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Preface

Over the last twenty years, location based services (LBS) have become increasingly
popular and have expanded into many areas of our daily lives. The success of LBS
has been facilitated, driven, and accompanied by research activities of an active and
growing community. Research on LBS still continues to improve and shape the
future of LBS, driven by activities on topics including indoor and outdoor posi-
tioning, mapping, privacy, novel user interfaces, big data, smart environments, and
citizen participation—just to name a few.

The LBS conference has become one of the main international research venues
focusing on LBS. The 2018 edition of this conference is the first to be hosted at the
Swiss Federal Institute of Technology (ETH Zurich, Switzerland), after 13 suc-
cessful predecessor events in Vienna (2002, 2004, 2005), Hong Kong (2007),
Salzburg (2008), Nottingham (2009), Guangzhou (2010), Vienna (2011), Munich
(2012), Shanghai (2013), Vienna (2014), Augsburg (2015), and Vienna (2016).

This book contains sixteen full papers which have been accepted for LBS 2018
after a rigorous peer-reviewing process with a 42% acceptance rate. It is structured
into four equal parts, covering a variety of ongoing and timely research topics in the
fields: positioning, mapping, landmarks and mobility, location based social media,
and citizen participation.

We would like to thank all authors for their excellent work and all reviewers for
their critical and constructive comments. We hope you will find these papers
interesting and relevant for your own work and look forward to your participation in
one of the future LBS conferences.

Zürich, Switzerland Peter Kiefer
Zürich, Switzerland Haosheng Huang
Ghent, Belgium Nico Van de Weghe
Zürich, Switzerland Martin Raubal
November 2017
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Locations Selection for Periodic Radio Map
Update in WiFi Fingerprinting

Germán M. Mendoza-Silva, Joaquín Torres-Sospedra and Joaquín Huerta

Abstract The construction and update of a radio map are usually referred as the

main drawbacks of WiFi fingerprinting, a very popular method in indoor localiza-

tion research. For radio map update, some studies suggest taking new measurements

at some random locations, usually from the ones used in the radio map construc-

tion. In this paper, we argue that the locations should not be random, and propose

how to determine them. Given the set locations where the measurements used for the

initial radio map construction were taken, a subset of locations for the update mea-

surements is chosen through optimization so that the remaining locations found in

the initial measurements are best approximated through regression. The regression

method is Support Vector Regression (SVR) and the optimization is achieved using

a genetic algorithm approach. We tested our approach using a database of WiFi mea-

surements collected at a relatively dense set of locations during ten months in a uni-

versity library setting. The experiments results show that, if no dramatic event occurs

(e.g., relevant WiFi networks are changed), our approach outperforms other strate-

gies for determining the collection locations for periodic updates. We also present a

clear guide on how to conduct the radio map updates.

Keywords Wifi fingerprinting ⋅ Radio map update ⋅ Regression ⋅ Optimization

Genetic algorithm
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1 Introduction

As location-based services have grown in importance during recent years, the indoor

positioning has increasingly drawn attention from the research community. The WiFi

fingerprinting has been a very popular indoor positioning method for this commu-

nity. Reasons for its popularity include a large number of WiFi access points (AP)

already deployed in many environments, the generalized usage of WiFi-enabled

smartphones, and a positioning accuracy that is acceptable for many applications

(He and Chan 2016; Yiu et al. 2017). This method, however, has two known draw-

backs: the WiFi measurements radio map construction and update.

The radio map construction and update for WiFi fingerprinting usually involve

a person, or dedicated receiver, that collects WiFi measurements at some known

locations. Thus, the collection process has a cost, either in the time that a paid person

employs, or in the cost of deploying and maintaining receivers. The reduction of

that cost is referred as mapping, calibration or radio map construction/update effort

reduction.

It is acknowledged that, at least to some extent, the larger the number of measure-

ment locations in the target area, the better the accuracy of the WiFi fingerprinting is

Kanaris et al. (2016), Wang et al. (2016), Hernández et al. (2017), Yiu et al. (2017),

but also the more costly the collection process is. To address this issue, methods that

require only a few collection locations have been proposed (Alonazi et al. 2015).

Such methods involve regression (interpolation/extrapolation) approaches or turn-

ing to collaborative or crowd-sourced approaches. If the collected data reliability is

a hard concern, the one option is collecting measurements at all relevant locations.

If data reliability is soft concern, another option is to collect measurements only at

some location and then estimate measurement values for the remaining locations

using a regression approach.

The studies proposing regression approaches generally show that the estimations

made by their methods can be used instead of some of the actual measurements with-

out significantly harming the localization accuracy provided by an Indoor Position-

ing System (IPS). These studies usually specify elimination procedures to drop some

of the original locations in order to test their methods. However, those elimination

procedures are not to be understood as suggested strategies for determining collec-

tion locations. The random locations distribution is a common approach (Ali et al.

2017), despite the locations distribution is very important (Li et al. 2014) for radio

map construction. It is also acknowledged that the radio map needs periodic updates

so that the positioning method can be robust to changes in the target environment

and in the relevant APs (Wang et al. 2016; Hossain and Soh 2015).

