Marcel Klinger

Funktionales Denken beim Übergang von der Funktionenlehre zur Analysis

Entwicklung eines Testinstruments und empirische Befunde aus der gymnasialen Oberstufe

Essener Beiträge zur Mathematikdidaktik

Reihe herausgegeben von

- B. Barzel, Essen, Deutschland
- A. Büchter, Essen, Deutschland
- B. Rott, Essen, Deutschland
- F. Schacht, Essen, Deutschland
- P. Scherer, Essen, Deutschland

In der Reihe werden ausgewählte exzellente Forschungsarbeiten publiziert, die das breite Spektrum der mathematikdidaktischen Forschung am Hochschulstandort Essen repräsentieren. Dieses umfasst qualitative und quantitative empirische Studien zum Lehren und Lernen von Mathematik vom Elementarbereich über die verschiedenen Schulstufen bis zur Hochschule sowie zur Lehrerbildung. Die publizierten Arbeiten sind Beiträge zur mathematikdidaktischen Grundlagenund Entwicklungsforschung und zum Teil interdisziplinär angelegt. In der Reihe erscheinen neben Qualifikationsarbeiten auch Publikationen aus weiteren Essener Forschungsprojekten.

Weitere Bände in der Reihe http://www.springer.com/series/13887

Marcel Klinger

Funktionales Denken beim Übergang von der Funktionenlehre zur Analysis

Entwicklung eines Testinstruments und empirische Befunde aus der gymnasialen Oberstufe

Mit einem Geleitwort von Prof. Dr. Bärbel Barzel

Marcel Klinger Essen, Deutschland

Von der Fakultät für Mathematik der Universität Duisburg-Essen genehmigte Dissertation zur Erlangung des Doktorgrades "Dr. rer. nat."

Datum der mündlichen Prüfung: 7. September 2017

Gutachterinnen: Prof. Dr. Bärbel Barzel, Prof. Dr. Bettina Rösken-Winter

ISSN 2509-3169 ISSN 2509-3177 (electronic) Essener Beiträge zur Mathematikdidaktik ISBN 978-3-658-20359-7 ISBN 978-3-658-20360-3 (eBook) https://doi.org/10.1007/978-3-658-20360-3

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Spektrum

© Springer Fachmedien Wiesbaden GmbH 2018

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Spektrum ist Teil von Springer Nature Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Danksagung

In der vorliegenden Dissertationsschrift findet mein seit Mai 2014 andauerndes Promotionsprojekt seinen Höhepunkt. In dieser Zeit habe ich viel lernen dürfen und einiges erreicht. Rückblickend betrachtet, handelt es sich bei einer Promotion sicherlich um eines der umfangreichsten Projekte, das man überhaupt innerhalb des professionellen Lebens durchführen kann.

Im Laufe der Zeit wurde ich hierbei von vielen Menschen unterstützt. Diese Unterstützung ist einerseits von professionell-beruflicher Natur. Andererseits zeigt sie sich aber auch darin, dass geliebte Menschen mein Promotionsprojekt als umfangreichen Teil meines Lebens akzeptiert, toleriert und entsprechend unterstützt haben.

Von diesen Menschen sind einige besonders hervorzuheben, da ihr Handeln in wesentlichen Zügen zum Gelingen meines Promotionsprojektes und der damit verbundenen Anfertigung dieser Dissertationsschrift beigetragen hat.

Hierbei ist allen voran meine Mentorin Prof. Dr. Bärbel Barzel zu nennen, die von Beginn an ihr Vertrauen in mich gesetzt hat und mich stets tatkräftigt unterstütze. Besonders von der hohen Verantwortung und den damit verbundenen Freiheiten, die es benötigt, eine solche Dissertationsschrift anzufertigen, habe ich maßgeblich profitiert.

Als Zweitgutachterin stand mir ebenfalls Prof. Dr. Bettina Rösken-Winter beratend zur Seite, so dass ich auch ihr zu besonderem Dank verpflichtet bin. Mit ihren Ideen und Anregungen war auch sie stets ein wichtiger Bestandteil des Promotionsprojektes.

Hervorheben möchte ich auch Prof. Dr. Andreas Büchter, der sich stets Zeit nahm und immer ein offenes Ohr hatte, so dass auch ihm besonderer Dank gebührt.

