as 
Drgga~lita of Paramesvara, Golasiira of Nl1akmHha, A History of the Kerala School 
of Hindu Astronomy, Lfliivatf of Bhaskaracarya with Kriyakramakarf of Sailkara 
and Narayal).a, Tantrasailgraha of Nilakal).!ha with the commentaries Yuktidfpikii 
and Laghuvivrti of Sailkara, lyotirmfmii'!lsii of Nilakal).!ha, and Ga~itayuktaya~. 

In 1983, Prof. Sarma returned to South India to settle down in Chennai. His 
important publications during this period include: Indian Astronomy: A Source 
Book jointly with the renowned historian of science B.y'Subbarayappa, Vedailga 
lyoti~a of Lagadha and Paiicasiddhiintika ofVarahamihira, on which he had worked 
in collaboration with T. S. Kuppanna Sastri. From 1990 onwards, Prof. Sarma 
had been working on a critical edition and English translation of the celebrated 
Malayalam work Ga~ita-yukti-bhii~a of Jye~!hadeva (c.l530 AD). He requested 
K. Ramasubramanian, M.D.Srinivas and M.S.Sriram to prepare detailed explana
tory notes in English. Prof. Sarma also edited a Sanskrit version of Ga~ita-yukti
bhii~ii which appeared in 2004, and compiled an important catalogue, Science 
Texts in Sanskrit in the Manuscripts Repositories of Kerala and Tamil Nadu, 
which includes a list of nearly 3,500 works related to science and technology. 
In fact, he continued to be relentlessly active till his very death (on January 13, 
2005). 

Prof. Sarma has to his credit several publications also on diverse aspects of 
Sanskrit learning such as Vedas, Itihasas and Pural).as, Dharmasastras, etc. In fact, 
he has authored more than 100 books and 500 articles. His outstanding contribution 
consists in searching for and bringing to light many of the seminal works of Kerala 
School of Astronomy, which show that the tradition of Mathematics and Astronomy 
continued to flourish till late middle ages at least in the South of India. They also 
present a detailed view of the methodology of these sciences, on issues such as 
justification of mathematical and astronomical results and procedures, and the 
importance of continuous examination and revision of planetary theories. It is 
mainly due to Prof. Sarma's painstaking work on primary sources that the work of 
the Kerala School has been brought to the attention of historians of Mathematics, 
and opened a new perspective on Indian contributions during the late medieval 
period. 

Just as in the case of his illustrious predecessors such as Bibhutibhushan Datta, 
Avadhesh Narayan Singh and others, and his own contemporary and collaborator 
K.S.shukla, Prof. Sarma did not receive even in his own country, the recognition 
and accolade, which he richly deserved. He was of course awarded the D.Litt degree 
of Pan jab University in 1977 and, in 1992, was bestowed the Certificate of Honour 
by the President of India. He was also conferred the honorary degree of Vacaspati 
by Kendriya Samskrita Vidyapeetham, Tirupati, in 2003. 

Prof. Sarma, with the wish that his legacy should continue, founded the Sree 
Sarada Education Society & Research Centre during the 90s, donating his lifetime 
savings and invaluable collection of books and manuscripts; since his demise, 
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the Centre has published critical editions of some of the texts that he had been 
working on during his last days. One hopes that the Centre will receive support and 
encouragement from scholars and funding agencies so as to sustain the torch that 
Prof. Sarma lit. 

Department of Theoretical Physics, University of Madras. 
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Geometry in the Sulvasutras 

S. G. Dani 

Sulvasiitras are compositions pertaining to the fire rituals performed by the Vedic Indians. The 
rituals involved constructions of altars and fireplaces in a variety of shapes, involving geometric 
theory. Some of the theory is explicitly enunciated, while some other aspects of the knowledge at 
that time can be inferred from the constructions. We present here an overview of the geometric 
ideas contained in the Sulvasiitras. 

