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Preface 

This book is written as an attempt to entice the students of math
ematics to the world of geometry. In spite of the great strides made in 
modern geometry at research level, there is no introductory book which 
gives modern aspects of geometry at undergraduate/graduate level. Our 
book is an attempt to fill this vacuum. In this endeavor, we have taken 
great care in the selection of topics and their treatment. Our guiding 
principles are 

1. to cultivate geometrie intuition in readers, 
2. to give a panoramic view of various facets of geometry, 
3. to give a modern treatment of intuitively appealing classical re

sults, and 
4. to employ as much as possible the methods which are close to the 

ones adopted in contemporary geometry. 
Some of the material in this book has already been used in the Math

ematics Training and Talent Search (MTTS) Programme and at various 
other places. The response to the course has been very enthusiastic 
both from students and teachers. Many of them insisted on our bring
ing out the privately circulated notes in book form. This book is thus 
an outcome of the cumulative effects of such requests. 

Unlike some books on geometry, our work takes a holistic view of 
geometry. It introduces the readers to axiomatic, algebraic, analytic 
and differential geometry. 

The first chapter intro duces non-Euclidean geometry in an informal 
and engaging way. Chapters 2 to 6 put the geometries introduced in 
the first chapter on a rigorous footing. These may be considered as an 
explication of the Kleinian view of geometry a la Erlangen Programme. 
Discerning readers will find that we have gone beyond the Kleinian view 
of geometry in some of the topics in these chapters. 

One of the hallmarks of this book is a completely rigorous discussion 
on the non-Euclidean geometries: Poincare upper half plane or hyper
bolic plane and the spherical plane. The general public, including the 
students of mathematics, looks at non-Euclidean geometry with some 
awe. We hope to show that these geometries are as natural as Euclidean 
geometry. 

The spaces studied in chapters on Euclidean geometry, hyperbolic 
geometry and spherical geometry all are spaces of constant curvature. 
The eighth chapter "Theory of Surfaces" intro duces the reader to the 
spaces of variable curvature in a geometrie way. It is our firm belief that 
the reader who understands these chapters will be better prepared to 
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plunge into modern differential geometry. 
The most important features of our discussion are: (i) proving various 

results about triangles in these geometries which bring a perspective 
about them and (ii) affine and projective classification of conics. We 
are confident that diligent readers will notice that at many places our 
treatment is original and geometric. To the best of our knowledge, some 
of the topies, notably, transitive groups on co nies , areas of geodesic 
triangles in JH[2 and 52, two-point homogeneity of]E2, JH[2 and 52 and the 
fact that the set of distance preserving maps (iso met ries ) is essentially 
the same as the set of length-preserving maps of these spaces appear for 
the first time in a book at this level in an accessible form with complete 
details. (See Remark 7.6.2.) 

Chapters 2-5 can be used as a one-semester course at the undergrad
uate level and Chapters 5-8 can be used for a one-semester course at 
graduate level. The whole book can be covered in a one year course on 
geometry at a leisurely pace. 

We take this opportunity to record our thanks to the Resident Fac
ulty who have used the preliminary set of not es at MTTS camps and 
offered us their suggestions. We thank Akhil Ranjan and Amber Habib 
for their valuable comments. We also thank the participants of the 
MTTS camps for their overwhelming response to a course on geometry 
which was based on an earlier version of the manuscript. We thank Ju
gal Verma whose repeated enquiries about the manuscript goaded us to 
complete our project of writing this book. The book owes its birth to 
them! We also record our sincere thanks to Ajit Kumar for drawing all 
the figur es in the book. 

The first author acknowledges the invitation by the Department of 
Mathematics, Indian Institute of Technology, Kanpur, during the final 
stages in the preparation of the manuscript. The se co nd author would 
like to place on record his appreciation of the invitation by the De
partment of Mathematics, University of Mumbai, which facilitated the 
preparation of the manuscript. 

The unsung heroes in the worid of publishing of technical books are 
the referees who remain anonymous. We record our sincere and heart
feIt thanks to the referee whose diligent and pains-taking efforts have 
made this book more readable and eradicated many vague or impre
ci se statements. Of course, we take the responsibility for all remaining 
mistakes and errors of commis si on and omission. 