Insgesamt erfuhr ich breite Unterstützung innerhalb der Arbeitsgruppe aber auch durch die Mathematikdikdatikerinnen und Mathematikdidaktiker der Universität Duisburg-Essen insgesamt. So waren Gespräche im VI Danksagung

Büro, auf dem Flur oder innerhalb diverser Kolloquien stets offen, konstruktiv und somit letztlich gewinnbringend. Insbesondere während der Durchführung und Auswertung der Erhebungsdaten wurde ich von zahlreichen Kolleginnen und Kollegen auch logistisch unterstützt. Vor allem aber sind Nora Henze, Lara Meder und Anna Schulz zu nennen, die als studentische Hilfskräfte exzellente Arbeit leisteten. An dieser Stelle sollen aber auch Heike Steinbrink und (nochmals) Lara Meder genannt werden, die ihre Staatsarbeiten im Umfeld meines Promotionsprojektes ablegten und somit auch einen wichtigen Teil zum Gesamtprojekt beitrugen.

Danken möchte ich aber auch Can Gürer, der mich insbesondere hinsichtlich statistischer Themen – besonders rund um das Rasch-Modell – unterstützt hat und stets für eine entsprechende Diskussion zur Verfügung stand.

Mein Dank gilt aber auch Dr. Marc Bosse und Martina Hoffmann, die gerade in den ersten Tagen innerhalb meines neuen Jobs im Deutschen Zentrum für Lehrerbildung Mathematik (DZLM) wichtige Ansprechpartner waren und auch weiterhin blieben.

Maßgebliche Bereicherung fand meine Zeit als Doktorand darüber hinaus in einer weiteren Person durch die enge Verbindung, die unsere Promotionsprojekte zueinander hatten: Daniel Thurm. Die gemeinsame Arbeit habe ich stets sehr genossen und letzten Endes einen guten Freund gewonnen.

Ich bin aber auch meiner Familie und Freunden zu Dank verpflichtet, die in den letzten Jahren häufig auf mich verzichten mussten.

Hier möchte ich meine Eltern Susanne und Jörg Klinger besonders hervorheben, die von den Anfängen meiner Schulzeit an bis hin zur Promotion stets hinter mir standen und mir so ermöglichten, mich zu dem Menschen zu bilden, der ich heute bin.

Die größte und wichtigste Unterstützerin meiner Promotion war aber meine Freundin, Lebensgefährtin, Verlobte und inzwischen Frau Annika Klinger, die häufig auf mich verzichten musste, jedoch stets Verständnis aufbrachte. Zusammen sind wir einen weiten Weg gegangen.

Geleitwort

Funktionales Denken gehört seit der Meraner Reform (1905) als zentrales Thema zum festen Kanon der Schulmathematik in der Sekundarstufe I und schafft wichtige Voraussetzungen für spätere Themen, z.B. den Analysisunterricht in der Oberstufe. Zum funktionalen Denken gehört als Kernkompetenz der flexible Umgang mit funktionalen Beziehungen in verschiedenen Darstellungen und inner- wie außermathematischen Kontexten. Doch wie ist es um diese Kompetenz bei Schülerinnen und Schülern bestellt? Von welchen Voraussetzungen kann der Analysisunterricht in der Oberstufe ausgehen?

Dieser Frage hat sich Marcel Klinger mit seiner Arbeit intensiv gewidmet. Er hat zwei Tests entwickelt, wovon einer für den Einsatz zu Beginn der Oberstufe und einer nach der Einführung der Differentialrechnung konzipiert wurde. Mit beiden Tests liefert Herr Klinger hilfreiche Diagnosewerkzeuge, die sowohl für Wissenschaft als auch Schulpraxis hilfreiche Instrumente darstellen, da sie Informationen über die kognitiven Voraussetzungen der Schülerinnen und Schüler liefern. Für die Schule ist dies dienlich als Grundlage zur gezielten individuellen Förderung und zur Weiterentwicklung der Lehre.

