


TEXTS AND READINGS 
IN MATHEMATICS 48 

Slochastic Approximation 
A Dynamical Systems Viewpoint 



Texts and Readings in Mathematics 

Advisory Editor 
C. S. Seshadri, Chennai Mathematical Institute, Chennai. 

Managing Editor 
Rajendra Bhatia, Indian Statistical Institute, New Delhi. 

Editors 
R. B. Bapat, Indian Statistical Institute, New Delhi. 
V. S. Borkar, Tata Inst. of Fundamental Research, Mumbai. 
Probai Chaudhuri, Indian Statistical Institute, Kolkata. 
V. S. Sunder, Inst. of Mathematical Sciences, Chennai. 
M. Vanninathan, TIFR Centre, Bangalore. 



Stochastic Approximation 
A Dynamical Systems Viewpoint 

Vivek s. Borkar 
Tata Institute of Fundamental Research 

Mumbai. 

rtdQUQlo 0 HINDUSTAN 
U l1U UBOOKAGENCY 



Published in lndia by 

Hindustan Book Agency (lndia) 
P 19 Green Park Extension 
New Delhi 110 016 
lndia 

email: hba@vsnl.com 
http://www.hindbook.com 

Copyright © 2008, Hindustan Book Agency (India) 

No part of the material protected by this copyright notice may be 
reproduced or utilized in any form or by any means, electronic or 
mechanical, including photocopying, recording or by any information 
storage and retrieval system, without written permission from the 
copyright owner, who has also the sole right to grant licences for 
translation into other languages and publication thereof. 

All export rights for this edition vest exclusively with Hindustan Book 
Agency (India). Unauthorized export is a violation of Copyright Law 
and is subject to legal action. 

ISBN 978-81-85931-85-2 ISBN 978-93-86279-38-5 (eBook) 
DOI 10.1007/978-93-86279-38-5 



Contents 

Preface 

1 

2 

3 

4 

5 

6 

7 

Introduction 

Basic Convergence Analysis 
2.1 The o.d.e. limit 
2.2 Extensions and variations 

Stability Criteria 
3.1 Introduction 
3.2 Stability criterion 
3.3 Another stability criterion 

Lock-in Probability 
4.1 Estimating the lock-in prob ability 
4.2 SampIe complexity 
4.3 A voidance of traps 

Stochastic Recursive Inc1usions 
5.1 Preliminaries 
5.2 The differential inclusion limit 
5.3 Applications 
5.4 Projected stochastic approximation 

Multiple Timescales 
6.1 Two timescales 
6.2 A veraging the natural timescale: preliminaries 
6.3 A veraging the natural timescale: main results 
6.4 Concluding remarks 

Asynchronous Schemes 
7.1 Introduction 
7.2 Asymptotic behavior 
7.3 Effect of delays 
7.4 Convergence 

v 

page vii 

1 

10 
10 
16 

21 
21 
21 
27 

31 
31 
42 
44 

52 
52 
53 
56 
59 

64 
64 
67 
73 
76 

78 
78 
80 
82 
85 



VI Contents 

8 A Limit Theorem for Fluctuations 88 
8.1 Introduction 88 
8.2 A tightness result 89 
8.3 The functional central limit theorem 96 
8.4 The convergent case 99 

9 Constant Stepsize Algorithms 101 
9.1 Introduction 101 
9.2 Asymptotic behaviour 102 
9.3 Refinements 107 

10 Applications 117 
10.1 Introduction 117 
10.2 Stochastic gradient schemes 118 
10.3 Stochastic fixed point iterations 125 
10.4 Collective phenomena 131 
10.5 Miscellaneous applications 137 

11 Appendices 140 
11.1 Appendix A: Topics in analysis 140 

11.1.1 Continuous functions 140 
11.1.2 Square-integrable functions 141 
11.1.3 Lebesgue's theorem 143 

11.2 Appendix B: Ordinary differential equations 143 
11.2.1 Basic theory 143 
11.2.2 Linear systems 146 
11.2.3 Asymptotic behaviour 147 

