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Preface 

These notes are arecord of a one semester course on Functional Analysis that 

I have given a few times to the second year students in the Master of Statistics 

program at the Indian Statistical Institute, Delhi. 

I first taught this course in 1987 to an exceptionally weIl prepared batch of five 

students, three of whom have gone on to become very successful mathematicians. 

Ten years after the course one of them suggested that my lecture notes could be 

useful for others. I had just finished writing a book in 1996 and was loathe to begin 

another so on afterwards. I decided instead to prepare an almost verbatim record of 

what I said in the dass the next time I taught the course. This was easier thought 

than done. The notes written in parts over three different years of teaching were 

finally ready in 2004. 

This background should explain the somewhat unusual format of the book. Un­

like the typical text it is not divided into chapters and sections, and it is neither 

self-contained nor comprehensive. The division is into lectures each corresponding 

to a 90 minutes dass room session. Each is broken into small units that are num­

bered. 

Prerequisites for this course are a good knowledge of Linear Algebra, Real Anal­

ysis, Lebesgue Integrals, Metric Spaces, and the rudiments of Set Topology. Tradi­

tionally, all these topics are taught before Functional Analysis, and they are used 

here without much ado. While all major ideas are explained in fuIl, several smaller 

details are left as exercises. In addition there are other exercises of varying difficulty, 

and all students are encouraged to do as many of them as they can. 

The book can be used by hard working students to learn the basics of Functional 

Analysis, and by teachers who may find the division into lectures helpful in planning 
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their courses. It could also be used for training and refresher courses for Ph.D. 

students and college teachers. 

The contents of the course are fairly standard; the novelties, if any, lurk in the 

details. The course begins with the definition and examples of a Banach space and 

ends with the spectral theorem for bounded self-adjoint operators in a Hilbert space. 

Concrete examples and connections with classical analysis are emphasized where 

possible. Of necessity many interesting topics are left out. 

There are two persons to whom I owe special thanks. The course follows, in spirit 

but not in detail, the one I took as a student from K. R. Parthasarathy. In addition 

I have tried to follow his injunction that each lecture should contain (at least) one 

major idea. Ajit Iqbal Singh read the notes with her usual diligence and pointed out 

many errors, inconsistencies, gaps and loose statements in the draft version. I am 

much obliged for her help. Takashi Sano read parts of the notes and made useful 

suggestions. I will be most obliged to alert readers for bringing the remaining errors 

to my notice so that a revised edition could be better. 

The notes have been set into type by Anil Shukla with competence and care and 

I thank hirn for the effort. 



A word about notation 

To begin with I talk of real or complex vector spaces. Very soon, no mention is 

made of the field. When this happens, assume that the space is complex. Likewise 

I start with normed linear spaces and then come to Banach spaces. If no mention is 

made of this, assume that X stands for a complete normed linear space. 

I do not explicitly mention that a set has to be nonempty or a vector space 

nonzero for certain statements to be meaningful. Bounded linear functionals, after 

some time are called linear functionals, and then just functionals. The same happens 

to bounded linear operators. 

A sequence is written as {xn } or simply as "the sequence xn " . 

Whenever a general measure space is mentioned, it is assumed to be O"-finite. 

The symbol E is used for two different purposes. It could mean the closure of 

the sub set E of a topological space, or the complex conjugate of a subset E of the 

complex plane. This is always clear from the context, and there does not seem any 

need to discard either of the two common usages. 

There are twenty six Lectures in this book. Each of these has small parts with 

numbers. These are called Sections. A reference such as "Section m" means the 

section numbered m in the same Lecture. Sections in other lectures are referred 

to as "Section m in Lecture n". An equation number (m.n) means the equation 

numbered n in Lecture m. 

Do 1 contradict myself? 

Very weH then 1 contradict myself 

(I am large, 1 contain multitudes) 

-Walt Whitman 
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Lecture 1 

Banach Spaces 

The subject Functional Analysis was created at the beginning of the twentieth 

century to provide a unified framework for the study of problems that involve con­

tinuityand linearity. The basic objects of study in this subject are Banach spaces 

and linear operators on these spaces. 

1. Let X be a vector space over the field lF, where lF is either the field IR of real 

numbers or the field C of complex numbers. A norm 11· II on X is a function 

that assigns to each element of X a nonnegative real value, and has the following 

properties: 

(i) Ilxll = 0 if, and only if, x = o. 

(ii) Ilaxll = lai Ilxll, for all a E lF, xE X. 