Das Besondere an den von Herrn Klinger entwickelten Tests ist die gute fachdidaktische Durchdringung der einzelnen Aufgaben wie des Gesamt-Settings. Er verbindet die Erkenntnisse und Empfehlungen der spezifisch deutschen Tradition der Stoffdidaktik mit anglo-amerikanischen Ansätzen (z.B. die Theorie von Concept Image und Concept Definition oder das Procept als Verknüpfung von Process und Concept) in eloquenter Weise. Das entstandene Kompetenzmodell ist auch weit über die Arbeit hinaus hilfreich bei der Konzeption wie Analyse von Aufgaben im Themenbereich.

Mit den Tests werden vielfältige kognitive Aktivitäten gefordert, wodurch die Aufgaben hohen diagnostischen Wert haben und sich deutlich von kalkülorientierten Testbatterien absetzen, die gerade für die Oberstufe und den Übergang von der Schule zur Hochschule häufig noch üblich

VIII Geleitwort

sind. Damit setzt Herr Klinger einen guten Standard, die Problematik fachlicher Lücken in diesem Themenbereich fachdidaktisch fundiert anzugehen und neu zu denken. Die Erkenntnisse des Testeinsatzes mit über 3000 Schülerinnen und Schüler in Nordrhein-Westfalen geben bereits wichtige Hinweise auf Problemstellen im Verstehen und im Umgang mit Funktionen wie zum Beispiel Übergeneralisierungen und Gender-Unterschiede.

Die Arbeit von Herrn Klinger ist entstanden im Rahmen des Deutschen Zentrums für Lehrerbildung Mathematik (DZLM), konkret als Rahmung eines Fortbildungskurses für Oberstufenlehrkräfte zur sinnvollen Integration digitaler Werkzeuge. Die ersten Befunde mit Impulsen zur Gestaltung von Aufgaben und Unterricht wurden bereits in diese Fortbildungsreihe integriert und werden auch zukünftig Bestandteil weiterer Fortbildungen sein.

Mit seiner Arbeit leistet Herr Klinger sowohl für die Schulpraxis als auch für die fachdidaktische Forschung einen wichtigen, innovativen Beitrag, da er wegweisende Standards setzt für eine fachdidaktisch fundierte Entwicklung quantitativer Tests im Bereich der Oberstufenmathematik.

Essen im Oktober 2017

Prof. Dr. Bärbel Barzel

Kurzdarstellung

Die vorliegende Arbeit stellt die Konzeption, Entwicklung und Durchführung eines Testinstruments im Bereich des Funktionalen Denkens dar. Das Instrument besteht aus zwei Einzeltests, welche speziell konzipiert sind, um zu Beginn und gegen Ende der Einführungsphase der gymnasialen Oberstufe eingesetzt zu werden. Die inhaltliche Fokussierung der Tests zielt auf die Erhebung der Schülerleistung beim Übergang von der Funktionenlehre der Sekundarstufe I zur Analysis der Oberstufe ab.

Hierbei steht im Mittelpunkt, ob seitens der Lernenden Verständnis der Inhalte und ihrer Zusammenhänge erworben werden konnte. Neben der literaturgeleiteten Klärung der Begriffe des konzeptuellen und prozeduralen Wissens wird hierzu die Relevanz unterschiedlicher Repräsentationsformen und entsprechender Wechsel zwischen ihnen speziell für die Mathematik aufgezeigt. Darüber hinaus wird auf die in deutscher Tradition stehende Grundvorstellungstheorie sowie vergleichbare angloamerikanisch geprägte Varianten eingegangen. Weiterhin werden die genannten Theorieelemente für die Inhaltsbereiche der Funktionenlehre und der frühen Analysis konkretisiert, um diese so für die Testkonstruktion nutzbar zu machen und den genannten Verständnisbegriff zu operationalisieren.

Weiterhin werden testtheoretisch-methodische Elemente, wie das eindimensionale dichotome Rasch-Modell, erläutert. Darüber hinaus wird auf das häufig innerhalb mathematischer Leistungstests auftretende Phänomen geschlechtsspezifischer Effekte zu Gunsten der männlichen Probanden eingegangen. Die Konzeption des Testinstruments orientiert sich schließlich an einem im Rahmen der Arbeit entwickelten Kompetenzstrukturmodell, das wiederum auf den vorgestellten Theoriefacetten fußt.