A Few Words to the Readers: Our primary aim has been to impart 
a feeling for geometry. Nowadays, geometry is not taught at colleges. 
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The students, more often than not, approach Geometry with a sense of 
trepidation. They find it difficult to relate to the abstract concepts in 
an intuitive and geometrie way. 

We have emphasized the geometrie intuition throughout the book. 
Figures are included wherever needed to make the geometrie ideas clear. 
It is possible that some of the readers may find this an overkill. Also, 
some may find it difficult to see how the geometrie ideas and the rigour 
relate to each other. While we accept that the book may be difficult at 
some places, we are sure that mulling over the material will enhance the 
readers' appreciation of Geometry. We would be pleased to hear that 
our book renewed their interest in Geometry. 

We have a reasonable number of exercises varying from computa
tional problems to investigative or explorative open questions. We be
lieve that most of them are accessible and some of them are challenging. 

At many places, we have given more than one proof. Our purpose 
was to make the reader realize that if he thinks on his own, he may 
be able to discover proofs which difler from the ones we have given. 
In fact, the alternative proofs were discovered by us while revising the 
manuscript. 

In order to maintain the flow of the arguments, we have relegated 
the reasons (which are answers to "why?" questions traditionally inter
spersed in the proofs) as separate paragraphs of less width. 

Prerequisites: For Chapters 1 to 4, the reader is expected to have 
a reasonable knowledge of Linear Algebra and the basic ideas in Group 
Theory. An acquaintance with group action will be an added advantage. 
However , for the benefit of the readers, we have discussed group action 
in the appendix with concrete examples. 

For Chapter 5, we assurne knowledge of inner product spaces, though 
we review some of the important results. For Chapters 5 to 8, we assurne 
some basie knowledge of calculus of several variables. 

An explanation: We are asked by all who went through the prelim
inary vers ions the reason for the title, especially concerning the word 
'expedition'. We reproduce the meaning of this word as in the Cam
bridge International Dictionary of English: 

expedition n An organized journey for a particular pur
pose. 

Suggestions for improvements and inclusion of topics are most wel
come and may be sent to santhana@iitk. ac. in 

Authors 



Chapter 1 

Introduction 

In this introduction, we take a pedestrian approach and introduce the 
reader to three rich plane geometries. The rest of the book will put 
almost all the results of this introduction on a rigorous footing. 

The phrase plane geometries should conjure up an image of points, 
lines and the incidence relations between them in the mind of the reader. 
Like all concepts in modern mathematics, we start with a simple set 
ofaxioms which are abstractions of the ideal requirements which our 
objects should have. We start with a (non-empty set) X whose elements 
are called points, a class lL of special subsets of X called lines, and an 
incidence 'relation, viz., a point x is incident on R- E lL if x E R-. We 
mayaIso express this incidence relation by saying that R- is incident on 
x or R- passes through x. Now we impose some "natural conditions" on 
this pair (X, lL). We require that any two distinct points determine a 
unique line. This means that given x, y E X with x =I- y there exists a 
unique element R- E lL such that x, y E R-. We also demand that any two 
distinct lines pass through at most one point. That is, given R-, R-' E lL the 
intersection R-ni:' has at most one point. These requirements are enough 
for the time being. Any pair (X, lL) which satisfies these conditions is 
called a plane geometry. Let us look at some examples of this concept. 

As a first example let us give you an uninspiring one. Let X = {x, y} 
be a two element set and lL := {X}. Then it satisfies all our requirements 
and hence is a plane geometry. This shows that we must impose perhaps 
some other condition so that our plane geometry will be "rich". One such 
condition may be to require that X has at least three elements. Hereafter 
we shall assurne that our plane geometry satisfies this condition. 

Before the reader gets all knotted up, let us give an example which is 
the one closest to his intuition and most "weH understood". As (X, lL) 
take the "Euclidean plane" along with the lines in the plane, that is, the 
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plane geometry which the reader has learnt in high school. 
The second example is again an abstract one to test your staying 

power. Take a set of 7 elements, say, X = {I, 2, ... ,7}. As lines let us 
take lL := {Ci: 1 ::; i ::; 7} where the Ci are defined as follows: 

Cl = {I, 7, 5} 
C5 = {2, 5, 3} 

C2 = {I, 6, 3} 
C6 = {3, 7,4} 

C3 = {1,4,2} 
C7 = {4, 5, 6}. 