11.3 Appendix C: Topics in probability 149 
11.3.1 Martingales 149 
11.3.2 Spaces of probability measures 152 
11.3.3 Stochastic differential equations 153 

References 156 
Index 163 



Preface 

Stochastic approximation was introduced in a 1951 artide in the Annals of 
Mathematical Statistics by Robbins and Momo. Originally coneeived as a 
tool for statistical computation, an area in which it retains a place of pride, 
it has come to thrive in a totally different discipline, viz., that of eleetrieal 
engineering. The entire area of 'adaptive signal proeessing' in communication 
engineering has been dominated by stochastic approximation algorithms and 
variants, as is evident from even a eursory look at any standard text on the 
subject. Then there are the more recent applications to adaptive resouree 
allocation problems in communication networks. In control engineering too, 
stochastic approximation is the main paradigm for on-line algorithms for system 
identification and adaptive control. 

This is not accidental. The key word in most of these applications is adaptive. 
Stochastic approximation has several intrinsic traits that make it an attraetive 
framework for adaptive schemes. It is designed for uncertain (read 'stochastic') 
environments, where it allows one to track the 'average' or 'typical' behaviour of 
such an environment. It is incremental, i.e., it makes small changes in eaeh step, 
which ensures a graceful behaviour of the algorithm. This is a highly desirable 
feature of any adaptive scheme. Furthermore, it usually has low computational 
and memory requirements per iterate, another desirable feature of adaptive 
systems. Finally, it conforms to our anthropomorphic notion of adaptation: 
It makes small adjustments so as to improve a certain performance criterion 
based on feedbacks received from the environment. 

For these very reasons, there has been a resurgence of interest in this dass 
of algorithms in several new areas of engineering. One of these, viz., commu­
nication networks, is already mentioned above. Yet another major application 
domain has been artificial intelligence, where stochastic approximation has pro­
vided the basis for many learning or 'parameter tuning' algorithms in soft com­
puting. Notable among these are the algorithms for training neural networks 
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viii Preface 

and the algorithms for reinforcement learning, a popular learning paradigm for 
autonomous software agents with applications in e-commerce, robotics, etc. 

Yet another fertile terrain for stochastic approximation has been in the area 
of economic theory, for reasons not entirely dissimilar to those mentioned above. 
On one hand, they provide a good model for collective phenomena, where mi­
cromotives (to borrow a phrase from Thomas Schelling) of individual agents 
aggregate to produce interesting macrobehaviour. The 'nonlinear urn' scheme 
analyzed by Arthur and others to model increasing returns in economics is a 
case in point. On the other hand, their incrementality and low per iterate com­
putational and memory requirements make them an ideal model of a boundedly 
rational economic agent, a theme which has dominated their application to 
learning models in economics, notably to learning in evolutionary games. 

This Hurry of activity, while expanding the application domain of stochastic 
approximation, has also thrown up interesting new issues, some of them dic­
tated by technological imperatives. Consequently, it has spawned interesting 
new theoretical developments as weIl. The time thus seemed right for a book 
pulling together old and new developments in the subject with an eye on the 
aforementioned applications. There are, indeed, several excellent texts already 
in existence, many of which will be referenced Iater in this book. But they 
tend to be comprehensive texts: excellent for the already initiated but rat her 
intimidating for someone who wants to make quick inroads. Hence a need for 
a 'bite-sized' text. The present book is an attempt at one. 

Having decided to write a book, there was still a methodological choice. 
Stochastic approximation theory has two somewhat distinct strands of research. 
One, popular with statisticians, uses the techniques of martingale theory and 
associated convergence theorems for analysis. The second, popular more with 
engineers, treats the algorithm as a noisy discretization of an ordinary differ­
ential equation (0. d. e.) and analyzes it as such. We have opted for the latter 
approach, because the kind of intuition that it offers is an added advantage in 
many of the engineering applications. 