(iii) Ilx + yll :::; Ilxll + Ilyll, for all x, y E X. 

Property (iii) is called the tri angle inequality. 

A vector space equipped with a norm is called a normed vector space (or a normed 

linear space). 

From the norm arises ametrie on X given by d(x, y) = Ilx - yll. If the metric 

space (X, d) is complete, we say that X is a Banach space. (Stefan Banach was a 

Polish mathematician, who in 1932 wrote the book Theorie des Operations Lineaires, 

the first book on Functional Analysis.) 

It follows from the triangle inequality that 

I Ilxll - Ilyll I ::; Ilx - yll· 

This shows that the norm is a continuous function on X. 
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Exarnples Aplenty 

2. The absolute value I . I is a norm on the space lF, and with this lF is a Banach 

space. 

3. The Euclidean space lFn is the space of n-vectors x = (Xl, ... ,Xn ) with the norm 

n 

IIxI12 := (2:: IXj 12)1/2. 
j=l 

4. For each real number p, 1 :s: p < 00 the space e; is the space lFn with the p-norm 

of a vector X = (Xl, "" X n ) defined as 

The oo-norm of X is defined as 

n 1 

Ilxllp = (2:: IXjIP)p. 
j=l 

It is easy to see that Ilxllp is a norm in the special cases p = 1 , 00. For other values 

of p, the proof goes as follows . 

(i) For each 1 :s: p :s: 00, its conjugate index (the Hölder conjugate) is the index q 

that satisfies the equation 

If 1< p < 00, and a,b 2: 0, then 

1 1 
-+-=1. 
P q 

aP bq 
ab< -+-. 

- p q 
(1.1) 

This is called the generalised arithmetic-geometric mean inequality or Young's in­

equality. (When p = 2, this is the arithmetic-geometric mean inequality.) 

(ii) Given two vectors X and y, let xy be the vector with coordinates (XlYl,' .. ,xnYn). 

U se (1.1) to prove the H ölder inequality 

(1.2) 
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for all 1 :S p :S 00. When p = 2, this is the more familiar Gauchy-Schwarz inequality. 

(iii) Use (1.2) to prove the Minkowski inequality 

(1.3) 

5. The justification for the symbol 11 . 1100 is the fact 

lim Ilxllp = Ilxll oo . p--.oo 

6. Why did we restrict ourselves to p ~ I? Let ° < p < 1 and take the same 

definition of 11 . IIp as above. Find two vectors x and y in lF2 for which the triangle 

inequality is violated. 

7. A slight modification of Example 4 is the following. Let aj, 1 :S j :S n be given 

positive numbers. Then, for each 1 :S p <00, 

is a norm. 

All the spaces in the examples above are finite-dimensional and are Banach spaces 

when equipped with the norms we have defined. 

8. Let G[O, 1] be the space of (real or complex valued) continuous functions on the 

interval [0,1]. Let 

11111 = sup II(t)l· 
O::;t::;1 

Then G[O, 1] is a Banach space. 

The space consisting of all polynomial functions (of all degrees) is a subspace of 

G[O, 1]. This subspace is not complete. Its completion is the space G[O, 1] . 

9. More generally, let X be any compact metric space, and let G(X) be the space 

of (real or complex vahied) continuous functions on X. Let 

11111 := sup II(x)l· 
xEX 
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It is clear that this defines a norm. The completeness of C(X) is proved by a typical 

use of epsilonics. This argument is called the E /3 argument. 

Let fn be a Cauchy sequence in C(X). Then for every E > 0 there exists an 

integer N such that for m, n 2:: N and for all x 

So, for every x, the sequence fn(x) converges to a limit (in lF) wh ich we may call 

f(x). In the inequality above let m ---+ 00. This gives 

Ifn(x) - f(x)1 :s; E 

for n 2:: N and for all x. In other words, the sequence fn converges uniformly to 

f. We now show that f is continuous. Let x be any point in X and let E be any 

positive number. Choose N such that IfN(Z) - f(z)1 :s; E/3 for all z E X. Since fN is 

continuous at x, there exists 15 such that IfN(X) - fN(y)1 :s; E/3 whenever d(x, y) :s; 15. 

Hence, ifd(x,y):S; 15, then 

If(x) - f(y)1 :s; If(x) - fN(X)1 + IfN(X) - fN(y)1 + IfN(Y) - f(y)l· 

Each of the three terms.on the right hand side of this inequality is bounded by E/3. 

Thus If(x) - f(y)1 :s; E, and f is continuous at x. 