Yajnas, or fire rituals, formed an integral part of life in the Vedic culture, going 
back to 1500 BCE or earlier, and extending until about the sixth century BCE. 
Some of these concerned sacrifices to be performed regularly by a householder 
(grhastha), while performance of certain others was prescribed for bringing about 
fulfilment of specific aims or desires, which included both material (acquiring 
cows, vanquishing an enemy etc.) and transcendental (securing place in heaven) 
aspects. 

In view of the great significance attached to the yajnas meticulous attention was 
paid to a variety of details in their planning and execution. The rituals involved 
construction of altars (vedi) and fireplaces (agni) in a variety of intricate shapes. 
Over a period the procedures for construction of the shapes appear to have got 
more formalised and acquired a degree of sophistication in geometrical terms. The 
Sulvasl1tras mark the peak in the geometrisation of the altar building activity of the 
Vedic era. 

The Sulvasl1tras are often referred to as 'manuals' for construction of the altars 
and fireplaces. While there is a certain valid analogy here, it should be borne in 
mind however that the contents are not limited to prescribing steps or procedures 
for the construction of the altars and fireplaces. They also describe various geo
metric principles involved, and set up a body of geometric ideas. In Baudhayana 
and Apastamba Sulvasotra there are separate sections devoted to geometric 
theory. 

The Vedic people were a heterogeneous community, with many siikhiis 
(branches), having nevertheless a common cultural identity. The different siikhiis 
had their versions of Sulvasotras, transmitted orally from generation to genera
tion within the community (branch). There are nine extant SulvaSl1tras of which 
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four, Baudhayana, Apastamba, Manava and Katyayana SUlvasutras are of signifi
cance from a mathematical point of view. The dates of the SUlvasUtras are uncer
tain, but it is generally believed that they were composed sometime during the 
period 800 - 200 BCE; for the individual Sulvasutras the ranges would be, 
Baudhayana (800 - 500 BCE), Apastamba and Manava (650 - 300 BCE) and 
Katyayana (300 BCE - 400 CE), according to Kashikar, as quoted in [11]. 

The root sulv means 'to measure', and the name Sulvasutra would correspond 
to "theory of mensuration" (see [4]). The word sulva also means 'rope' in Sanskrit, 
which indeed was a major equipment employed in measurements. In the body of 
the Sulvasutras the word sulva does not appear; instead the word rajju is used for 
rope. On the other hand, while most measurements involved in the constructions 
were indeed carried out with ropes, there are instances where a bamboo rod was 
used instead. This suggests that the name SulvasUtras indeed was meant to convey 
mensuration in the conceptual sense, and not only as operations with the rope. The 
meaning of sulva as rope is presumably a later development. 

Like other Vedangas (appendages of the Vedas) the SulvasUtras are composed in 
the sutra (aphoristic) style, characterised by short sentences with nouns often com
pounded at great length and verbs avoided as much as possible, rather than running 
prose, presumably for reasons of convenience in reciting them. The text, which is in 
prose form in other respects, has been divided by later commentators into convenient 
segments, treated as individual siltras, and grouped into Chapters. As presented in 
[19] (the scheme which we shall follow in the sequel for reference), Baudhayana has 
21 Chapters adding to 285 sUtras, Apastamba has 21 Chapters adding to 202 sUtras, 
Manava has 16 Chapters adding to 228 sutras, and Katyayana has 6 Chapters adding 
to 67 siltras. 

There is a considerable overlap in the contents of the different Sulvasutras in
dicating that the works are expositions from a common stream of knowledge. 
There are also significant differences, which may be attributed to the different 
branches they come from and the difference in their period. For general refer
ence in this respect the reader is referred to [19]; (see also [1], [6], [13], [14] 
and [16]). 