The importance of the collection locations is intuitive and has been formally

acknowledged in other subjects for other phenomena. Specifically, several papers

have addressed the optimal (or quasi-optimal) placement of sensors that best mea-

sure a given phenomenon (Rowaihy et al. 2007; Joshi and Boyd 2009). A set of WiFi

measurements collected at known locations by a person can be viewed as measure-

ments of a set of sensors. Therefore, choosing the best locations for an individual to
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collect the WiFi measurements can be thought as optimizing the placement of a set

of sensors.

This paper presents a novel approach for determining the collection locations for

periodic WiFi radio map updates. The approach requires initial measurements, taken

at a relatively dense set of known locations. The initial measurements are used to

determine a set of locations that establishes a compromise between a small set’s size

and its goodness for estimating the Received Signal Strength (RSS) values at the

remaining locations through a regression method. This paper suggests to find such

set using a genetic algorithm optimization approach with a specific fitness function.

The found set of locations, called the solution set, is proposed to be used as collection

locations for the radio map periodic updates.

The proposed approach was tested using SVR as a regression method and a WiFi

RSS database collected during ten months at one floor of a university library. The

database contains measurements for training and test purposes. The training mea-

surements for the first month were used to determine the solution set. The goodness

of the solution set for selecting the measurement collection locations for the periodic

radio map updates was explored across the following nine month in terms of: (1) RSS

difference between the measurements and the RSS estimations provided by a regres-

sion fitted for the solution set, and (2) the effects of using the above RSS estimations

for radio map update on the accuracy of a fingerprinting-based IPS, considering the

test sets collected at each month. The experiments’ results have shown the suitability

of using our approach for determining the locations for periodic radio map updates

in the tested environment.

In summary, in this paper we propose an alternative to common strategies for

locations selection for WiFi radio map update and we experimentally show its ben-

efits. While following those goals, we:

1. Present some drawbacks of the previous common strategies.

2. Describe how to determine a set of locations (solution set) where measurements

should be taken in order to obtain fine RSS estimations for the remaining locations

through regression.

3. Briefly describe how the proposal can be used to find challenging sets of locations

to test regression approaches for WiFi fingerprinting.

4. Experimentally show how to use the estimations obtained from the solution set

to update a WiFi radio map.

The remainder of the paper is organized as follows: Sect. 2 provides an overview

of fingerprinting calibration efforts reduction, focusing mainly in regression-based

approaches. Section 3 presents our proposal for measurement locations determina-

tion for WiFi radio map update. Section 4 provides the experimental testing of our

proposals. Finally, Sect. 5 summarizes the ideas presented in this paper and proposes

its continuation lines.
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2 WiFi Radio Map Construction and Update

WiFi fingerprinting is performed in two phases: the offline training phase and the

online (operational or query) localization phase (He and Chan 2016; Yiu et al. 2017).

In the training phase, WiFi fingerprints are collected in the target area. A WiFi fin-

gerprint is a vector of RSS values of the detected APs measured at a given time. Each

training fingerprint is usually labeled with the location at which it was collected. The

fingerprints are stored in a training database, which is also called radio map. In the

localization phase, an IPS uses the training database to estimate location labels for

new, unlabeled fingerprints.

Radio maps with measurements collected at relatively dense sets of locations pro-

vide higher positioning accuracies than those with measurement collected at sparse

locations (Kanaris et al. 2016; Wang et al. 2016; Hernández et al. 2017; Yiu et al.

2017). Additionally, periodic radio map updates are needed because WiFi signals are

prone to changes, due to either changes in the environment or in relevant APs (includ-

ing reallocation, replacement and transmission power reconfiguration) (Hossain and

Soh 2015; Wang et al. 2016). The effort reduction on radio map construction and the

methods robustness to environment’s changes has been targeted by WiFi fingerprint-

ing researchers for over 10 years, with many of the attempts included in reviews like

Hossain and Soh (2015), Pei et al. (2016), Wang et al. (2016). Some examples of the

attempts are found in Yang et al. (2013), Alonazi et al. (2015), Majeed et al. (2016),

Gu et al. (2016a). The study of Yang et al. (2013), instead of directly using the RSS

values, used order relations between AP’s RSS values. The authors in Alonazi et al.

(2015) collected WiFi measurements at a few reference points (RPs) located at the

ends of corridors and later enriched the radio maps with user-supplied new RSS

values. In Majeed et al. (2016), the authors combined a small calibration set, the

coordinates of all target locations and several simultaneous operational RSS mea-

surements using semi-supervised alignment of manifolds to estimate the operational

measurements’ locations. Gu et al. (2016a) used the AP intensity order as similarity

score to deal with the changes in relevant APs and mobile device diversity, and tested

its approach with a database collected during 6 months.