Neben der Entwicklung des genannten Testinstruments und der Sicherung und Erörterung seiner Qualität, verfolgt die Arbeit das Ziel, den Stand der Fähigkeiten der Schülerinnen und Schüler in der Einführungsphase umfangreich zu beschreiben. Weiterhin soll geklärt werden, welche

X Kurzdarstellung

individuellen Leistungsprofile sich innerhalb der besagten Inhaltsbereiche ausmachen lassen und wie stark die festgestellten Fähigkeiten und Leistungsprofile durch das Geschlecht der Probanden determiniert werden.

Anhand einer großen Feldtestung mit über 3000 Schülerinnen und Schülern in Nordrhein-Westfalen finden die entwickelten Tests daher Anwendung. Die so gewonnenen Daten lassen sich mit dem eindimensionalen dichotomen Rasch-Modell, aber auch dem Modell von Birnbaum skalieren. Um vor allem einen fachdidaktisch-gehaltvollen Blick auf die Leistungen der Lernenden zu werfen, wird jedes verwendete Item einer eingehenden Analyse unterzogen, die neben theoretischen Grundlagen auch auf den gewonnenen empirischen Daten fußt. Im Rahmen weiterer Analysen werden u.a. sich individuell ergebende Bearbeitungsprofile mittels Latente-Klassen-Analyse herausgearbeitet und die Leistungsdaten bezüglich geschlechtsspezifischer Effekte untersucht.

Insgesamt lassen die gewonnenen Daten einen breiten und vielseitigen Blick auf die Leistungen der Schülerinnen und Schüler zu Beginn und gegen Ende der Einführungsphase zu. Es zeigt sich u.a., dass Schülerinnen und Schüler unterschiedliche mathematische Aktivitäten häufig nicht hinreichend vernetzen und sowohl benachbarte Themenkomplexe als auch unterschiedliche Darstellungsformen nicht gewinnbringend miteinander in Verbindung bringen. Weiterhin stellen sich auf nahezu allen Ebenen der Datenanalyse deutliche Effekte zu Gunsten der männlichen Probanden ein, die auf eine teils beachtliche Bevorteilung von Jungen gegenüber Mädchen schließen lassen.

Inhaltsverzeichnis

Da	anksa	gung			V
G	eleitw	ort			VII
Κι	urzda	rstellu	ng		IX
Αl	bbildı	ungsve	rzeichnis	Χ	(VII
		nverzei		-	XXI
Ι	Einle	eitung			1
1	Einl	eitung			3
	1.1	Hinte	rgrund zur Entstehung dieser Arbeit		5
	1.2	Notw	rendigkeit eines neuen Testinstruments		6
	1.3	Glied	erung der Arbeit		7
Π	The	oretisc	he Grundlagen		11
2	Rah	menthe	eorien		13
	2.1	Konz	eptuelles Wissen		13
		2.1.1	Der kognitionspsychologische Standpunkt		15
		2.1.2	Zur Definition konzeptuellen und prozedurale	n	
			Wissens		18
		2.1.3	Weitere Eigenschaften der Begriffe		21
		2.1.4	Konkretisierung für die Mathematikdidaktik		23
	2.2	Reprä	isentationen		25
		2.2.1	Das Konzept "Repräsentation"		26
		2.2.2	Repräsentationswechsel: Perspektive schafft Tiefe		29
	2.3	Grun	dvorstellungen und Concept Image		33
		2.3.1	Grundvorstellungen		34
		2.3.2	Concept Image und Concept Definition		37
		2.3.3	Zusammenhang beider Theorien		40
3	Fun	ktioner	nlehre und Funktionales Denken		43
	3.1	Histo	rische Entwicklung des Funktionsbegriffs		44
	3.2	Zwisc	chen Kinematik und Statik		48