The contents of the SulvasUtras can be broadly categorised into two groups, 
one consisting of Geometric theory, and another dealing with various details about 
the constructions of various vedis and agnis; in Baudhayana and Apastamba the 
sections dealing Geometric theory are arranged in the beginning. From the other 
part also one can draw some inferences about the geometric knowledge at that 
time. The preponderant aspect in this part however is the description of the "Ar
chitecture" of tilings involved in the construction of complex figures needed for 
the vedis and agnis; (Katyayana Sulvasutra however consists mostly of theory 
part - this also explains its being shorter than the others). The designs of some 
of the special fireplaces involve elaborate figures resembling falcons and other 
birds, tortoise, chariot wheels, circular trough (with a handle), pyre, etc., whose 
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constructions are described, quite elaborately, in the form of tiling by bricks in 
certain primary shapes. Apart from the issue of achieving likeness with the de
sired figure, in terms of rectilinear constructions, there are also other stipulations 
involved, such as the number of bricks to be used etc .. On account of these there 
are also some arithmetical and combinatorial features involved, in a rather scattered 
form, in the architectural description of the layout of the fire altars. A study of 
this aspect would be of interest. We shall however not concern ourselves with it 
here, and will confine to geometry in the Sulvasutras, including the principles and 
constructions described explicitly, as well as those which can be seen to be involved 
implicitly. 

The geometric contents from the Sulvasatras will be discussed in the following 
sections taking up various themes. Before going over to the main contents, a few 
words would be in order regarding the units of measurement involved. They had 
various units for measures of lengths. Measures of many of the altars are given 
in terms of puru~m (meaning man), which was about 7! feet, stipulated as the 
height attained by the performer of the sacrifice, yajamana, with uplifted arms. 
A commonly occurring small unit is migula (meaning finger, in width); puru~a 
comprised of 120 migulas, so an atigula was about ~ th of an inch. pada (meaning 
foot, given as 15 atigulas in Baudhayana and 12 atigulas in Katyayana), pradesa 
(12 atigula), aratni (24 atigula) are some of the other length measures that occur 
frequently. 

The Baudhayana SUlvasiitra gives in the beginning (sutra 1.3) names of 18 
different units of length measure. The smallest among them, tila (sesame seed) 
is i4 of an atigula. It was postulated by Thibaut (see [20], page 15) that the unit 

owes its origin to the fact that they had a formula for .j2 involving the fraction i4; 
(the formula will be discussed later). Many of the intermediate units do not bear a 
simple fractional relation with purusa however; e.g. a bahu is 36 atigulas, a yuga 
is 86 atigu/as, etc .. The units must have arisen from the context of performance of 
specific vedis and many of them occur infrequently. 

The other Sulvasl1tras use many of the units described by Baudhayana but there 
is no systematic listing or a comprehensive statement on their interrelations as 
in Baudhayana Sulvasiitra. Some other measures, vitasti, iirvasthi, aIJuka are also 
mentioned in Apastamba Sulvasutra. 

For the area of rectilinear figures they had the notion as we have today. They 
were aware that for similar figures the ratio of the areas equals the square of the 
ratio of the lengths of the corresponding sides, as is clear from usage of the idea 
at various places; in Apastamba Sulvasl1tra there is also an elucidation of this with 
some examples, including with fractional sides I! and 2! (sutras 3.6 to 3.9). The 
square units and the corresponding linear unit were known by the same name, the 
meaning being understood from the context; e.g. puru~a could mean the unit of 
length as well as the area of the square with that length ("square puru~a", so to 
speak), depending on whether it referred to length or area; we shall also adopt this 
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as a convention in the sequel when referring to the SUlvasiltras units, rather than 
prefixing the term "square". 

1. Construction of Rectilinear Figures 

Though inevitably there are some 3-dimensional features to the fireplaces described 
in the Sulvasutras, the geometric ideas of significance chiefly concern planar geom
etry. These involve the concepts and construction of rectilinear figures such as 
squares, rectangles, symmetric (isosceles) trapezia and triangles, rhombuses, as 
well as circles, as primary figures. 