The above solutions for effort reduction differentiates on whether the measure-

ments are collected by (1) collaborative/crowd-sourced means or by (2) a dedicated

collector. Each approach have its own benefits and drawbacks (Pei et al. 2016). In

the first approach, the cost is almost negligible, but quality and completeness are

concerns. In the second approach, the cost is reduced by making collection at only a

few locations and then estimating (mainly performing a regression) the RSS values

at the remaining locations.

The collaborative/crowd-sourced approaches include explicit or implicit user col-

laboration (He and Chan 2016; Wang et al. 2016; Hossain and Soh 2015). In the

explicit case, the user is required to label all fingerprints, or at least a subset of them,

with the location where they are taken. When there are unlabeled fingerprints, their

labels are estimated using techniques that consider additional information, such as

readings from other sensors (e.g., using pedestrian dead reckoning (PDR) Xiao et al.



Locations Selection for Periodic Radio Map . . . 7

2015) or environment knowledge. The environment knowledge may, for example,

indicate the likely corresponding path segments or the intrinsic relations between

neighboring fingerprints using models like Markov-chain (Lin et al. 2016). Also,

floor plans and APs locations knowledge can be used to generate each AP radio

map using propagation models (Ali et al. 2017). In the implicit case, location hints

are opportunistically used to label WiFi measurements with the location without the

user interaction. The location hints may come from other sensors, like a GPS sen-

sor, or through estimations such as those used for unlabeled fingerprints in the case

of the explicit user collaboration. The collaborative/crowd-sourced approaches are

also used for radio map update. These approaches have a well known challenge: the

labels quality (Wang et al. 2016).

The approaches that do not rely on collaborative/crowd-sourced contributions try

to reduce the amount of locations required for constructing the initial radio map.

Fingerprints are collected at a small amount of locations and the RSS values at the

remaining target locations are estimated using regression (interpolation and extrap-

olation). The following subsection deepens on this subject.

2.1 Collection Effort Reduction for Fingerprinting Using
Regression Approaches

Regression for RSS radio map enrichment is applied as follows. An initial, small

set of locations with known coordinates Ln×2 is chosen for the target area. Then, if

s measurements are made for each location and m wireless networks are detected

in the whole campaign, the initial database is the set Dn×m×s = {rijk}, where rijk is

the RSS value measured at the ith location, for the jth AP, and in the kth location

sample. For each wireless network a, the regression method fit a function fa(L) = Ra,

with Ra = {riak}. Each function fa is then used to predict RSS values for locations

̂L. If the points in ̂L lie inside the convex hull of L, the estimation is usually called

interpolation, and if they lie outside, it is called extrapolation. Extrapolation methods

(extrapolation functions) are known to be less accurate, and thus more challenging

and less used than the interpolation ones (Talvitie et al. 2015).

The regression methods has been used for reducing the calibration effort in fin-

gerprinting for more than 10 years (Krumm and Platt 2003; Li et al. 2005). Among

the methods found in literature are: linear interpolators (Talvitie et al. 2015), radial

basis interpolators (Krumm and Platt 2003; Ezpeleta et al. 2015), Gaussian Process

regression (Yiu et al. 2017), and Support Vector Regression (SVR) (Hernández et al.

2017). Some studies particularly focused on the spatial relations of measurements

and the spatial characteristics of the environment for regression. They included meth-

ods widely used in spatial analysis like Inverse Distance Weighting (IDW) and Krig-

ing (Li et al. 2005; Liu et al. 2015; Jan et al. 2015), Voronoi Tessellation (Lee and

Han 2012), Sparsity Rank Singular Value Decomposition (SRSVD) (Gu et al. 2016b)
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and other particular heuristics (Bong and Kim 2012). Studies like Zhu et al. (2014)

have also taken into account the time dimension for regression.

In the cited studies, the authors first collect a relatively dense dataset of RSS mea-

surements, and, through elimination strategies, produce new datasets. Their regres-

sion methods are then applied to the new datasets in order to obtain estimated RSS

measurements for the removed collection locations. The regression goodness is usu-

ally evaluated as (1) the difference in RSS values between measurements and estima-

tions and (2) the difference in localization error of some IPS, between using dataset

with a high percentage of removed points and the original dataset for training. The

elimination strategy is an important factor in the results obtained in such evaluations

(Talvitie et al. 2015). The regression performance found in literature varies signifi-

cantly, from discrete but reasonably results of 50% location reduction (Ezpeleta et al.

2015) to astonishing results of 5% locations reduction (Gu et al. 2016b) with very

little RSS or localization error difference.

Most of studies found in literature indicate the percentage of collection locations

(with respect to all target locations) required for their regression methods to provide

proper localization accuracies. However, they do not mention a methodology for

determining the number of collection locations for a given environment (though it

has been shown to be very important (Li et al. 2014)), or how to determine where

those locations should be. An intuitive approach is to choose the amount of collection

points as a function of the target area size and randomly determine their positions in

that area. Some studies have used similar approaches.