C4 = {2, 7, 6} 

On seeing this, you may be tempted to say that this is the reason you 
never liked mathematics. We share your views and sympathize with you. 
However, there is a perfectly geometrie way in which mathematieians 
visualize this plane. Look at Figure 1.0.1 below and ponder over it. The 
lines as drawn over there are there just for "ornamentation's sake" to 
aid our imagination. 

1 

1 

1 
I~ 

11' 

1 1 ' 

1 1 ' , , 

Figure 1.0.1 A Finite Plane 

To the cognoscenti, this is not hing but the projective plane over the 
field of two elements. 

After this esoteric example, let us look at a very concrete plane 
geometry. This time X = {(x,y) E ]R2 : y > O} is the upper half 
plane in ]R2. As lines, we take the collection V of vertical lines (in the 
usual Euclidean.. sense) and C the collection of semieircles of all pos si
ble radii with cent res on the x-axis. Let Ca := {(a,y) : y > O} and 
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Ca,R := {(x, y) : y > 0, (x - a)2 + y2 = R 2} for a E "IR and R> 0, and 

V {Ca: a E "IR}, 

C {Ca,R: a E "IR,R > O}. 

Thus lL = V U C. Note that the centre of Ca,R is not a point of X! We 
invite you to check (at least convince yourself using coordinate geometry) 
that (X, lL) is a plane geometry. To check your understanding, answer 
this quest ion: What is the unique line joining the following pair of points: 

(a) p = (1,1) and q = (-1,1), 
(b) p = (0,1) and q = (0,2)7 

Figure 1.0.2 Great circle on S2 

As a final "example" (note the quotes), we take X to be the (surface 
of the) sphere S2 of unit radius with centre at the origin in "lR3 . That is, 
S2 := {(x, y, z) E "lR3 : x2 + u.2 + Z2 = I}. Here, as the set lL of lines C, 
we take all the great circles C got as the intersection of a plane passing 
through the origin with S2. (See Figure 1.0.2.) In particular, given 
any two points on S2 which are not antipodal, that is, which are not 
diametrically opposite to each other, we take the plane passing through 
these two points and the origin and take its intersection with S2. Thus 
given p and q(i- ±p), we have a unique 'line' joining them. But the 
shrewd reader must have observed that if we take p and q = -p, then 
there are far too many lines (namely great circles) passing through the 
points p and -po (See Figure 1.0.3.) Thus (X, lL) is not a plane geometry 
according to our definition. 
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Figure 1.0.3 Many great circles connecting the poles on S2 

Modern mathematicians do not sit and cry over this kind of set-up. 
They are crafty and get around this in an ingenious way. We pretend 
that we cannot distinguish between p and -po That is, as far as we are 
concerned, p and -p are one and the same point. Thus we take X to be 
the set of pairs [p, -p]: X := {[P, -p];p E S2}. 

In terms of equivalence relations, the set X is the quotient set of S2 
with respect to the equivalence relation: x == y Hf x = ±y for x, y E S2. 

We take f! to be the image of any l (defined above) in X: Thus, 

f! = [l] := {[x, -x] : x E l} 

and 
1L={f!=[l]:lEi}. 

We leave to you the very illuminating task of verifying that (X, 1L) is 
a plane geometry. If you have difficulty in carrying out this detail, you 
may still proceed and come back later (after the discussion at the end 
of this chapter). 

Now if you ask us to give a geometrically visualisable picture (in ]R2 

er ]R3), we are in trouble. In such cases, what a mathematician does is 
this: if he wants to say so met hing about X, then he looks at its analogue 
in S2, checks it there and comes back to X. This principle is illustrated 
in a paragraph below. 

Having done these examples, you might wonder what all these things 
lead to. We try to answer this in an oblique way in the rest of this 
chapter. 



5 

We agree to say that two lines C and C' in a plane geometry are 
parallel if either C = C' or C n c' = 0. Armed with this definition, let us 
look at so me examples of parallel lines in the three examples above. 

In the usual plane X = lR2 , if C is the x-axis, then lines parallel to C 
are given by C' = {(x,y) : y = constant}. 