The rectilinear figures sought to be drawn had a bilateral symmetry; viz. isosceles 
triangles, symmetric trapezia, rectangles. The east-west line served as the line of 
symmetry. Towards construction of these figures with prescribed sizes for the sides, 
the sutras principally describe steps to draw perpendiculars to the line of symmetry; 
these are however packaged into complete procedures for drawing the desired 
figures, as may be seen in some examples discussed below. The issue of drawing a 
perpendicular to a given line at a given point on it is addressed in the Sulvasutras in 
two essentially different ways, involving the following principles (described here 
in modern formulation): 

• given two circles with equal radii intersecting each other, the line joining their 
(two) points of intersection is perpendicular to the line joining their centres, 
at the midpoint of the line segment joining the centres. 

• (converse of Pythagoras theorem) in a triangle with sides with lengths a, b, c 
if c2 = a2 + b2 then the sides with lengths a and b are perpendicular to each 
other. 

These principles are not enunciated in the Sulvasl1tras, though they are implicitly 
at work in their constructions (see however the discussion at the end of §2). A large 
number of sl1tras describe constructions of squares and trapezia via application of 
one of the above, for various specific given sizes, as we shall see in some detail 
below. 

The first statement as above is of course what we commonly use for drawing 
perpendiculars, to a given line at a given point, in Euclidean geometry: take two 
points equidistant from the given point and draw two intersecting circles with these 
as centres and join the points of intersection. This procedure is involved in various 
constructions in Sulvasutras for drawing perpendiculars in the same way as we now 
do. It is however not isolated as a procedure for drawing perpendiculars, but forms a 
part of the package prescribed for construction of various figures (in the framework 
as indicated above): thus a construction of a square in Baudhayana (sutras 1.22 to 
1.28 [19] consists of the following steps, described as an aggregate (see Figure 1): 

i) take a rope of the desired side of the square and mark the midpoint; 
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ii) place a pole at the desired midpoint (say at P as in Figure la) and tying the 
ends of the rope to it draw the circle around it by the mark (at the midpoint) 
and place poles at the points where the circle meets the east-west line, (A 
and B as in Figure 1); 

A 

B 

Figures la and lb: Beginning of Baudhayana construction of a square 

iii) draw circles with centres at points A and B by the length of the rope, and 
mark the points where the line joining their points of intersection meets the 
original circle, to obtain the north-south line and mark the points where the 
line meets the circle as in (ii) (C and D as in Figure Ib); 

(iv) draw circles by the mid-point on the rope, tieing both its ends at A and then 
at D and mark the point where they meet (Q as in Figure Id); this is one of 
the vertices of the square, and the others can be obtained similarly. 

Notice that the first three steps are designed to draw the perpendicular bisector to 
the line of symmetry and marking the midpoints of the sides of the desired square, 
and in (iv) these are used to produce the vertices of the square. 

Other constructions are also described in a similar vein, as a package for produc
ing the intended figure, without reference to steps involved in each other. 

The procedure for drawing the circles involved in the above construction is by 
tying one end of a rope to a pole placed at the point chosen to be the centre and 
tracking the point at a distance equal to the selected radius; this plays the role of the 
compass as used in school geometry now. 

The same principle as above was also used with a rope in another way (see 
Figure 2): given a line and a point on it, say P, to draw the perpendicular to the line 
at P, take two points on the line equidistant from P, on either side of the line, affix 
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Figures le and Id: Completion of construction of the square 

poles at the two points and tie a rope (loosely) at the two poles; then stretching the 
rope holding at its midpoint, points are marked on either side where it lies on the 
ground; the line joining these two points is the desired perpendicular to the original 
line at P. 

It may be seen that though the procedure is different the same principle underlies 
this construction. This variation for producing perpendiculars also appears as part 
of construction of some rectilinear figures; in particular Baudhayana construction 
of a rectangle given in sutras 1.36 to 1.41 adopts this procedure. 

Though these methods based on the orthogonality principle as above have been 
used in various constructions, on the whole the sT1trakiiras show greater predilection 
towards using the other principle, namely the converse of Pythagoras theorem. It 
is believed that the Egyptians also used triangles with sides 3, 4 and 5 (in some 

Figure 2: Another procedure for drawing a perpendicular 
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units) for construction of perpendiculars, but this has now been discounted (see [8], 
Appendix 5). It is not clear whether there is any other instance historically of using 
converse of Pythagoras theorem for the purpose of drawing perpendiculars. 