10. For each natural number r, let cr[o, 1] be the space of all functions that have 

continuous derivatives f(1), f(2), . .. ,f(r) of order upto r. (As usual, the derivatives 

are one-sided limits at the endpoints 0 and 1.) Let 

r 

Ilfll := L sup If(j)(t)l· 
j=oO::;t9 

The space cr[o, 1] is a Banach space with this norm. (Recall that if the sequences 

f n and f~ converge uniformlyon [0, 1] to f, g respectively, then f is differentiable 

and f' = g.) 

11. Now let X be any metric space, not necessarily compact, and let C(X) be the 
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space of bounded continuous functions on X. Let 

Ilfll := sup If(x)l· 
xEX 

Then C(X) is a Banach space. 

Sequence Spaces 

12. An interesting special case of Example 11 is obtained by choosing X = N, the 

set of natural numbers. The resulting space is then the space of bounded sequences. 

This is the space Poo ; if x = (Xl, X2, .•. ) is an element of this space then its norm is 

IIxlloo:= sup IXjl· 
l:Sj<oo 

13. Let c be the subspace of Poo that consists of all convergent sequences. Use an 

c/3 argument to show that it is a closed subspace of Poo . 

Let CO be the collection of all sequences converging to O. This is also a closed 

linear subspace of Poo . 

. We use the symbol Coo to denote the collection of all sequences whose terms are 

zero after some stage. This is a linear subspace of Poo , but is not closed. The space 

CO is the completion of COo (the smallest closed space in Poo that contains COo). 

14. For each real number 1 :S p < 00, let Pp be the collection of all sequences 

X = (Xl, X2,"') such that L:~l IXjlP < 00. 

(i) Use the convexity of the function f(t) = tP on [0,00) to show that Pp is a vector 

space. 

(ii) Note that Pp C CO C Poo . 

(iii) The inclusions in (ii) are proper. (Consider the sequence with terms X n = lo!n') 

(iv) The space Pp for any 1 :S p < 00 is not closed in Poo . 

(v) For X E Pp, define 
00 

IIxil p := (2:: IXjIP)I/p. 
j=l 
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Show that this is a norm. Imitate the steps in Example 4. Some modifications are 

necessary. The Hölder inequality (1.2) is now the statement: il x E f p and y E f q , 

then their termwise product xy is in f 1 and the inequality (1.2) holds. With this norm 

f p is a Banach space. 

(vi) Let 1 ~ p < p' < 00. If the series ~ IXj IP converges, then so does ~ IXj Ipl . Thus 

the vector space f p is contained in f pl • Further , for every x E f p we have 

(1.4) 

This inequality can be proved as follows. Assurne first that Ilxllp = 1. Then IXj I ~ 1 

for all j, and hence, IXj Ipl ~ IXj IP . This shows that 

and the inequality (1.4) follows. If x is an arbitrary element of f p , then let y = 

x/llxlip. Then IIYllp = 1, and hence, IIYllpl ~ IIYllp· This shows (1.4) is true for all 

xE f p . 

Lebesgue Spaces 

15. Let I be the interval [0,1] with the Lebesgue measure f-L. Let X be the collection 

of all bounded measurable functions on I, and for I E X let 

IIIII := sup I/(t)l· 
tEl 

Then X is a Banach space. (To prove completeness, recall that uniform convergence 

of a sequence In is enough to ensure that the limit I is measurable.) 

16. Since sets of measure zero are of no consequence, it is more natural to consider 

essentially bounded functions rather than bounded ones. Let I be a measurable 

function on I. If there exists an M > ° such that 

f-L({tEI: I/(t)1 > M}) = 0, 

we say I is essentially bounded. The infimum of all such M is called the essential 



1. Banach Spaces 7 

supremum of Ifl, and is written as 

Ilflloo = ess sup Ifl· 

The collection of all (equivalence classes of) such functions is the space Loo[O, 1]. It 

is a Banach space with this norm. 

17. For 1 ~ p < 00, let Lp[O, 1] be the collection of all measurable functions on [0,1] 

for which J~ If(t)IPdt is finite. Then Lp[O, 1] is a vector space and 

( 
1 ) I/p 

II flip := 10 If(t)IPdt 

is a norm on it. To prove this, one uses versions of Hölder and Minkowski inequalities 

(1.2) and (1.3) in which sums are replaced by integrals. 

The completeness of L p [0, 1] is standard measure theory. The assertion that 

Lp [O, I] is complete is called the Riesz-Fischer Theorem. (Warning: There are other 

theorems going by the same name.) 