In Kanaris et al. (2016), the authors proposed an algorithm that suggested a col-

lection’s sample size given a small preliminary set of measurements. They suggested

the definition of a grid of locations in a target area and randomly choosing locations

in the amount determined by the sample size calculation. Specifically, for the case

of database update, collecting measurements at random locations in a target area is

a common approach (Ali et al. 2017). Indeed, depending on the update frequency,

the collaborative, crowd-sourced or opportunistic approaches can be also considered

strategies of collecting update measurements at random locations.

The elimination strategies used for evaluating the goodness of regression meth-

ods found in the research literature have hinted on possible strategies for determining

the locations for training set collection. The work of Krumm and Platt (2003) pro-

posed an elimination strategy consisting in running a k-means clustering algorithm,

and selecting only the k locations nearest the k cluster centroids. Other studies have

resembled in their proposed elimination strategies the types of collection absences

that may happen in regular collection processes, like random isolated absent points,

zones with higher or lower percentage of elimination (Ezpeleta et al. 2015) or ran-

dom blocks of absent points (Talvitie et al. 2015).

The following section presents the approach we propose to determine the set of

locations where fingerprints for WiFi radio map update are to be taken.
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3 Locations Set Determination for Radio Map Update

As seen in Sect. 2, studies found in literature have hinted possible approaches for

choosing the collection locations. These approaches, however, have some drawbacks

that are experimentally shown in Sect. 4. It is almost intuitive that neither the num-

ber of locations, nor their actual distribution, should be chosen randomly without any

restriction. In addition, a uniformly spaced locations distribution may not take into

account obstacles influencing the WiFi signals propagation. Therefore, a person with

experience in WiFi-based indoor localization generally chooses the amount and dis-

tribution of the collection locations. Regardless of this person expertise, the previous

task is not a trivial one.

This study harnesses the similitudes between (1) choosing a subset of measure-

ment locations for estimating the values at remaining locations through regression

and (2) choosing the placement of sensors for field estimation. The problem of sen-

sor placement, related to sensor selection (activation), is a well-known problem that

has long been addressed for wireless sensor networks. The sensor selection problem

can be stated as choosing a set of k measurements from a set of m possible sensor

measurements, which minimizes the error in some parameters estimation (Joshi and

Boyd 2009). We suggest that the approaches for solving the previous problem can

also be applied to finding the set of k locations from m possible ones, where the WiFi

measurements will be collected so that the WiFi signal intensities for the remaining

locations can be obtained through regression with a small error. What is more, we do

not consider a fixed number of locations, but instead, obtain a compromise between

the location set’s size and the goodness of the regression.

The approaches to deal with the sensor placement/selection problem vary depend-

ing on the usage of the sensor measurements (Rowaihy et al. 2007). Specifically,

some studies have proposed approaches for the case of using the sensor measure-

ments for estimating a field of values (Joshi and Boyd 2009; Ranieri et al. 2014; Roy

et al. 2016). The combinatorial nature of the problem (Joshi and Boyd 2009) makes

it unfeasible to explore the whole solution space. If the total number of locations is

very small, e.g., six, it is feasible to manually determine fine sets of locations where

the measurements are to be taken. However, if a target environment has a (still small)

set of 24 locations, and measurements are to be taken at 12 of those locations, the

number of different possible sets of locations is
(24
12

)
= 2, 704, 156. If the number of

measurement locations is not already decided, the number of possible combinations

rises to 224 = 16, 777, 216.

This paper determines the set of locations in a way simpler than those presented

in Joshi and Boyd (2009), Ranieri et al. (2014), Roy et al. (2016) for sensor place-

ment. Those studies have harnessed some property of the target problem or forced

some form for the solution. We have used an optimization strategy based on genetic

algorithms. Sensor placement optimization has already been addressed using genetic

algorithms (Yao et al. 1993; Macho-Pedroso et al. 2016), even for indoor acoustic

localization (Macho-Pedroso et al. 2016).
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3.1 Genetic Programming for Locations Set Determination

The approach proposed in this study uses a genetic optimization algorithm to find a

set of locations that includes only a small number of locations and the goodness of

the regression obtained using these locations should be similar to the one obtained

using the whole set of possible locations. The explanation presented here for genetic

algorithms, as well as the library used in the experiments, are based on Mitchell

(1998).

The genetic algorithms try to efficiently find solutions to problems that have huge

spaces of candidate solutions. Each candidate solution for a problem is called an indi-

vidual. Commonly, an individual is encoded as a bit string, where each bit represents

the presence (‘1’) or absence (‘0’) of a trait. These algorithms start by considering a

population of random individuals, and iteratively evolves it. The population of each

iteration is called a generation. The following generation is the result of applying

genetic operators on the current generation. The selection operator selects pairs of

individuals whose traits are combined using a crossover operator to produce off-

spring. A fitness value is computed for every individual in a generation and those

with higher fitness values are more likely to be chosen by the selection operator. A

mutation operator is applied to the offspring to produce subtle changes in the result-

ing traits. Some of the new individuals can be randomly discarded, but the population

size is maintained.