Let me now describe in some detail how this application was made, and discuss 
the possible convenience for which it was preferred. Take a rope, with endpoints 
marked P and Q, with length a (see Figure 3). Let R be the midpoint of P Q (on the 
string), S the midpoint of QR and X the midpoint of RS. Now tie the two ends of 
the string to two poles placed a distance a /2 along the line to which a perpendicular 
is to be drawn, with the Q end at the point where the perpendicular is to be drawn. 
Let A and B be the points on the plane (ground) where the ends P and Q are tied. 
Now stretch the rope, holding it at the point X as above, on one side of the line AB, 
and mark the point on the plane where X lies, say C (see Figure 3(c)). Notice that 
Band C are at a distance 3a/8 and A and C are at a distance 5a/8. Thus the sides 
BC, AB and AC are in the proportion 3 : 4 : 5, and since 32 + 42 = 52, by the 
converse of the Pythagoras theorem the angle LA BC is a right angle. We have thus 
constructed a perpendicular to the line A B at the point B. 

p 

R 
A A 

x 

s 

Q 
Bo--------...-.oC 

Figures 3a, 3b and 3c: Construction of perpendicular by the Nyanchana method 

A rope with markings as above, which can be preserved, can thus be used as an 
instrument to draw a perpendicular, essentially at one stroke; the distance a/2 to 
be kept between A and B is also available by a mark on the rope as the distance 
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between P and R. In directing a yajamiina towards drawing a perpendicular (as a 
step in the construction of the vedi), it would be simpler for the priest to use this 
approach, than those with the orthogonality principle discussed above. 

The above procedure depends on the fact that a triangle with sides in the pro
portion 3 : 4 : 5 IS a right angled triangle, by the converse of the Pythagoras 
theorem. The SUlvasiitras describe also analogous procedures using in place of 
(3,4,5) other triples (a, b, c) such that a 2 + b2 = c2 ; typically they are triples of 
integers, that we now call Pythagorean triples, and their multiples by a fraction, 
but occasionally some incommensurable triples are also involved. As in the above 
procedure it involves marking a point X so that when the rope is stretched holding 
at that point we would get a right angled triangle. Such a point is called Nyanchana; 
Nyanchana means "lying with face downwards" and in this context signifies that 
the marked point is to be plotted on the ground. A procedure involving use of the 
triple (5, 12, 13) goes as follows: having chosen a distance a between the poles, a 
rope of length one and half times the measure is taken (thus extending the rope by 
aI2), and the Nyanchana mark is set at a distance a sixth of the extended piece, 
namely a 112 from the joining point. The Nyanchana mark then divides the string 
in the proportion 5 : 13, and steps analogous to those described above will yield a 
perpendicular at the pole on the side of the shorter segment. It may be noted that the 
Pythagorean triple is unrelated to the length a in either case. 

In [3] I have discussed the theme of Pythagorean triples with regard to the 
Sulvasiitras. Here I will therefore introduce it only briefly to put the topic in per
spective. 

The main role of the Pythagorean triples in Sulvasiitras was their use in producing 
perpendiculars via the converse of Pythagoras theorem. The two triples (3, 4,5) and 
(5, 12, 13) are a common occurrence in this respect in the SUlvasiitras. These are 
primitive triples (there is no common integer factor greater than 1). Some multiples 
of these triples (non-primitive) were also commonly in use; the triple (15, 36, 39) 
seems to have been an especially familiar one, and perhaps much older than the 
SUlvasiitras themselves (see [3] for some observations on this). In Apastamba two 
more primitive Pythagorean triples occur in the description of the the construction 
ofthe Mahiivedi: (8, 15, 17) and (12, 35, 37) (Asl. 5.3 - 5.5); this is the only place 
where they occur in Apastamba Sulvasiitra. 