In the second example where X is the "upper half plane" , if we take C 
to be the verticalline {(O, y) : y > O}, then any line Ca = {(a, y) : y > O} 
where a E lR is chosen arbitrarily is parallel to C. Can you think of some 
Ca,R parallel to C? Can you find what are the lines parallel to Ca,R? If 
you cannot solve this, do not despair, it is kind of solved below. 

Figure 1.0.4 Any two great circles in 52 meet each other 

In the third example, C' is parallel to C iff C = C'. That is to say, there 
are no nontrivial pairs of parallellines in this plane geometry! To verify 
this, let us look at the 'lines' in 52. Consider any two lines C and C' such 
that C = P n 52 and C' = P' n 52 for some planes P and P' passing 
through the origin. Since P and P' are planes through the origin, they 
intersect along a (usual Euclidean) line through the origin. This line in 
turn intersects the sphere 52 at two antipodal points x and -x. Thus 
the images C of C and C' of C' intersect at the point [x, -xl E X. (See 
Figure 1.0.4.) Thus any two lines intersect in this plane geometry! 

Just as an aside, we invite the reader to check that the esoteric ex
ample of a plane consisting of 7 points and 7 lines also has this property. 

All these examples should inevitably goad us into thinking of the 
(controversial) Euclid's parallel postulate. Euclid, in his definition of 
plane geometry, postulated that (X, lL) has the property that given a 
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li ne J!. and a point p not on it, there exists a unique line J!.' passing 
through p parallel to J!.. 

Let us see what happens in our three examples. In the usual plane, 
his postulate is true. In fact, if we develop this via linear algebra his 
postulate becomes a theorem. Those of you who know about cosets of 
subspaces of a vector space should know that any two cosets are either 
the same or they do not have any intersection. 

In the second example, something fantastic happens. Take as J!. any 
semicircle with the centre on the x-axis and a point p = (pI,p2) EX C 
]R2 not on the line J!. as in Figure 1.0.5. Take as J!.' = {(PI, y) : y > O}. 
Then the line J!.' is parallel to J!.. (That they seem to have a point on the 
x-axis in common is irrelevant as the x-axis is not apart of our plane X.) 
You can also convince yourself that you can draw an infinite number of 
semicircles passing through P which are parallel to J!.. 

Figure 1.0.5 Lines in a hyperbolic plane 

In the third example, given J!. and a point P rf:- J!. as we have seen earlier 
it is not possible to find a line J!.' parallel to J!. and passing through p. 

Thus our three planes exhibit all possible variations of Euclid's par
allel postulate: 

1. In the usual plane, given a line and a point P not on the line there 
exists a unique line J!.' passing though P and parallel to J!.. Any plane 
geometry having this property is called a Euclidean geometry. 

2. In the second example (where X is the upper half plane), given 
a li ne J!. and a point P not on it, there exist infinitely many lines 
J!.' parallel to the given line passing through the point p. A plane 
with this property is known as a hyperbolic plane. 

3. In the last example (in which X is the quotient set of the sphere), 
given a line J!. and a point p not on it, there exists no line through 
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p which is parallel to f. A plane exhibiting this phenomenon is 
known as an elliptic plane. 

The last two are hence known as Non-Euclidean Geometries. 
Now you might raise the following point: "You started with some 

arbitrary X and took some special class of curves as the lines in X. So 
anything can happen. What is the big idea?" WeIl, you are correct. But 
we have a reason for what we have done and which also explains why 
we chose these special curves as the lines. 

If you agree with us that the intuitive notion of a line is that it is 
in some vague sense the "shortest" curve joining "nearby" points on it, 
then one can show that our curves are indeed lines in their respective 
planes, provided a proper interpretation of length of curves is given. One 
imitates the formula for arc-Iength in Euclidean geometry to define the 
length of a curve c as follows: 

length of c:= l b (c(t) . C(t))1/2cp(C(t)) dt. 

Here cp: X --+ ffi.+ is a continuous function. Thus the tangent vector 
c(t) has as its length not the usual Euclidean length (c(t) . C(t))1/2 but 
cp(c(t))(c(t) . C(t))1/2. Thus the length of the tangent vector has a mag
nification factor depending upon its position. This kind of thing occurs 
naturally; e.g. When one studies the Lorentz metric and the Minkowski 
space-time in physics. 