18. The interval ! can be replaced by a general measure space (X, S, tt) in which X 

is a set, S a (I-algebra of subsets of X, and tt any measure. The spaces Lp(X, S, tt), 

1 ~ p ~ 00, can then be defined in the same way as above. (It is often necessary to 

put some restrictions like (I-finiteness to prevent unruly behaviour of different sorts.) 

When X = N, and tt is the counting measure, we get sequence spaces. 

If tt(X) is finite, and 1 ~ P < p' ~ 00, then the space Lp' is a linear subspace of 

L p • In this case we have 

Ilfll p ~ tt(X)I/p-I/p' Ilfll p' (1.5) 

for all f E L p" (This can be seen using the Hölder inequality, choosing one of the 

functions to be identically 1.) This is just the opposite of the behaviour of sequence 

spaces in Example 14. 

If tt(X) = 00, no inclusion relations of this kind can be asserted in general. 
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Separable Spaces 

Ametrie spaee is ealled separable if it has a subset that is eountable and dense. 

Separable Banaeh spaees are easier to handle thannonseparable ones. So, it is of 

interest to know whieh spaees are separable. 

19. The spaee G[O, 1] is separable. Polynomials with rational eoefficients are dense 

in this spaee. 

20. For 1 :s: p < 00, the spaee C{)O is dense in Cp • Within this spaee those that have 

rational entries are dense. So the spaees Cp , 1 :s: p < 00 are separable. 

21. The spaee Coo is not separable. Consider the set S of sequenees whose terms 

are ° or 1. Then S is an uneountable sub set of Coo . (It is uneountable beeause every 

point in the unit interval has a binary decimal expansion and thus eorresponds to a 

unique element of S.) If x, y are any two distinct elements of S, then Ilx - Ylloo = 1. 

So the open balls B(x, 1/2), with radii 1/2 and eentred at points x E S, form an 

uneountable disjoint eolleetion. Any dense set in Coo must have at least one point in 

eaeh of these balls, and henee ean not be eountable. 

The subspaee Co of Coo is separable (coo is den se in it) as is the subspaee c (eonsider 

sequenees whose terms are eonstant after some stage). 

22. For 1 :s: p < 00, the spaees Lp[O, 1] are separable. Continuous functions are dense 

in eaeh of them. The spaee Loo[O, 1] is not. (Consider the eharacteristie functions of 

the intervals [0, t], ° :s: t :s: 1). 

23. What ab out the spaees Lp(X, S, J-l)? These ean not be "smaller" than the spaees 

(X, S, J-l). If we put d(E, F) = J-l(EflF), where EflF is the symmetrie differenee of 

the sets E and F, then d(E, F) is ametrie on S. It ean be proved (with standard but 

elaborate measure theory) that for 1 :s: p < 00, the space Lp(X, S, J-l) iso separable if 

and only if the metrie spaee (S, d) is separable. Further, this eondition is satisfied if 

and only if the O"-algebra S is eountably generated. (The statements ab out Cp and 
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Lp[O, 1], 1 :S p < 00 are included in this more general set up.) 

More exarnples 

24. A function j on [0, 1] is said to be absolutely continuous if, given E > 0, there 

exists 8 > ° such that 
n 

L Ij(tD - j(ti)1 < E 

i=1 
for every finite disjoint collection of intervals {(ti, t~)} in [0,1] with L:r=1 It~ -til < 8. 

The Fundamental Theorem of Calculus says that if f is absolutely continuous, then 

it is differentiable almost everywhere, its derivative j' is in LI [0, 1], and j (t) = 

J~ j'(s)ds + j(O) for all ° :S t :S 1. Conversely, if 9 is any element of LIlO, 1], then 

the function G defined as G(t) = J~ g(s)ds is absolutely continuous, and then G' is 

equal to 9 almost everywhere. 

For each natural number r, let L~)[O, 1] be the collection of all (r - 1) times 

continuously differentiable functions j on [0,1] with the properties that j(r-I) is 

absolutely continuous and j(r) belongs to Lp[O, 1]. For f in this space define 

Ilfll := 11 flip + Ilj(l) IIp + ... + Ilj(r) IIp· 

Then L~)[O, 1], 1 :S p < 00 is a Banach space. (The proof is standard measure 

theory.) These are called Sobolev spaces and are used often in the study of differential 

equations. 