The Mahi'ivedi was in the shape of a symmetric trapezium with a base of 30 units, 
height of 36 units and face (side opposite to the base) of 24 units (see Figure 4); to 
give an idea of the physical size (though it shall not concern us further) it may be 
mentioned that the unit invol ved is either a pada or a prakrama, the latter being ~ th 
of puru~a, and the height then works out to be about 20 meters. 

Apastamba gives four constructions for the Mahi'ivedi all based on the Nyan
chana method as discussed above. The first one known as the ekarajjuvidhi ("one
rope process") involves a rope oflength 54 units, with markings at 36 and 12 units 
from the two ends respectively and a mark at the midpoint of the remaining middle 
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Figure 4: The Mahiivedi 
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portion of 6 units as the Nyanchana mark. Thus we have a subdivision into 15 and 
39 units, and the desired height being 36 units this enables fixing the two vertices A 
and B at the base by the Nyanchana method (through triangles EW A and EW B. 
The vertices at the face CD are also obtained in the same way, by plotting the mark 
at 12 from the end rather than the original Nyanchana mark. The other constructions 
involve two cords. 

It may be noticed that the diagonals of the trapezium meet at a point M which 
together with the base and face makes isosceles triangles A M Band CM D whose 
symmetric half parts have lengths given by the triples (15, 20, 25) and (12,16,20) 
respectively. Apastamba's second procedure consists of drawing the two triangles 
using that these are multiples of the triple (3, 4, 5). 

The third construction is based on the triple (5, 12, 13) and its multiple 
(15,36,39), using that half the base and half the face, viz. 15 and 12, occur in 
these triples; unlike in the first two constructions one of the vertices of the right 
angled triangle involved (the one on the east-west line) is of no significance to 
the diagram itself. It is the last construction in which the triples (8, 15, 17) and 
(12,35,37) appear. Again since 15 and 12 occur in these, the vertices at the base 
and the face may be plotted with these triples, respectively, with poles at distances 
of 8 and 35 from the base and face respectively. Manifestly the construction would 
no longer be as elegant as the earlier ones, and Apastamba could not have missed 
noticing that. From the overall context it is clear that the aim has been to quench 
the curiosity about the various ways the Nyanchana method could be used to plot 
the vertices, and no practical requirement is involved. This involves finding triples 
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with 15 and 12 as one of the first two entries. Incidentally, Apastamba exhausts 
such triples. There is no clue however whether this was known, and if so how it was 
realised. 

In Baudhayana, while only the first two primitive triples, viz. (3,4,5) and 
(5, 12, 13), are found used in the constructions, there is a list of 5 primitive 
Pythagorean triples (or rather the first two terms of each, which of course de
termines the third term) given, following the statement of Pythagoras theorem. 
Apart from the four triples as in the above discussion the triple (7, 24, 25) also 
forms part of the list; the (non-primitive) triple (15, 36, 39) is also included along 
with the others, which is possibly due to the familiarity with it in a wider context, 
and its association with tradition on account of its being involved in the Mahavedi 
(see [3] for a discussion on this). The wording of the siitra, its location and the 
overall context indicate that the listed triples arf' given as illustrative examples for 
the Pythagoras theorem. 1 

There are no other primitive Pythagorean triples found in the SUlvasiitras. It 
would seem that though they may have the means of producing more triples, if not 
an infinite family, they would have had no motivation for it, with the ones that occur 
having specific objectives that are adequately met in their context. 