Finally two teasers: If X = ffi.3, and lines are the usual lines as in 
three dimensional co ordinate geometry, then ffi.3 is also a "plane geom
etry" according to our definition. But a plane must surely be "two di
mensional" and ffi.3 is three dimensional. Is there any furt her condition 
to be imposed so that ffi.3 is disqualified from being a "plane"? 

The second one is as follows: Consider ffi.3. As X we take all the 
lines L in ffi.3 passing through the origin: L:= {t(x,y,z) : t E ffi.} for a 
fixed non-zero (x,y,z) E ffi.3. As for lines we take the standard planes 
P in ffi.3 through the origin: P:= {(x, y, z) E ffi.3 : ax + by + cz = O} for 
a fixed non-zero (a,b,c) E ffi.3. Then (X,lL) is a plane geometry whose 
points are "standard lines" in ffi.3 passing through the origin and whose 
lines are "standard planes" in ffi.3 passing through the origin. This is 
essentially the third example (involving 8 2 ). In algebraic language, this 
is known as the projective plane over IR. 
Remark. The purpose of this chapter is to introduce you quickly to 
axiomatic geometry as weIl as to excite and lure you into geometry. 
Hence we have taken care not to smother you with the most precise 
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statements which may leave you cold. As said at the beginning, as you 
go along the book, we shall vindicate most of what is said in this chapter. 
We shall also plunge deeper into many of these geometries. 



Chapter 2 

Affine Geometry 

2.1 Definition and Examples 

Definition 2.1.1 (Axiomatic Definition). An affine plane TI is a non
empty set X, whose elements are called points of TI, and a dass lL of 
nonempty subsets of X, the elements of which are called the lines of TI 
such that 

[Al] given two distinct points P and Q in X, there exists a unique 
I! E lL such that P and Q are in f!, 

[A2] there exist three distinct points PI, P2 and P3 in X such that 
these three points are not in the same I! E lL, and 

[A3] given a line I! E lL and a point P rt I! there exists a unique 
f!p E lL such that P E f!p and I! n f!p = 0. 

Let us now try to understand this axiomatic definition of an affine 
plane geometrically and recast it in geometrie language. 

Definition 2.1.2. Let TI := (X, lL) be an affine plane. We say that: 
l. A point P E X lies on a line I! (or the line I! passes through P), if 

PE f!. 
2. A set ofpoints {PI,P2 , ... ,Pn } ~ X is collinearifthere exists a 

line I! E lL such that Pi E I! for all i = 1,2, ... n. 
3. Two lines I! and m are parallel if either I! = m or I! n m = 0. 

With these concepts, our geometrie definition of an affine plane is 

Definition 2.1.3 (Geometrie Definition). An affine plane TI is a non
empty set X of points and a dass lL of lines such that 

[G 1] given two distinct points P, Q EX, there exists a unique line I! 
such that I! passes through P and Q (or the points P and Q lie on f!), 
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[G2] there exist three non-collinear points in X and 
[G3] given a line fElL and a point P rf:- f there exists a unique line 

f p in lL passing through P such that fand f p are parallel. (This axiom 
is known as the parallel postulate.) 

We derive some simple consequences of the definition and then look 
at so me examples. 

Proposition 2.1.4. In an affine plane TI, two distinct lines meet at 
atmost one point. 

ProoJ. Let fand m be two lines meeting at two distinct points, say P 
and Q. Since P =f. Q, there exists a unique line passing through both P 
and Q, by Al or GI. Hence f = m. 0 

Proposition 2.1.5. In an affine plane TI, parallelism is an equivalence 
relation. 

ProoJ. Two lines fand m in an affine plane are parallel if either f = m 
or f n m = 0. Therefore a line f is parallel to itself. This proves that 
parallelism is reflexive. 

If a line f is parallel to a line m, obviously m is parallel to f. This 
proves symmetry. 

We will now prove that parallelism satisfies transitivity. Let f, m 
and n be three lines in TI such that f 11 m and m 11 n. If f = m, then 
clearly f is parallel to n. So we assurne that f =f. m. If f is not parallel 
to n, then these two lines will meet at a point, say P. Then the point 
P either lies on m or it does not lie on m. 

Case 1: If the point P lies on m, then, since P lies on fand C 11 m, 
it follows that C = m, which is a contradiction. 