XII Inhaltsverzeichnis

		3.2.1	Meraner Reform von 1905	48
		3.2.2	Neue Mathematik ab 1970	5C
	3.3		<u> </u>	51
	3.4			59
	3.5	Funkt	ionen und ihre Repräsentationen	60
		3.5.1	Repräsentationsformen	61
		3.5.2	Repräsentationswechsel	66
		3.5.3	Zusammenhang zu Wissensarten	71
	3.6	-		77
	3.7	Ausge		79
		3.7.1	1	81
		3.7.2	Illusion of Linearity	85
4	Von			91
	4.1	Die A	nalysis und der Ableitungsbegriff	93
		4.1.1		93
		4.1.2	Fachliche Charakterisierung	95
		4.1.3	Grundvorstellungen zum Ableitungsbegriff	96
		4.1.4		99
		4.1.5	Die Gefahr einer Überbetonung des Kalküls 10	03
	4.2	Infinit	esimales Denken	05
		4.2.1	Unendlichkeit und das Grenzwertkonzept 10	07
		4.2.2	Propädeutischer Grenzwertbegriff	11
		4.2.3	Infinitesimales Denken im Analysisunterricht 1	14
		4.2.4	Zusammenhang zum Funktionalen Denken 1	16
	4.3	Funkt	ionales Denken in der Analysis 13	19
		4.3.1	Von Parametern zu Transformationen	20
		4.3.2	Objektaspekt und Object Concept	24
		4.3.3	Differentiation und Funktionales Denken	27
5	Mat			33
	5.1	Mögli	che Testformate	34
	5.2	Allger	meine Testgütekriterien	35
	5.3	Rasch	-Modell	42
		5.3.1	Ziel von Rasch-Modellen	43
		5.3.2	Das eindimensionale dichotome Rasch-Modell 12	44
		5.3.3	Eigenschaften des Rasch-Modells	46

Inhaltsverzeichnis XIII

			5.3.3.1	Suffiziente Statistiken	146
			5.3.3.2	Lokale stochastische Unabhängigkeit	147
			5.3.3.3	Spezifische Objektivität	148
		5.3.4	Paramet	terschätzung	151
		5.3.5	Umgang	g mit fehlenden Daten	152
		5.3.6	Differen	tial Item Functioning	155
		5.3.7	Rasch-H	Iomogenität und Fit-Statistiken	156
		5.3.8	Zur Eine	dimensionalität von Mathematikleistung	159
	5.4	Geschl	lechtsspe	zifische Effekte	161
		5.4.1	Kritik h	insichtlich methodischer Facetten	161
		5.4.2	Effektstä	ärke geschlechtsspezifischer Differenzen	162
		5.4.3	Domäne	enspezifität der Differenzen	168
		5.4.4	Möglich	ue Ursachen der Differenzen	170
III	Em	pirisch	e Untersi	ıchung	173
6	Frag	estellur	ng		175
	6.1	Zwiscl	henfazit		175
	6.2	Forsch	ungsfrag	gen	177
		6.2.1		eine Forschungsfragen	
		6.2.2	Instrum	entbezogene Forschungsfragen	178
7	Teste	entwick	lung und	d Pilotierung	181
	7.1	Inhaltl	icher Fol	kus und curriculare Anbindung	181
	7.2			kturmodell zur Itementwicklung	184
	7.3	Wesen	tliche Ge	staltungsentscheidungen	189
	7.4	Pilotie	rungspha	asen und Itemauswahl	192
		7.4.1	Ergebni	sse der Pilotierungen	193
		7.4.2	Verlauf	einer Itemkonstruktion	198
		7.4.3	Ausschl	uss eines Items	202
		7.4.4	Zusamn	nenstellung der Testhefte	204
8	Hau	pterheb	oung und	Datenanalyse	207
	8.1	Durch	führung	und Stichprobe	207
	8.2		_	ng	
		8.2.1	Modellg	geltungstests	221
			8.2.1.1	Grafische Modellkontrolle	223
			8.2.1.2	Likelihood-Ratio-Test	228