The Nyanchana procedure was also used in a construction with an incommen
surable triple (not a multiple of Pythagorean triples); the construction is also in
teresting from another point of view (see below). To construct a square of side a 
Apastamba gives the following procedure: on a rope mark three points, two end
points and a point in between whose distance from one end point is a 12, and from 
the other endpoint it is equal to the length of the diagonal of the square with side 
a 12. The rope is now tied to two poles, one at the desired centre of the square 
and the other at the point at distance al2 on the east-west line, by the endpoints 
as above, with the longer side (from the in between mark) being attached to the 
centre. The rope is then stretched, holding it at the middle marked point. Where it 
lays on the ground is one of the vertices of the desired square; the other vertices 
are plotted similarly. The procedure presupposes being able to mark a point at a 
distance equal to the diagonal of a square of side a 12, so the construction is in a way 
"circular", from the point of view of logical development. However, the diagonal 
of a square was such a common occurrence in their practice that it was I suppose 
treated as a "tangible" quantity. Having once constructed a square one could produce 
ropes with markings as required, and then employ them for later construction of 
squares following the above procedure. It has been suggested by some authors (see 
Footnote 4) that an approximate numerical expression for ,j2 was used to get the 

1 Indeed, a Pythagorean triple does not, strictly speaking, illustrate Pythagoras theorem, since one 
would need to know that the triangle corresponding to the triple as side-lengths is a right angled triangle; 
the nuance of the illustration here would be more like "when you draw rectangles with sides 3 and 4, 5 
and 12, ... , the diagonals will be 5, 13, ... , and you see that the area produced by the diagonal is the 
sum of the that of the squares on the sides." 
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diagonal of the square with side a12; this however seems unlikely, considering the 
common usage of ropes all around, which furthermore would give a more accurate 
measure, without the cumbersome subdivision that would be involved in producing 
the approximate value using the formula for .j2 (see §6). 

For the constructions of the figures the Sulvasl1tras adopted meticulous proce
dures, involving drawing the perpendiculars, which was accomplished by the meth
ods that we discussed above. Surprisingly, despite extensive use of these methods, 
conceptualisation of the perpendicular or right angle seems to have eluded them. 
Absence of the concept may have led to view the task of drawing each symmetric 
trapezium with different given dimensions individually, as is noticeable especially in 
Apastamba Sulvasl1tra. While there is a degree of unity in the descriptions, with the 
concept of the perpendicular a more uniform prescription could have been given for 
the constructions. Furthermore in several constructions, including in the Mahiivedi 
as seen above, special Pythagorean triples (not necessarily primitive) were sought 
depending on the desired sizes. While the latter may have offered an amusing di
version, in practice it would have been simpler to have a unified way of drawing 
perpendiculars, even with Nyanchana method if that was found more convenient, 
and marking the point on the perpendicular line at the desired distance, producing 
the line if necessary. This possibility does seem to have been realised at some stage. 
In [3] I have noted that the vedis described in the Asl. 6.3-6.4 (nirutjhapasubandha 
vedi), Asl. 6.6, Asl. 6.7 (paitrki vedi), Asl. 6.8 (uttara vedi), and Asl. 7.1 involve 
varied shapes (two trapezia of different dimensions, two squares and an oblong rec
tangle), but the construction of each of them refers to "Having stretched (the cord) 
by the mark at fifteen" (pancadasikenaiviipiiyamya), and taking various contextual 
factors into account concluded that the phrase is used as a way of saying "Having 
drawn a perpendicular"; the desired point on the perpendicular line is meant to 
be marked on that line by measuring out the requisite distance. This marks a step 
towards conceptualisation of the perpendicular at a practical level, which however 
does not seem to have been abstracted further. 

2. Pythagoras Theorem and its Applications 

The most notable feature of the SulvaSiitras in terms of geometric theory is the 
statement of the so called Pythagoras theorem. This stands out especially in the 
context of the fact that some of them, especially Baudhayana, predate Pythagoras. 
There has been a variety of speCUlation in this respect, including that Pythagoras 
may have got it from the Indians (A. Biirk quoted in [10]) or, in broader terms, 
that there may have been a common source for the geometry of the Greeks and the 
Indians (see Seidenberg [17] and [18]). Available inputs seem inadequate to have a 
meaningful discussion on this, and in any case we will not go into this aspect here. 
The main discussion below will pertain to the role of the theorem in the overall 
context of the Sulvasl1tras themselves. 