Case 2: Assurne that P does not lie on m. Then the lines C and n 
pass through P and are parallel to m. This violates the uniqueness part 
of the parallel postulate. 

We therefore conclude that no such point P can exist, i.e., Cnn = 0. 
This shows that parallelism is an equivalence relation. 0 

Let us now look at some examples. 

Example 2.1.6 (Affine Plane over IR). Let X = IR2 and C ~ IR2 be a 
line in IR 2 iff 

C = {(x,y) E IR2 : ax+by = c} 

for some (a, b) =f. (0,0) and c E IR. 
We let lL be the collection of all such sub sets of IR2 . Then TI = (X, lL) 

is an affine plane. 
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Proof. Let P = (Xl, Yd and Q = (X2' Y2) be two distinct points in ~2. 
We want to find (a, b) =I (0,0) in ~2 and c E ~ such that the points P 
and Q are solutions to the linear equation ax + by = c. 

If you remember co ordinate geometry, the line joining the points 
(Xl, Yd and (X2, Y2) is given by 

Y - YI 
YI - Y2 

for YI =I Y2 and Xl =I X2· If YI = Y2 = c (respectively Xl = X2 = c), then 
the equation of the line is Y = c (respectively X = c). 

After algebraic manipulations, the equation of the line is 

(2.1.1) 

so that a = -(YI - Y2), b = (Xl - X2) and c = (Xl - X2)YI - (YI - Y2)XI. 
Note that (2.1.1) is the equation of the line joining (Xl, YI) and (X2, Y2) 
whether or not Xl = X2 or YI = Y2. 

This verifies the first axiom. 
The points (0,0), (1,0) and (0,1) are not collinear. (Verify.) 
N ow we verify the parallel postulate. 
Let I! = {(x, y) E ~2 : ax + by = c} be a li ne in ~2 and P = (xo, Yo) 

be a point not lying on the li ne I!. Then the li ne 

I!p := {(x, y) E ~2 : ax + by = axo + byo} 

passes through the point P and is parallel to 1!.(Why?) 

Reason: For, if (xo, yo) tt P, then axo + byo =1= c. Hence it follows 
that there cannot be a common point on P and Pp. 

We ask the reader to prove the uniqueness part. o 

Example 2.1.7. Let X = {1,2,3,4} and lL consist of all two element 
subsets of X. Then TI = (X, lL) is an affine plane. 

Proof. The proof is left as an exercise. This plane is pictorially repre
sented in Figure 2.1.1. 0 

Before some more examples, we ask 

Question 2.1.8. Let n E N be fixed. Let X n = {1, 2, ... , n} and lL 
be the dass of all two element subsets of X. Is TI = (Xn,lL) an affine 
plane? 
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3 2 

4\--------"1 

Figure 2.1.1 Affine Plane with 4 Points 

1. II = (Xn , lL) is an affine plane only for n = 4. 
2. For n > 4, the parallel postulate is not valid. In fact, given a line 

Rand a point P not lying on R, there are at least three lines parallel to 
R, passing through P. (Why?) 

3. For n = 3, any two lines will meet at a point. This will violate 
the parallel postulate. 

Exercise 2.1.9. Let X = {I, 2, 3}. Show that X cannot be made into 
an affine plane. 

Exercise 2.1.10. Let II = (X, lL) be an affine plane. Prove that given 
a line R in II there exists a point P such that P rt- R. 

Exercise 2.1.11. Show that given a point P in an affine plane II, there 
exist two distinct points Q and R such that the three points P, Q and 
R are not collinear. Hence prove that given a point P there exists a line 
RE lL such that P rt- R. 

Notation: Given two distinct points A and B in an affine plane TI, we 
let RAB or AB denote the unique line joining the points A and B. 

The following is aversion of Pasch's Axiom. (See also Ex. 2.10.16). 

Lemma 2.1.12. Let TI = (X, lL) be an affine plane. Let A, Band C be 
three non-collinear points. Let R be a line distinct fram the three lines 
AB, BC and CA. Then R meets two of the three lines. 