XIV Inhaltsverzeichnis

		8.2.1.3	Wald-Test	230
	8.2.2	Alterna	tiven zum Rasch-Modell	234
8.3	Disku	ssion der	Einzelitems	240
	8.3.1	Aufgab	en zu Situationen und Funktionen (erster Test)	2 43
		8.3.1.1	Schwimmbecken (N1FQ/R)	243
		8.3.1.2	Kegelfüllung (J9SD/E)	246
		8.3.1.3	Weihnachtsmann (H7ZD)	251
		8.3.1.4	Rennstrecke (Q ₃ WD)	256
		8.3.1.5	Skifahrer (I6JG)	261
		8.3.1.6	Dateidownload (G6UH/I)	264
		8.3.1.7	Kugelstoßen (P5CX)	267
		8.3.1.8	Müngstener Brücke (F7GH)	271
		8.3.1.9	Grundstücksfläche (K8GF)	275
	8.3.2	Innerma	athematische Aufgaben (erster Test)	280
		8.3.2.1	Koordinatensystem (A5CV/W)	280
		8.3.2.2	Scheitelpunkt (B ₃ XY/Z)	286
		8.3.2.3	Verschobene Funktion I (C4XF)	292
		8.3.2.4	Parabelgleichung (L4MB)	295
		8.3.2.5	Parabelquiz (R4TG)	301
	8.3.3	Aufgab	en zum Differenzieren (zweiter Test)	304
		8.3.3.1	Ableitungskalkül (H4AB)	304
		8.3.3.2	Verschobene Ableitung (X4TP)	308
		8.3.3.3	Flugzeug (Y2VK)	313
		8.3.3.4	Funktionenlupe (W7CK)	320
	8.3.4	Aufgab	en zum graphischen Differenzieren (zweiter	
		Test) .		326
		8.3.4.1		326
		8.3.4.2	Graphische Ableitung II (U ₃ PT)	331
		8.3.4.3		334
		8.3.4.4	Vorzeichen der Ableitung (Z7PC)	337
	8.3.5	Aufgab	en zu Transformationen (zweiter Test)	343
		8.3.5.1	Verschobene Funktion II (M8PL)	343
		8.3.5.2		347
		8.3.5.3	Parabelöffnung / Zwei Nullstellen (D6LG)	352
	8.3.6	Zusamr	menfassung	359

Inhaltsverzeichnis XV

		8.3.7	Ausschluss von Items und Wahl des Modells	375
	8.4	Verbin	dung beider Tests mittels Ankeritems	379
		8.4.1	Gemeinsame Modellschätzung	382
		8.4.2	Fähigkeitsveränderungen der Probanden	385
	8.5	Geschl	lechtsspezifische Effekte	388
		8.5.1	Vergleich auf Testebene	388
		8.5.2	Vergleich hinsichtlich Schulform	391
		8.5.3	Vergleich auf Itemebene	393
	8.6	Latent	e-Klassen-Analyse	397
		8.6.1	Bestimmung der Anzahl latenter Klassen	398
		8.6.2	Begutachtung der Modellgüte	400
		8.6.3	Durchführung der Analyse	402
		8.6.4	Interpretation der Analyse	409
	8.7	Absch	ließende Beurteilung der Testgüte	412
		8.7.1	Zur Objektivität	412
		8.7.2	Zur Reliabilität	413
		8.7.3	Zur Validität	416
		8.7.4	Zu den Nebengütekriterien	420
IV	Sch	luss		423
9	Fazit	t		425
	9.1	Beanty	vortung der Forschungsfragen	425
		9.1.1	Allgemeine Forschungsfragen	425
		9.1.2	Instrumentbezogene Forschungsfragen	433
	9.2	Praxis	bezug der Arbeit	440
		9.2.1	Unterrichtliche Konsequenzen	440
		9.2.2	Lehrerfortbildungen zur Veränderung von Unterricht	444
	9.3	Reflex	ion und Ausblick	445
V	Anh	ang		449
10	Verw	vendete	Materialien und Software	451
	10.1	Testhe	fte	451
		10.1.1	Erster Test	451
		10.1.2	Zweiter Test	451
	10.2	Handr	reichung für Lehrkräfte	451

XVI Inhaltsverzeichnis

10.3	Verwe	ndete So	ftware									451
	10.3.1	ACER C	ConQuest									451
	10.3.2	Mplus										452
	10.3.3	$R\ \dots$										452
		10.3.3.1	Package	eRm								452
		10.3.3.2	Package	Wrig	htN	lap						452
	10.3.4	Entwick	elte Softw	vare .								452
Literatu	rverzei	chnis										457