Of course, this is not the first book expounding this approach. There are sev­
eral predecessors such as the excellent texts by Benveniste-Metivier-Priouret, 
DuHo, and Kushner-Yin referenced Iater in the book. These are, however, 
what we have called comprehensive texts above, with a wealth of information. 
This book is not comprehensive, but is more of a compact account of the high­
lights to enable an interested, mathematically Iiterate reader to run through 
the basic ideas and issues in a reIativeIy short time span. The other 'novelties' 
of the book would be a certain streamlining and fine-tuning of proofs using 
that eternal source of wisdom - hindsight. There are occasional new variations 
on proofs sometimes Ieading to improved results (e.g., in Chapter 6) or just 
shorter proofs, inclusion of some newer themes in theory and applications, and 
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so on. Given the nature of the subject, a certain mathematical sophistication 
was unavoidable. For the benefit of those not quite geared for it, we have 
collected the more advanced mathematical requirements in a few appendices. 
These should serve as a source for quick reference and pointers to the liter­
ature, but not as areplacement for a firm grounding in the respective areas. 
Such grounding is a must for anyone wishing to contribute to the theory of 
stochastic approximation. Those interested more in applying the results to 
their respective specialties may not feel the need to go much furt her than this 
little book. 

Let us conclude this long preface with the pleasant task of acknowledging all 
the help received in this venture. The author forayed into stochastic approx­
imation around 1993-1994, departing significantly from his dominant activity 
till then, which was controlled Markov processes. This move was helped by a 
project on adaptive systems supported by a Homi Bhabha Fellowship. More 
than the material help, the morale boost was a great help and he is immensely 
grateful for it. His own subsequent research in this area has been supported by 
grants from the Department of Science and Technology, Government of India, 
and was conducted in the two 'Tata' Institutes: Indian Institute of Science at 
Bangalore and the Tata Institute of Fundamental Research in Mumbai. Dr. V. 
V. Phansalkar went though the early drafts of a large part of the book and with 
his fine eye for detail, caught many errors. Prof. Shalabh Bhatnagar, Dr. Arzad 
Alam Kherani and Dr. Huizen (Janey) Yu also read the drafts and pointed out 
corrections and improvements (Janey shares with Dr. Phansalkar the rare trait 
for having a great eye for detail and contributed a lot to the final clean-up). Dr. 
Sameer Jalnapurkar did a major overhaul of chapters 1-3 and apart of chapter 
4, which in addition to fixing errors, greatly contributed to their readability. 
Ms. Diana Gillooly of Cambridge University Press did an extremely meticulous 
job of editorial corrections on the final manuscript. The author takes fuH blame 
for whatever errors that remain. His wife Shubhangi and son Aseem have been 
extremely supportive as always. This book is dedicated to them. 

Vivek S. Borkar 
Mumbai, February 2008 
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Introduction 

Consider an initially empty um to which balls, either red or black, are added 

one at a time. Let Yn denote the number of red balls at time n and X n ~f Yn/n 
the jraction of red balls at time n. We shall suppose that the conditional 
probability that the next, i.e., the (n + l)st ball is red given the past up to 
time n is a function of X n alone. Specifically, suppose that it is given by p(xn ) 

for a prescribed P : [0,1] --> [0,1]. It is easy to describe {xn , n 2:: I} recursively 
as follows. For {Yn}, we have the simple recursion 

Yn+l = Yn + ~n+l, 

where 

~n+l 1 if the (n + l)st ball is red, 

o if the (n + 1 )st ball is black. 