Praof. Note that at least one of A, B, C will not lie on R. Otherwise, all 
lie on Rand hence they are collinear, a contradiction to our hypothesis. 
So we may assume, without loss of generality, that R does not pass 
through A. 
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We first claim that R has to meet one of the three lines. If not, R is 
parallel to all of them. Now, we have two lines AB and AC through 
A which are parallel to R, contradicting the parallel postulate. This 
contradiction proves our claim. Without loss of generality, we ass urne 
that R meets BC. 

We claim that R meets AB or AC. Suppose the claim is false. This 
means that the li ne R is parallel to AB and AC. Since parallelism is an 
equivalence relation, it follows that AB is parallel to AC. But they meet 
at the point A. This forces us to conclude that AB = AC. Hence it 
follows that A, Band C are collinear. This contradicts our hypothesis. 

o 
Proposition 2.1.13. Let TI = (X, lL) be an affine plane. Then every 
line in TI has at least two points. 

Proof. Let A, Band C be three non-collinear points in TI. Therefore 
the lines AB, BC and CA are mutually non-parallel. See Figure 2.1.2. 

A 

C 

C 

Figure 2.1.2 Prop. 2.1.13 Figure 2.1.3 Prop. 2.1.13 

Let R be a li ne in TI. If R is one of the above three lines, then it has 
two points and we are through. We assurne that R is not one of the three 
lines. It follows from Lemma 2.1.12 that the li ne R meets at least two of 
the lines AB, BC and CA. 

So, we may assurne without loss of generality that R meets AB and 
BC. Let PI = Rn AB and P2 = Rn BC. If PI =I P2 , then we are 
through. Otherwise, we claim that PI = P2 = B. 

For, H = P2 is the point of intersection of P with AB and BC 
so that P1 = P2 lies on AB and BC. But AB and BC already 
meet at B. Hence the claim follows. Note that under the stated 
assumptions B lies on P. 
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There are two possibilities: either C meets AC or it is parallel to AC. 
H C meets AC, say, at E, then E -=1= B since otherwise B lies on the 

line AC, contradicting the non-collinearity of A, B, C. Hence, the two 
distinct points Band E lie on C and hence we are through in this case. 

Assume that C is parallel to AC. Then, let m be the line passing 
through the point A such that m 11 BC. (See Figure 2.1.3.) Then C and 
m meet at a unique point, say D. (Why?) 

Reason: For, otherwise, m 11 P and P 11 AG by assumption so that 
it follows that m 11 AG. Since they meet at A, we conclude that 
m = AG. Our assumption that m 11 BG implies that AG 11 BG. 
Since AG and BG have a point in common, this means that AG = 

BG, that is, A, B, Gare collinear. 

We claim that D is not any of these points B or C: for, if D = B, 
then m = AB. But AB and BC are not parallel. Similarly D -=1= C. 
Thus the line C has at least two points. 

Another prooj oj the proposition. Suppose {A} E lL. We know that there 
are three non-collinear points B, C and D in X. Let C Be denote the 
line through the points Band C. Similarly we have the lines Ce D and 
CBD . By our assumption, CBD n CeD = D etc., 

Case 1: Let us assume that A tf. {B, C, D}. Then the point A lies in 
atmost one of the lines CBe , CBD and CeD. (Why?) So we can assume 
that A tf. CBe , CBD . Then these two lines CBe and CBD passing through 
the point B are parallel to the line {A}, violating the parallel postulate. 

Case 2: Let us now assume that A E {B, C, D}. Assume that A = B. 
Let C be the line passing through C and parallel to CBD . Since the point 
C does not lie on CBD , C n CBD = 0. This shows that C 11 {A}. We also 
have CeD 11 {A}, again violating the parallel postulate. 0 

Example 2.1.14. Let X = ~2. For any (a, b) E ~2, we let 

P(a,b):= {(a+x,b+x2 ) E ~2: x E ~}, 

a parabola with vertex at the point (a, b). For any c E ~, we denote by 
Ce : = {( c, y) : y E ~} the vertical line x = c. Let lLv be the collection of 
all such parabolas and vertical lines: 

lLv = {P(a,b) : (a,b) E ~2} U {Ce: C E ~}. 

Then (X, lLv ) is an affine plane. 
Let (PI, qd and (p2, q2) be two distinct points in X = ~2. H PI = P2, 

then there is a unique li ne {(PI, y) : y E ~} passing through these two 