In this paper’s proposal, the set of all locations L = {l1,… , ln} from the initial,

dense collection represents the possible traits that each individual may have. The

location set L have associated WiFi RSS measurements D = {rijk}. Assume a func-

tion fmap(A,B) → C so that A is a set of RSS values, B is a set of locations and C is

the set of RSS values in A associated to locations in B. Then, Dlp = fmap(D, {lp}) =

{rpjk} are the RSS measurements associated to location lp. An individual represents

a subset LI of L. The size of the population, as well as the number of generations con-

sidered for population evolution are parameters of the algorithm that are presented in

Sect. 4. We have designed the fitness value calculation of an individual so that larger

subsets and differences between measured and estimated RSS values are penalized.

Specifically, the fitness computation steps are:

1. Fit regressions fa, for every detected access point a, using LI and their associated

measurements fmap(D,LI).
2. Use regressions fa to estimate RSS values E = {r̄ia} for locations of ̂LI = L − LI .
3. Compute the AP-wise and location-wise RSS absolute differences between E and

fmap(D, ̂LI). Let MRD be the maximum value of those differences.

4. The individual’s fitness is (MRD + 2MRDab
tb
)−1, where ab and tb are the number

of ‘1’ bits and the total number of bits, respectively. If for some reason the tar-

get number of locations is already predefined, say k, the individual’s fitness can

become (MRD + 2MRD|ab − k|)−1.

After a given number of generations, the individual with higher fitness value,

called the elite individual, could be chosen as the set of locations where WiFi
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Fig. 1 Locations (bits) frequency. Blue dots represent how often a location has been included in

individuals of generation 200. The blue line represents the frequency threshold

measurements are to be collected. The elite individual represents the set that has

so far achieved the best compromise between a small number of locations and little

degradation of the regression goodness. The genetic algorithm does not guarantee

that the elite individual would be the optimal solution for a given problem, but is a

fair alternative to an exhaustive search given the combinatorial nature of the problem.

This paper’s main goal is not selecting the best locations for making a one-time

regression. The main goal is determining the suitable locations for conducting peri-

odic WiFi radio map updates so that the new RSS measurements help in estimating

RSS values for remaining, target locations. The elite individual may represent a solu-

tion that is over-fitted for the initial measurements. Therefore, we propose to look at

the occurrence frequency of each location in the final population and select only

those with high frequency. We call this set of highest frequency locations the solu-
tion set. Figure 1 shows an example of the location’s frequency for a population of

(200) evaluated sets of locations after 200 iterations. The number of traits, i.e., the

number of locations in the initial, dense collection is 24. The bit frequency repre-

sents how often a location is found in sets of locations. If we chose a high frequency

threshold of 0.9, the solution set would be {1, 2, 3, 18, 19, 21, 22, 23}.

In summary, the steps needed for selecting the locations where the periodic update

measurements are to be collected are:

1. Collect a relatively dense WiFi RSS training database.

2. Use a genetic algorithm, such as the one described in pages eight and nine of

Mitchell (1998), using the fitness function described above in this section, to

determine the locations’ frequency in the population of sets of locations.
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3. Choose as the solution set the locations with frequencies above a certain thresh-

old.

Section 4 also provide a guide on how to use new measurements collected at the

solution set for updating the radio map. We advise applying our approach indepen-

dently for clearly unrelated zones, i.e., zones that belong to different buildings or

different floors.

Besides suggesting a very good placement for the measurement locations, the

proposed approach can be also used for testing the performance of regression meth-

ods. By computing an individual’s fitness as MRD + 2MRDab
tb

, the genetic algorithm

would determine a compromise between a large number of locations and a high RSS

absolute difference. The set resulting from choosing the n highest fitness sets of loca-

tions can be used as a challenging test for evaluating the performance of regression

methods.

4 Experiments

The approach proposed in Sect. 3 was tested using a WiFi RSS database collected in

a university library during ten months (30 days of separation time, approximately).

The database contains training and test sets for each month. Figures 2 and 3 show

the collection locations for the training and test sets, respectively, using colored cir-

cles. The location label for each fingerprint is expressed in local coordinates in a 2D

Fig. 2 Collection locations for the training sets. The colored rectangles represent the bookshelves
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Fig. 3 Collection locations for the test sets. A circle’s color identifies to group to which it belongs:

red are groups 1 and 5; blue is group 2; green is group 3; and violet is group 4

Euclidean space. The collection locations are among bookshelves in the third floor of

the library building. The database is part of a larger effort to gather data for studying

short and long term RSS variations and for developing positioning method robust

to those changes. Twelve fingerprints were collected at each location. The tests sets

were divided into five groups for their collection. Each group had a particular loca-

tion distribution and collection directions. Most of the experiments presented in this

section used only the training sets. The test sets were only used for the evaluation

using the kNN fingerprinting presented at the end of this section.

For the training sets and the groups 1, 2 and 3 of the test sets, the collector (a

trained person) faced the “up” direction when collecting the first six fingerprints of

each point, and the “down” direction when collecting the other six fingerprints. For

groups 4 and 5 of the test sets, the faced directions were “right” and “left” instead of

“up” and “down”, respectively. For data dimensionality reduction, the APs detected

in less than 5% of the fingerprints were removed. The device used for collection was

a Samsung Galaxy S3 smartphone.