Some simple algebra then leads to the following recursion for {xn }: 

1 
X n+l = X n + n + 1 (~n+l - x n ), 

with Xo = O. This can be rewritten as 

Note that Mn ~f ~n - p(xn-d, n 2:: 1 (with p(Xo) ~f the prob ability of the 
first ball being red) is a sequence of zero mean random variables satisfying 
E[Mn+ll~m, m ::; n] = 0 for n 2:: o. This means that {Mn} is a martingale 
difference sequence (see Appendix C), i.e., uncorrelated with the 'past', and 
thus can be thought of as 'noise'. The above equation then can be thought of 
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2 Introduction 

as a noisy discretization (or Euler scheme in numerical analysis parlance) for 
the ordinary differential equation (o.d.e. for short) 

x(t) = p(x(t)) - x(t), 

for t ~ 0, with nonuniform stepsizes a(n) ~f 1j(n + 1) and 'noise' {Mn}. 
(Compare with the standard Euler scheme X n+l = X n + a(p(xn) - xn) for 
a small a > 0.) If we assurne p(.) to be Lipschitz continuous, o.d.e. theory 
guarantees that this o.d.e. is well-posed, i.e., it has a unique solution for any 
initial condition x(O) that in turn depends continuously on x(O) (see Appendix 
B). Note also that the right-hand side of the o.d.e. is nonnegative at x(t) = 0 
and nonpositive at x(t) = 1, implying that any trajectory starting in [0,1] will 
remain in [0,1] forever. As this is a scalar o.d.e., any bounded trajectory must 
converge. To see this, note that it cannot move in any particular direction 
('right' or 'left') forever without converging, because it is bounded. At the 
same time, it cannot change direction from 'right' to 'left' or vice versa without 
passing through an equilibrium point: This would require that the right-hand 
side of the o.d.e. changes sign and hence by continuity must pass through a point 
where it vanishes, i.e., an equilibrium point. The trajectory must then converge 
to this equilibrium, a contradiction. (For that matter, the o.d.e. couldn't have 
been going both right and left at any given x because this direction is uniquely 
prescribed by the sign of p(x) - x.) Thus we have proved that x(·) must 
converge to an equilibrium. The set of equilibria of the o.d.e. is given by the 
points where the right-hand side vanishes, i.e., the set H = {x : p( x) = x}. 
This is precisely the set of fixed points of p(.). Once again, as the right-hand 
side is continuous, is :::; 0 at 1, and is ~ 0 at 0, it must pass through 0 by the 
mean value theorem and hence H is nonempty. (One could also invoke the 
Brouwer fixed point theorem (Appendix A) to say this, as p : [0,1] -> [0,1] is 
a continuous map from a convex compact set to itself.) 

Our interest, however, is in {xn }. The theory we develop later in this book 
will tell us that the {xn } 'track' the o.d.e. with probability one in a certain 
sense to be made precise later, implying in particular that they converge a.s. 
to H. The key factors that ensure this are the fact that the stepsize a(n) tends 
to zero as n -> 00, and the fact that the series Ln a(n)Mn+1 converges a.s., 
a consequence of the martingale convergence theorem. The first observation 
means in particular that the 'pure' discretization error becomes asymptotically 
negligible. The second observation implies that the 'tail' of the above con­
vergent series given by L:=n a(n)Mn+1, which is the 'total noise added to 
the system from time non', goes to zero a.s. This in turn ensures that the 
error due to noise is also asymptotically negligible. We note here that the 
fact Ln a(n)2 = Ln(lj(n + 1)2) < 00 plays a crucial role in facilitating the 
application of the martingale convergence theorem in the analysis of the urn 
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scheme above. This is because it ensures the following sufficient condition for 
martingale convergence (see Appendix C): 

n n 

One also needs the fact that L:n a( n) = 00, because in view of our interpretation 
of a( n) as a time step, this ensures that the discretization does cover the entire 
time axis. As we are interested in tracking the asymptotic behaviour of the 
o.d.e., this is clearly necessary. 