Abbildungsverzeichnis

Abb. 3.5.1	Darstellungsformen einer Funktion 61
Abb. 3.6.1	Beispiel einer qualitativen Funktion
Abb. 3.7.1	Geschwindigkeits-Zeit-Diagramm eines Rennwagens . 82
Abb. 3.7.2	Mögliche Formen einer Rennstrecke 83
Abb. 3.7.3	Querschnitt eines Hügels mit Radfahrer 84
Abb. 3.7.4	Weihnachtsmann sowie dreifache Vergrößerung 89
Abb. 4.2.1	Zusammenhang Funktionalen und Infinitesimalen
	Denkens
Abb. 4.2.2	Alternativer Zusammenhang Funktionalen und Infini-
	tesimalen Denkens
Abb. 4.3.2	Funktionsebenen- und Aspektwechsel 129
Abb. 5.3.1	Item Characteristic Curve
Abb. 5.3.2	Item Characteristic Curve zweier Items 149
Abb. 7.2.1	Aufgabenklassifikationsmodell zur Testentwicklung 185
Abb. 7.2.2	Konkretisierung der Ebene "Differenzierte Funktion". 187
Abb. 7.4.3	Unterschiedlich skalierte Koordinatenachsen in TI-
	Nspire
Abb. 7.4.4	Ausgeschlossene Aufgabe A4CV 200
Abb. 7.4.5	Aufgenomme Aufgabe A5CV 201
Abb. 7.4.6	Ausgeschlossene Aufgabe T7BG 203
Abb. 8.1.1	Zusammensetzung der gezogenen Stichprobe nach
	Schulform
Abb. 8.2.4	Wright Map (erster Test)
Abb. 8.2.5	Wright Map (zweiter Test)
Abb. 8.2.6	Grafische Modellkontrolle für Kriterium "Median" 225
Abb. 8.2.7	Grafische Modellkontrolle für Kriterium "Zufall" 226
Abb. 8.2.8	Grafische Modellkontrolle für Kriterium "Geschlecht" 227
Abb. 8.3.1	Aufgabe "Schwimmbecken" (N1FQ) 243
Abb. 8.3.3	Aufgabe "Kegelfüllung" (J9SD) 247
Abh 825	Aufgahe Weihnachtsmann" (H7ZD)

Abb. 8.3.6	Weihnachtsmann mit Rahmen	255
Abb. 8.3.7	Aufgabe "Rennstrecke" (Q ₃ WD)	257
Abb. 8.3.9	Aufgabe "Skifahrer (I6JG)	261
Abb. 8.3.11	Aufgabe "Dateidownload" (G6UH)	264
Abb. 8.3.13	Aufgabe "Kugelstoßen" (P5CX)	268
Abb. 8.3.15	Aufgabe "Müngstener Brücke" (F7GH)	272
Abb. 8.3.17	Aufgabe "Grundstücksfläche" (K8GF)	276
Abb. 8.3.18	Relative Häufigkeiten (K8GF)	279
Abb. 8.3.19	Korrekte und falsche Skizze (K8GF)	280
Abb. 8.3.20	Aufgabe "Koordinatensystem" (A5CV)	281
Abb. 8.3.22	Falschbearbeitungen (A5CV/W)	285
Abb. 8.3.23	Aufgabe "Scheitelpunkt" (B ₃ XY)	286
Abb. 8.3.25	Unverständiges Einsetzen (B ₃ XY)	290
Abb. 8.3.26	Aufgabe "Verschobene Funktion I" (C4XF) $\dots \dots$	293
Abb. 8.3.27	Aufgabe "Parabelgleichung" (L4MB)	296
Abb. 8.3.28	Ansätze zur Lösung (L4MB)	299
Abb. 8.3.29	Aufgabe "Parabelquiz" (R4TG)	301
Abb. 8.3.31	Aufgabe "Ableitungskalkül" (H4AB)	305
Abb. 8.3.33	Ansätze zur Lösung (H4AB3)	308
Abb. 8.3.34	Aufgabe "Verschobene Ableitung" (X4TP)	309
Abb. 8.3.35	Aufgabe "Flugzeug" (Y2VK)	314
Abb. 8.3.37	Schätzen der Durchschnittsgeschwindigkeit (Y2VK3) .	319
Abb. 8.3.38	Aufgabe "Funktionenlupe" (W7CK)	321
Abb. 8.3.39	Funktionenlupe in GeoGebra	323
Abb. 8.3.40	Argumentation über lokale Extremstelle (W7CK)	324
Abb. 8.3.41	Argumentation über lokale Linearität (W7CK)	325
Abb. 8.3.42	Aufgabe "Graphische Ableitung I" (S3AB)	327
Abb. 8.3.43	Musterlösung (S ₃ AB)	328
Abb. 8.3.45	Aufgabe "Graphische Ableitung II" (U_3PT)	332
Abb. 8.3.46	Aufgabe "Graphische Ableitung III" (V3RK)	335
Abb. 8.3.48	Aufgabe "Vorzeichen der Ableitung" (Z7PC)	339
Abb. 8.3.50	Aufgabe "Verschobene Funktion II" (M8PL)	344
Abb. 8.3.52	Aufgabe "Skalierte Funktion" (O5ZG)	348
Abb. 8.3.53	Distraktor-Plot (O ₅ ZG)	351
Abb. 8.3.54	Aufgabe "Parabelöffnung / Zwei Nullstellen" (D6LG)	353