Section 3 defines the set determination without establishing any explicit restric-

tion for the regression to use. However, an implicit restriction exists: The regres-

sion method should enable both interpolation and extrapolation, because there may

be target measurement locations lying outside the convex hull of the locations in

the solution set. This implicit restriction is also important because the extrapolation

usage is mandatory for environments that, at collection time, contain areas where

measurements cannot be taken (e.g., because of a meeting in an office).
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As providing recommendations on regression methods for WiFi fingerprinting

was not among the goals of our study, we tested only a few regression methods:

IDW (interpolation and extrapolation), radial basis function interpolators like those

in Ezpeleta et al. (2015), combinations of interpolation (linear, nearest, and natural)

and extrapolation (linear, nearest) as provided by MathWorks® (2017a), and SVR as

provided by MathWorks® (2017b). We chose SVR, using a Radial Basis Function

(RBF) kernel and performing predictor data standardization, as regression method

as it provided the best results regarding RSS absolute differences between RSS mea-

surements and estimations and because it has been successfully used in previous

studies (Hernández et al. 2017). We suggest to perform the regression method eval-

uation for a given environment before making a choice. Guides regarding interpola-

tion and extrapolation can be found in Talvitie et al. (2015).

For evaluating the goodness of each set of locations, we have used a metric defined

as the maximum value of the AP-wise RSS absolute differences between the original

RSS measurements and the estimated ones. We have preferred the maximum differ-

ence over other measures (e.g., the mean) that may mask high RSS differences that

are significant for distance-based techniques like kNN-based fingerprinting.

4.1 Evaluation for the Initial Month

Section 2 hinted on approaches for determining where to collect the RSS measure-

ments to be used for fitting a regression. This subsection shows the evaluation results

of three strategies for determining the collection locations. The strategies, which

were applied to the training set corresponding to first month of our WiFi RSS data-

base, are:

1. Random Sets of Points,

2. Manually-defined Sets of Points,

3. Optimized Set of Points.

The first approach considers differently sized sets of random locations. The sec-

ond approach uses sets manually defined by an expert. The third approach finds a set

of locations that establishes a compromise between the set’s size and the regression

goodness. The following subsections provide more details about each approach and

its evaluation.

4.1.1 Random Sets of Points

This is an intuitive approach for the selection of the collection locations. The algo-

rithm proposed in Kanaris et al. (2016) may allow determining the number of mea-

surement locations. We instead decided to explore several numbers of locations,

ranging from 6 to 18 points, which accounts for 25–75% of the 24 total locations

in the target area, and they represent reasonable effort reductions. Table 1 presents
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Table 1 Minimum and

maximum values of RSS

error metric for sets of

randomly chosen locations

Set Size Metric Min (dBm) Metric Max (dBm)

6 19.13 44.74

8 15.71 43.01

10 12.12 41.35

12 11.18 42.10

14 11.99 35.58

16 10.52 35.22

18 9.56 28.59

the maximum and minimum of the RSS error metric previously defined. The exper-

iment for each amount of points was repeated 200 times.

Table 1 shows two main facts. First, the more points are used for fitting the regres-

sion, the better the estimations are. Second, and more important, the RSS estima-

tion quality heavily depends on the distribution of the randomly chosen locations,

as absolute differences between the maximum and minimum metric values are up to

30.92 dBm.

4.1.2 Manually-Defined Sets of Points

As previously seen, selecting random points creates much uncertainty in the quality

of the RSS estimations. A logical alternative is to manually define the set of loca-

tions. Better choices are done when the extent of the collection locations and the

influence of the building layout and the furniture are taken into account. This sub-

section presents six alternative sets we considered that are likely choices and could

provide fine RSS estimations through regression. The process of determining the

tentative sets of locations is time-consuming, and it is especially cumbersome due

to the large number of alternatives for each set’s size. Table 2 presents the value of

the RSS error metric for each alternative set. The ID of each set indicates its amount

of locations. Figure 4 shows the location distribution of each set.

Table 2 Values for RSS

error metric for manually

defined sets of locations

Set ID Metric (dBm)

6A 21.39

8A 23.45

8B 19.63

12A 23.13

12B 11.90

14A 12.20
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(a) 6A (b) 8A

(c) 8B (d) 12A

(e) 12B (f) 14A

Fig. 4 Manually chosen sets of locations

The results presented in Table 2 reinforce the importance of the distribution of

the collection locations. The estimation quality does not strictly decrease with the

increase of the number of locations used for regression fit, as seen when comparing

the set 6A with set 8A, set 8B with set 12A, and set 12B with set 14A. The locations

distribution of each set, as shown in Fig. 4, sheds some light on the previous fact.