Let's consider now the simple case when H is a finite set. Then one can 
say more, viz., that the {xn } converge a.s. to some point in H. The exact 
point to which they converge will be random, though we shall later narrow 
down the choice somewhat (e.g., the 'unstable' equilibria will be avoided with 
probability one under suitable conditions). For the time being, we shall stop 
with this conclusion and discuss the raison d'etre for looking at such 'nonlinear 
ums' . 

This simple set-up was proposed by W. Brian Arthur (1994) to model the 
phenomenon of increasing returns in economics. The reader will have heard 
of the 'law of diminishing returns' from classical economics, which can be de­
scribed as follows. Any production enterprise such as a farm or a factory 
requires both fixed and variable resources. When one increases the amount 
of variable resources, each additional unit thereof will get a correspondingly 
smaller fraction of fixed resources to draw upon, and therefore the additional 
returns due to it will correspondingly diminish. 

While quite accurate in describing the traditional agricultural or manufactur­
ing sectors, this law seems to be contradicted in some other sectors, particularly 
in case of the modern 'information goods'. One finds that larger investments 
in a brand actually fetch larger returns because of standardization and com­
patibility of goods, brand loyalty of customers, and so on. This is the so-called 
'increasing returns' phenomenon modelled by the urn above, where each new 
red ball is an additional unit of investment in a particular product. If the 
predominance of one colour tends to fetch more balls of the same, then after 
some initial randomness the process will get 'locked into' one colour which will 
dominate overwhelmingly. (This corresponds to p(x) > x for x E (xo, 1) for 
some Xo E (0,1), and < x for x E (O,xo). Then the stable equilibria are ° and 
1, with Xo being an unstable equilibrium. Recall that in this set-up the equi­
librium x is stable if p'(x) < 1, unstable if p'(x) > 1.) When we are modelling 
a pair of competing technologies or conventions, this means that one of them, 
not necessarily the better one, will come to dominate overwhelmingly. Arthur 
(1994) gives several interesting examples of this phenomenon. To mention a 
few, he describes how the VHS technology came to dominate over Sony Beta­
max for video recording, why the present arrangement of letters and symbols 
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on typewriters and keyboards (QWERTY) could not be displaced by a supe­
rior arrangement called DVORAK, why 'dockwise' docks eventually displaced 
'counterdockwise' docks, and so on. 

Keeping economics aside, our interest here will be in the recursion for {x n } 

and its analysis sketched above using an o.d.e. The former constitutes a special 
(and a rather simple one at that) case of a much broader dass of stochastic 
recursions called 'stochastic approximation' which form the main theme of this 
book. What's more, the analysis based on a limiting o.d.e. is an instance of 
the 'o.d.e. approach' to stochastic approximation which is our main focus here. 
Before spelling out furt her details of these, here's another example, this time 
from statistics. 

Consider a repeated experiment which gives astring of input-output pairs 
(Xn, Yn), n :::: 1, with X n E nm, Yn E nk resp. We assume that {(Xn, Yn)} 
are i.i.d. Our objective will be to find the 'best fit' Yn = fw(Xn) + En, n :::: 1, 
from a given parametrized family of functions {fw : n m ---+ n k : WEnd}, 
En being the terror'. What constitutes the 'best fit', however, depends on the 
choice of our error criterion and we shall choose this to be the popular 'mean 

square error' given by g(w) ~f ~E[lltnI12] = ~E[llYn - fw(Xn)11 2 ]. That is, we 
aim to find a w* that minimizes this over all wEnd. This is the standard 
problem of nonlinear regression. Typical parametrized families of functions are 
polynomials, splines, linear combinations of sines and cosines, or more recently, 
wavelets and neural networks. The catch here is that the above expectation 
cannot be evaluated because the underlying probability law is not known. Also, 
we do not suppose that the entire string {(Xn , Yn )} is available as in dassical 
regression, but that it is being delivered one at a time in 'real time'. The aim 
then is to come up with a recursive scheme which tries to 'learn' w* in real 
time by adaptively updating a running guess as new observations come in. 