25. Let D be the unit disk in the complex plane and let X be the collection of all 

functions analytic on D and continuous on its closure D. For j in X, let 

Iljll := sup Ij(z)l· 
zED 

Then X is a Banach space with this norm. (The uniform limit of analytic functions 

is analytic. Use the theorems of Cauchy and Morera.) 
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Caveat 

We have now many examples of Banach spaces. We will see some more in the 

course. Two remarks must be made here. 

There are important and useful spaces in analysis that are vector spaces and have 

a natural topology on them that does not arise from any norm. These are topological 

vector spaces that are not normed spaces. The spaces of distributions used in the 

study of differential equations are examples of such spaces. 

All the examples that we gave are not hard to describe and come from familiar 

contexts. There are Banach spaces with norms that are defined inductively and are 

not easy to describe. These Banach spaces are sources of counterexamples to many 

assertions that seem plausible and reasonable. There has been a lot of research on 

these exotic Banach spaces in recent decades. 



Lecture 2 

Dimensionality 

Algebraic (Hamel)Basis 

1. Let X be a vector space and let S be a sub set of it. We say S is linearly 

independent if for every finite sub set {Xl,'" ,Xn } of S, the equation 

(2.1) 

holds if and only if al = a2 = ... = an = O. A (finite) sum like the one in (2.1) is 

called a linear combination of Xl, ... , X n . 

Infinite sums have a meaning only if we have a notion of convergence in X. 

2. A linearly independent subset B of a vector space X is called a basis for X if 

every element of X is a linear combination of (a finite number of) elements of B. To 

distinguish it from another concept introduced later we call this a Hamel basis or an 

algebraic basis. 

Every (nonzero) vector space has an algebraic basis. This is proved using Zorn's 

Lemma. We will use this Lemma often. 

Zorn's Lemma 

3. Let X be any set. A binary relation S on X is called a partial order if it satisfies 

three conditions 

(i) X S X for all X E X, (rejlexivity) 
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(ii) if x :S y and y :S x, then x = y, (antisymmetry) 

(iii) if x :S y and y :S z, then x :S z. (transitivity) 

A set X with a partial order is called a partially ordered set. 

The sets N, Q, lR (natural numbers, rational numbers, and real numbers) are par­

tially ordered if x :S y means "x is less than or equal to y". Another partial order 

on N can be defined by ordaining that x :S y means "x divides y". The dass of all 

subsets of a given set is partially ordered if we say E :S F whenever E ~ F. 

An element Xo of a partially ordered set X is called a maximal element if there 

is no element bigger than it; i.e., Xo :S x if and only if x = Xo. Such an element need 

not exist; and if it does it need not be unique. 

Let E be a subset of a partially ordered set X. An element Xo of X is an upper 

bound for E if x :S Xo for all x E E. We say E is bounded above if an upper bound 

for E exists. 

A partially ordered set X is totally ordered if in addition to the conditions (i) -

(iii), the binary relation :S satisfies a fourth condition: 

(iv) if x, y E X, then either x :S y or y :S x. 

Zorn's Lemma says: 

1f X is a partially ordered set in which every totally ordered subset is bounded 

above, then X contains a maximal element. 

This Lemma is logically equivalent to the Axiom of Choice (in the sense that one 

can be derived from the other). This axiom says that if {XoJ is any family of sets, 

then there exists a set Y that contains exactly one element from each X a . 

See J.L. Kelley, General Topology for a discussion. 

4. Exercises. (i) Use Zorn's Lemma to show that every vector space X has an 

algebraic basis. (This is a maximal linearly independent subset of X.) 
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(ii) Show that any two algebraic bases of X have the same cardinality. This is called 

the dimension of X, written as dirn X. 

(iii) If Bis an algebraic basis for X then every element of X can be written uniquely 

as a linear combination of elements of B. 

(iv) Two vector spaces X and Y are isomorphie if and only if dirn X = dirn Y. 

5. The not ion of an algebraic basis is not of much use in studying Banach spaces 

since it is not related to any topologieal property. We will see if X is a Banach space, 

then either dirn X < 00 or dirn X 2 c, the cardinality of the continuum. Thus there 

is no Banach space whose algebraic dimension is countably infinite. 

Topological (Schauder) Basis 

6. Let {xn } be a sequence of elements of a Banach space X. We say that the series 
00 N 
LXn converges if the sequence SN = LXn of its partial sums has a limit in X. 
n=l n=l 

7. A sequence {xn } in a Banach space X is a topological basis (Schauder basis) for 
00 

X if every element x of X has a unique representation x = L anxn. Note that the 
n=l 

order in which the elements X n are enumerated is important in this definition. 