The convex hulls of sets 6A and 8B include more of the target area than those of

sets 8A and 12A, respectively. Nevertheless, the convex hulls of sets 12B and 14A

are the same, and the set 12B provide better estimations than set 14A despite having
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a smaller number of locations. The above facts lead to conclude that even a well-

designed set of locations may not be the best choice. Additionally, a set of locations

that is optimal for a given environment, may not be optimal for another environment,

a fact that we leave unproven because is beyond the focus of this paper.

4.1.3 Optimized Set of Points

As described in Sect. 3, with an optimization strategy based on a genetic algorithm

it is possible to search for fine locations for fitting the regression. Specifically, the

genetic algorithm implementation provided in Burjorjee (2009), which is in turn

based on Mitchell (1998) was used for the experiments. We defined a population

size of 200 individuals, used the fitness function proposed in Sect. 3, and run the

algorithm for 100 generations. After testing several values, the numbers of 200 and

100 for population size and algorithm generations were the ones that provided higher

stability (reproducibility) in the outputted solution. The obtained elite individual

(best set of locations found for fitting a regression) and the solution set (described in

Sect. 3) using a higher frequency threshold of 0.9, are depicted in Fig. 5. The value

of the RSS error metric for the elite set (11 locations) was 8.8453 dBm, which is

lower than any of the values obtained using the previous two strategies. The metric

value for the solution set (eight locations) is 11.18 dBm, which is still lower than

most of the values obtained using the previous two strategies.

Figure 5 shows two important facts. First, all target locations are contained in the

convex hull of both optimized sets, which avoids the usage of extrapolation. Second,

and more important, the location distributions of the optimized sets do not resemble

those of the strategies explored in the Sect. 4.1.2, nor they are intuitive. Therefore,

the locations chosen for fitting a regression should not be random, and determin-

ing a small set of locations that provides good estimations when used for fitting a

regression, is not a trivial problem.

(a) Locations represented by the elite in-
dividual

(b) Solution set (locations with higher
frequency)

Fig. 5 Set of locations obtained through optimization using a genetic algorithm
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The following subsection explores the usage of the solution set for WiFi radio

map update, following the procedure presented in Sect. 3.

4.2 Usage of the Solution Set for RSS Radio Map Update

The Sect. 4.1.3 presented the locations that our approach suggested for conducting

the periodic updates to the WiFi radio map. This section presents the results of exper-

iments that explored the goodness of those updates along 9 months (month 2–10) in

terms of RSS difference between estimations and real measurements, and in terms

of the accuracy of a fingerprinting-based IPS.

Regarding RSS differences between estimations and real measurements, the

experiments tried three sets of locations and three RSS difference metrics. Table 3

shows the results of these experiments. Each table header indicates the usage of a

particular set of locations and a specific RSS difference metric.

To explore the suitability of a set of locations for each month, a regression was fit

using their associated measurements of the month training set. Besides the solution

set (GA), sets 8A and 8B were also used for regression fitting. The sets 8A and 8B,

previously introduced in Sect. 4.1.2, are now used for baseline comparisons. As RSS

difference metrics, the experiments used:

1. MRD: The MRD value introduced in Sect. 3.1 for the fitness function definition.

2. Mean: Its value is computed in a way similar to MRD, but the mean value is used

instead of the maximum. This metric is included because it is frequently used in

the literature for evaluation of WiFi RSS regression methods.

3. MeanP: It is calculated as: Compute the AP-wise RSS absolute differences

between RSS measurements and estimations. Compute per each location the

mean of those differences. Take the maximum of those mean values. This metric

is included because indicates how much the RSS difference may affect a RSS

distance-based method like kNN.

Table 3 Values for RSS differences (dBm) according to metrics MRD, Mean and MeanP for sets

8A, 8B and GA

Month MRD8A MRD8B MRDGA Mean8A Mean8B MeanGA MeanP8A MeanP8B MeanPGA

02 21.1 21.2 19.4 1.8 1.5 1.7 5.2 3.7 3.8

03 19.9 20.8 16.9 1.6 1.4 1.5 5.3 3.7 3.0

04 20.5 21.0 18.7 1.7 1.5 1.5 4.6 3.8 3.0

05 19.7 23.8 17.2 1.5 1.3 1.3 4.9 4.6 2.9

06 23.9 21.8 21.9 1.6 1.4 1.5 4.7 3.6 3.7

07 21.5 24.9 26.6 1.5 1.4 1.5 4.8 4.2 3.3

08 26.5 30.0 18.9 1.6 1.4 1.4 5.0 4.3 3.5

09 22.9 25.4 20.2 1.5 1.3 1.2 4.5 3.4 3.3

10 23.7 22.0 18.0 1.8 1.6 1.6 5.3 4.3 4.1
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The results presented in Table 3 indicate that the solution set is a better choice than

the other two sets as a set of collection locations for periodical updates. Regarding the

MRD metric, the solution set provides the best result for most months. It is noticeable

that for month number seven, the value for the solution set is 5.1 dBm worse than

the one for the set 8A. Some insights on that behavior will be later provided when

analyzing the set effects on fingerprinting-based IPS accuracy. Regarding the Mean

metric, the solution set is consistently better than the set 8A, and slightly worse than

the set 8B for some months. As for the MeanP metric, the solution set is much better

than the 8A set. In comparison with the set 8B, the solution set is notably better for

five of the months, and only slightly worse for two of them.