To arrive at such ascheme, let's pretend to begin with that we do know the 
underlying law. Assume also that fw is continuously differentiable in w and 
let 'Vw fwO denote its gradient w.r.t. w. The obvious thing to try then is to 
differentiate the mean square error w.r.t. wand set the derivative equal to zero. 
Assuming that the interchange of expectation and differentiation is justified, 
we then have 

at the minimum point. We may then seek to minimize the mean square error 
by gradient descent, given by: 

wn - 'VWg(wn) 

W n + E[(Yn - fW n (Xn), 'Vw fW n (Xn))lwn]. 

This, of course, is not feasible for reasons already mentioned, viz., that the 
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from a given parametrized family of functions {fw : n m ---+ n k : WEnd}, 
En being the terror'. What constitutes the 'best fit', however, depends on the 
choice of our error criterion and we shall choose this to be the popular 'mean 

square error' given by g(w) ~f ~E[lltnI12] = ~E[llYn - fw(Xn)11 2]. That is, we 
aim to find a w* that minimizes this over all wEnd. This is the standard 
problem of nonlinear regression. Typical parametrized families of functions are 
polynomials, splines, linear combinations of sines and cosines, or more recently, 
wavelets and neural networks. The catch here is that the above expectation 
cannot be evaluated because the underlying probability law is not known. Also, 
we do not suppose that the entire string {(Xn , Yn )} is available as in dassical 
regression, but that it is being delivered one at a time in 'real time'. The aim 
then is to come up with a recursive scheme which tries to 'learn' w* in real 
time by adaptively updating a running guess as new observations come in. 

To arrive at such ascheme, let's pretend to begin with that we do know the 
underlying law. Assume also that fw is continuously differentiable in w and 
let 'Vw fwO denote its gradient w.r.t. w. The obvious thing to try then is to 
differentiate the mean square error w.r.t. wand set the derivative equal to zero. 
Assuming that the interchange of expectation and differentiation is justified, 
we then have 

'VWg(w) = -E[(Yn - fw(Xn), 'Vw fw(Xn))] = 0 

at the minimum point. We may then seek to minimize the mean square error 
by gradient descent, given by: 

Wn+l wn - 'VWg(wn) 

Wn + E[(Yn - fW n (Xn), 'Vw fW n (Xn))lwn]. 

This, of course, is not feasible for reasons already mentioned, viz., that the 
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expectation above cannot be evaluated. As a first approximation, we may 
then consider replacing the expectation by the 'empirical gradient', i.e., the 
argument of the expectation evaluated at the current guess W n for w*, 

This, however, will lead to a different kind of problem. The term added to W n 

on the right is the nth in a sequence of 'i.i.d. functions' of w, evaluated at W n . 

Thus we expect the above scheme to be (and it is) a correlated random walk, 
zigzagging its way to glory. We may therefore want to.smooth it by making 
only a small, incremental move in the direction suggested by the right-hand 
side instead of making the full move. This can be achieved by replacing the 
right-hand side by a convex combination of it and the previous guess W n , with 
only a small weight 1 > a(n) > 0 for the former. That is, we replace the above 
by 

Equivalently, 

Once again, if we do not want the scheme· to zigzag drastically, we should 
make {a( n)} small, the smaller the better. At the same time, a small a( n) 
leads to a very small correction to W n at each iterate, so the scheme will work 
very slowly, if at all. This suggests starting the iteration with relatively high 
{a(n)} and letting a(n) -+ O. (In fact, a(n) < 1 as above is not needed, as 
that can be taken care of by scaling the empirical gradient.) Now let's add and 
subtract the exact error gradient at the 'known guess' W n from the empirical 
gradient on the right-hand side and rewrite the above scheme as 

This is of the form 

W n +1 = W n + a(n)( _V'w g(wn ) + M n +1), 

with {Mn} a martingale difference sequence as in the previous example. One 
may then view this scheme as a noisy discretization of the o.d.e. 

w(t) = -V'wg(w(t)). 