A Schauder basis is necessarily a linearly independent set. 

8. If {xn } is a Schauder basis for a Banach space X, then the collection of all finite 
N 

sums Lanxn, in whieh an are scalars with rational real and imaginary parts, is 
n=l 

den se in X. So, X is separable. Thus a nonseparable Banach space can not have a 

Schauder basis. 

For n = 1,2, ... , let en be the vector with all entries zero except an entry 1 in 

the nth place. Then {en } is a Schauder basis for each of the spaces €p, 1 :S p < 00, 

and for the space co. 
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9. Is there any obvious Schauder basis for the space G[O, 1] of real functions? The 

one constructed by Schauder is described below. 

Exercise. Let {ri : i ~ I} be an enumeration of dyadic rationals in [0, 1] : 

0,1,!,~,~, k, i, i,~, /6' ?6"" Let h(t) == 1, h(t) = t ; and for n > 2 define in 

as follows. Let in(rj) = ° if j < n, in (rn) = 1, and let in be linear between any two 

neighbours among the first n dyadic rationals. Draw the graphs of 13, i4 and i5' 
Show that every element 9 of G[O, 1] has a unique representation 9 = L. adi: 

(i) Note al must be g(O); 

(ii) a2 must be g(l) - al; 

(iii) proceed inductively to see that 
n-l 

an = g(rn) - Ladi(rn); 
i=l 

n 

(iv) draw the graph of Ladii 
i=l 

(v) since the sequence ri is den se in [0,1], these sums converge uniformly to g, as 

n ----t 00. 

Note that Ilinll = 1 for all n. Thus we have a normalised basis for G[O, 1]. 

10. Does every separable Banach space have a Schauder basis? 

This quest ion turns out to be a difficult one. In 1973, P. Enfio published an 

example to show that the anSwer is in the negative. (This kind of problem has 

turned out to be slippery ground. For example, it is nOw known that every lp space 

with p i- 2 has a subspace without a Schauder basis.) 
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Equivalence of Norms 

11. Let 11 . 11 and 11 . 11' be two norms on a vector space X . We say these norms are 

equivalent if there exist positive real numbers C and C' such that 

IIXII ~ CllxlI', IIxlI' ~ C'llxll 

for all x. Clearly this is an equivalence relation between norms. 

The metrics arising from equivalent norms are equivalent. Any sequence that 

converges in the metric induced by a norm also converges in the one induced by an 

equivalent norm. 

We will see that if X is finite dimensional, then all norms on X are equivalent 

to one another. 

12. Let Xl , ... ,Xn be orthonormal vectors in the Euclidean space Cn . Then for all 

(2 .2) 

The next lemma provides a good working substitute for this. It says that if Xl, ... , X n 

are linearly independent vectors in any Banach space, then the norm of any linear 

combination alXI + ... + anxn can not be too small. 

Lemma. Let {Xl,"" X n } be linearly independent vectors in any normed linear 

space X. Then there exists a constant C> 0, such that for all scalars al, ... , an 

(2.3) 

Proof. Divide both sides of the inequality (2.3) by lall + ... + lanl. The problem 

reduces to showing that there exists C, such that if L lajl = 1, then 
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If this were not the case, for each positive integer m there would exist a~m), .. . ,a~m) 

with ~ la)m) I = 1 such that 

lIa~m)XI + ... + a~)xnll < ~. 
m 

(2.4) 

The sequence (a~m), ... , a~m)) indexed by m is a bounded sequence in Cn . So, by 

the Bolzano-Weierstrass Theorem it has a convergent subsequence. The limit of 

this subsequence is an n-tuple (al,"" an) with ~ lajl = 1. Since Xj are linearly 

independent, this means 

This contradicts (2.4) which says that aim) Xl + ... + a~m) Xn converges to zero as 

m --+ 00. • 

13. Theorem. Any two norms on a finite dimensional vector space are equivalent. 

Proof. Let {Xl"" ,Xn} be a basis for X. If X = alxl + ... + anxn , set 

This is a norm on X. Let 11 . 11 be any other norm. By the Lemma in 12, there exists 

a constant C such that 

IIxll ~ CllxlIl' 

On the other hand if C' = max 11 X j 11, then 

IIxll ::; L lajlllxjll ::; c'L lajl = C/llxlIl' 
j 

Thus 11 . 11 and 11 . 111 are equivalent. • 

14. Exercises. (i) Consider the space Cn with the p-norms 1 ::; P ::; 00. Given two 

indices p and p', find the smallest numbers Cp,pl such that 