The experiments also explored how the localization accuracy of an IPS is affected

by the usage of the proposed update approach, i.e., by taking the training RSS mea-

surements of each month only at the solution set and using regression to estimate

the RSS values for the remaining locations. As IPS, we tested a kNN fingerprinting

approach. Given a training set of fingerprints with known location labels, a query

fingerprint, and two parameters specified by the value of k and a distance metric on

the fingerprint space, the kNN method finds the k fingerprints in the training set that

are closest to the query fingerprint. The location label is estimated as the centroid of

the location labels of the selected k closest fingerprints.

To measure the accuracy of an IPS, a test set of query fingerprints is usually used.

The location labels are also known for the test set fingerprints, so that, for each fin-

gerprint, the location estimation provided by the IPS and its original location label

are used to compute a positioning error distance. In this paper, the positioning dis-

tance has been calculated using the Euclidean distance and the localization accuracy

has been explored using the 75 percentile of the computed distances for test set.

The tested kNN used the RSS Euclidean distance as fingerprint distance metric.

The k parameter value was experimentally determined using the training and test sets

of the first month of the WiFi RSS database. Figure 6 shows the resulting localization

accuracies. The value of k that provides the best metric value is nine, and it is the

one used for kNN in the remaining experiments. This value may appear large, but it

is a reasonable value given that 12 fingerprints were taken at each location and no

aggregation operation was performed for fingerprints with the same location label.

For comparisons, the experiments included an evaluation of the radio map update

at each month using all the training measurements collected at that month. Two

updates strategies were tested: Replacement and addition. With the replacement

strategy, all training fingerprints collected at one month replaced all fingerprints from

the previous month in the WiFi radio map. With the addition strategy, the fingerprints

of each month were added without any replacement or deletion from the previous

months’ fingerprints. The kNN method was used to estimate, for each month, the

locations associated to the fingerprints of the test set of that month. Figure 7 shows

the behavior of each update strategy along the time.

The strategy of addition provides values for the localization error metric that are

smaller and smoother than those provided by the replacement strategy. The metric

values for the strategy of addition ranges from 3.25 to 2.84 m. For the replacement

strategy, however, the localization error metric ranges from 4.10 to 3.14 m. The
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Fig. 6 75 percentile of positioning error using kNN for the first month

Fig. 7 Comparison of the strategies of replacement (red) and addition (blue). Measurements for

all locations are available

months 6 and 7 have the highest metric values, which may indicate that the train-

ing values for those months were not as good (representative) as they were for other

months.

The evaluation of using the solution set for radio map update was conducted as

follows. For each month, the solution set was used to fit a regression, and the RSS

values were estimated for the rest of locations. However, the estimation provides one

fingerprint per location, while the training and test sets in the database contain 12

fingerprints per location. Additionally, the k value determined above for the kNN fin-

gerprinting is the best under the assumption that there are 12 fingerprints per point.

Therefore, we decided to create 12 fingerprints per location using the one finger-

print per location obtained through regression estimation and adding a random value.
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Fig. 8 Comparison of the strategies of replacement (red) and addition (blue). Measurements are

available only for the solution set

In the training set from first month, the AP-wise standard deviations values were less

than 6 dBm in 80% of cases. The added random value is then uniformly chosen in

the interval [−6;6]. The random value addition is specific to the evaluation presented

in this study and will not be needed for an IPS radio map update, for which it may be

desirable to collect only one fingerprint per point. The fingerprints newly estimated

for each month were considered for radio map update following the strategies of

replacement and addition described above. Figure 8 presents the localization accu-

racy metric values for both strategies.

The results obtained using the strategy of addition and the RSS estimations from

the solution set are very similar to those using that strategy and the measurements

available for all locations. The localization error metric for the strategy of addition

ranges from 3.25 to 2.81 m, which is the same interval obtained when using the RSS

measurements for all locations. The strategy of replacement showed larger metric

values, with higher variations, than the addition strategy. When compared to using

the same strategy and the measurements from all locations, the usage of the estima-

tions from the solution set caused larger variability, with the metric values ranging

from 4.45 to 3.06 m, having a steeper variation for month 6.

The above results suggest that the usage of the solution set as collection locations

for WiFi radio map update is a reasonable choice for the tested environment. The

approach of determining the solution set is automatic, so that the specialized and

cumbersome task of manually determining a proper set of collections locations is

avoided. The MeanP value, i.e., the maximum of the location-wise mean RSS differ-

ences between estimations and measurements, was lower than the detected AP-wise

standard deviation for all months. Additionally, the accuracy of the tested kNN fin-

gerprinting had a similar behavior when using measurements from all location and

estimations to when using the estimations obtained from the measurements of loca-

tions in the solution set.