This is a particularly well studied o.d.e. We know that it will converge to 
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H ~f {w : V'w g( w) = O} in general, and if this set is discrete, to in fact one 
of the local minima of 9 for typical (i.e., generic: belonging to an open dense 
set) initial conditions. As before, we are interested in tracking the asymptotic 
behaviour of this o.d.e. Hence we must ensure that the discrete time steps 
{a( n)} used in the 'noisy discretization' above do cover the entire time axis, 
i.e., 

La(n) = 00, (1.0.1) 
n 

while retaining a(n) -t O. (Recall from the previous example that a(n) -t 0 is 
needed for asymptotic negligibility of discretization errors.) At the same time, 
we also want the error due to noise to be asymptotically negligible a.s. The 
um example above then suggests that we also impose 

La(n)2 < 00, (1.0.2) 
n 

which asymptotically suppresses the noise variance. 
One can show that with (1.0.1) and (1.0.2) in place, for reasonable 9 (e.g., 

with limllwll---+oo g( w) = 00 and finite H, among other possibilities) the 'stochas­
tic gradient scheme' above will converge a.s. to a local minimum of g. 

Once again, what we have here is a special case - perhaps the most important 
one - of stochastic approximation, analyzed by invoking the 'o.d.e. method'. 

What, after all, is stochastic approximation? Historically, stochastic approx­
imation started as a scheme for solving a nonlinear equation h(x) = 0 given 
'noisy measurements' of the function h. That is, we are given a black box 
which on input x, gives as its output h(x) +.;, where .; is a zero mean random 
variable representing noise. The stochastic approximation scheme proposed by 
Robbins and Momo (1951)t was to run the iteration 

(1.0.3) 

where {Mn} is the noise sequence and {a(n)} are positive scalars satisfying 
(1.0.1) and (1.0.2) above. The expression in the square brackets on the right is 
the noisy measurement. That is, h(xn) and Mn+! are not separately available, 
only their sum iso We shall assurne {Mn} to be a martingale difference sequence, 
i.e., a sequence of integrable random variables satisfying 

This is more general than it appears. For example, an important special case 
is the d-dimensional iteration 

(1.0.4) 

t See Lai (2003) für an interesting histürical perspective. 
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for an f : nd x nk -> nd with i.i.d. noise {~n}' This can be put in the format 
of (1.0.3) by defining h(x) = E[f(x,6)] and Mn+1 = f(Xn,~n+l) - h(xn) for 
n ~ O. 

Since its inception, the scheme (1.0.3) has been a cornerstone in scientific 
computation. This has been so largely because of the following advantages, 
already apparent in the above examples: 

• It is designed to handle noisy situations, e.g., the stochastic gradient scheme 
above. One may say that it captures the average behaviour in the long 
run. The noise in practice may not only be from measurement errors or 
approximations, but mayaiso be added deliberately as a probing device or 
a randomized action, as, e.g., in certain dynamic game situations. 

• It is incremental, i.e., it makes small moves at each step. This typically leads 
to more graceful behaviour of the algorithm at the expense of its speed. We 
shall say more on this later in the book. 

• In typical applications, the computation per iterate is low, making its imple­
mentation easy. 

These features make the scheme ideal for applications where the key word is 
'adaptive'. Thus the stochastic approximation paradigm dominates the fields 
of adaptive signal processing, adaptive control, and certain subdisciplines of 
soft computing / artificial intelligence such as neural networks and reinforce­
ment learning - see, e.g., Bertsekas and Tsitsiklis (1997), Haykin (1991) and 
Haykin (1998). Not surprisingly, it is also emerging as a popular framework 
for modelling boundedly rational macroeconomic agents - see, e.g., Sargent 
(1993). The two examples above are representative of these two strands. We 
shall be seeing many more instances later in this book. 

As noted in the preface, there are broadly two approaches to the theoretical 
analysis of such algorithms. The first, popular with statisticians, is the prob­
abilistic approach based on the theory of martingales and associated objects 
such as 'almost supermartingales'. The second approach, while still using a 
considerable amount of martingale theory, views the iteration as a noisy dis­
cretization of a limiting o.d.e. Recall that the standard 'Euler scheme' for 
numerically approximating a trajectery of the o.d.e. 

x(t) = h(x(t)) 

would be 

Xn+l = Xn + ah(xn), 

with Xo = x(O) and a > 0 a small time step. The stochastic approximation 
iteration difIers from this in two aspects: replacement of the constant time step 
'a' by a time-varying 'a(n)', and the presence of 'noise' Mn+!. This qualifies it 
as a noisy discretization of the o.d.e. Our aim is to seek X for which h(x) = 0, 



8 Introduction 

i.e., the equilibrium point(s) of this o.d.e. The o.d.e. would converge (if it 
does) to these only asymptotically unless it happens to start exactly there. 
Hence to capture this asymptotic behaviour, we need to track the o.d.e. over 
the infinite time interval. This calls for the condition L:n a(n) = 00. The 
condition L:n a(n)2 < 00 will on the other hand ensure that the errors due 
to discretization of the o.d.e. and those due to the noise {Mn} both become 
negligible asymptotically with probability one. (To motivate this, let {Mn} be 
i.i.d. zero mean with a finite variance (1"2. Then by a theorem of Kolmogorov, 
L:n a(n)Mn converges a.s if and only if L:n a(n)2 converges.) Together these 
conditions try to ensure that the iterates do indeed capture the asymptotic 
behaviour of the o.d.e. We have already seen instances of this above. 

Pioneered by Derevitskii and Fradkov (1974), this 'o.d.e. approach' was fur­
ther extended and introduced to the engineering community by Ljung (1977). 
It is already the basis of several excellent texts such as Benveniste, Metivier and 
Priouret (1990), Duflo (1996), and Kushner and Yin (2003), among otherst. 
The rendition here is a slight variation of the traditional one, with an eye on 
pedagogy so that the highlights of the approach can be introduced quickly and 
relatively simply. The lecture notes of Benaim (1999) are perhaps the dosest in 
spirit to the treatment here, though at a much more advanced level. (Benaim's 
notes in particular give an overview of the contributions of Benaim and Hirsch, 
which introduced important not ions from dynamical systems theory, such as in­
ternal chain recurrence, to stochastic approximation. These represent a major 
development in this field in recent years.) 

While it is ultimately a matter of personal taste, the o.d.e. approach does 
indeed appeal to engineers because of the 'dynamical systems' view it takes, 
which is dose to their hearts. Also, as we shall see at the end of this book, it can 
serve as a useful recipe for concocting new algorithms: any convergent o.d.e. is 
a potential source of a stochastic approximation algorithm that converges with 
probability one. 

The organization of the book is as follows. Chapter 2 gives the basic con­
vergence analysis for the stochastic approximation algorithm with decreasing 
stepsizes. This is the core material for the rest of the book. Chapter 3 gives 
some 'stability tests' that ensure the boundedness of iterates with probability 
one. Chapter 4 gives some refinements of the results of Chapter 2, viz., an 
estimate for probability of convergence to a specific attractor if the iterates 
fall in its domain of attraction. It· also gives a result about avoidance with 
probability one of unstable equilibria. Chapter 5 gives the counterparts of the 
basic results of Chapter 2 for a more general iteration, which has a differential 
indusion as a limit rather than an o.d.e. This is useful in many practical in-

t Wasan (1969) and Nevelson and Khasminskii (1976) are two early texts on stochastic 
approximation, though with a different flavour. See also Ljung et al. (1992). 