Abb. 8.3.55	Aufgabenbeispiel MSW NRW	354
Abb. 8.3.56	Argumentation mit graphischem Bezug (D6LG1)	357
Abb. 8.3.57	Argumentation mit algebraisch-symbolischem Bezug	
	(D6LG1)	358
Abb. 8.3.61	Wright Map nach Ausschluss von Aufgabe Z7PC	
	(zweiter Test)	378
Abb. 8.4.2	Gemeinsames Ankerdesign	381
Abb. 8.4.4	Gemeinsames Histogramm (Fähigkeitsparameter)	386
Abb. 8.4.5	Gemeinsames Histogramm (Lösungsquoten)	386
Abb. 8.4.6	Histogramm (Differenzen der verbundenen Fähigkeit-	
	sparameter)	387
Abb. 8.5.2	Histogramm Gesamtpunktzahl nach Geschlecht (ers-	
	ter Test)	390
Abb. 8.5.3	Histogramm Gesamtpunktzahl nach Geschlecht (zwei-	
	ter Test)	390
Abb. 8.5.5	Differenz der durchschnittlichen Lösungsquoten nach	
	Geschlecht (erster Test)	394
Abb. 8.5.6	Differenz der durchschnittlichen Lösungsquoten nach	
	Geschlecht (zweiter Test)	
Abb. 8.6.3	Latente-Klassen-Analyse (erster Test)	
Abb. 8.6.4	Latente-Klassen-Analyse (zweiter Test)	
Abb. 9.2.1	Wirkungsebenen	
Abb. 10.3.1	Eingabemaske	
Abb. 10.3.2	Übersicht für teilnehmende Lehrkräfte	
Abb. 10.3.3	Diagramme für teilnehmende Lehrkräfte	
Abb. 10.3.4	Itemübersicht für teilnehmende Lehrkräfte	456

Tabellenverzeichnis

Tab. 2.1.1	Trennung von Wissensart und -qualität 20
Tab. 2.1.2	Arten und Facetten von Wissen 24
Tab. 3.5.2	Aktivitäten zum Darstellungswechsel 67
Tab. 3.5.3	Kategorisierung der Darstellungswechsel nach Wis-
	sensart
Tab. 4.1.1	Der Weg von $f(x_0)$ zu $f'(x_0)$
Tab. 4.1.2	Ableitungsbegriff in gängiger Schulbuchliteratur 103
Tab. 4.3.1	Rollen von Variablen und entsprechende Handlungen 122
Tab. 5.4.1	Geschlechtsspezifische Effekte in mathematischen Leis-
	tungsstudien
Tab. 5.4.2	Geschlechtsspezifische Differenzen nach Leitideen 169
Tab. 7.4.1	Pilotierte Items (erster Test)
Tab. 7.4.2	Pilotierte Items (zweiter Test) 196
Tab. 8.2.1	Kennzahlen zur Gesamtstichprobe 213
Tab. 8.2.2	Itemübersicht Rasch-Modell (erster Test) 215
Tab. 8.2.3	Itemübersicht Rasch-Modell (zweiter Test) 217
Tab. 8.2.9	Likelihood-Ratio-Test 230
Tab. 8.2.10	Wald-Test (erster Test)
Tab. 8.2.11	Wald-Test (zweiter Test) 233
Tab. 8.2.12	Itemübersicht 2PL-Modell (erster Test) 236
Tab. 8.2.13	Itemübersicht 2PL-Modell (zweiter Test) 237
Tab. 8.2.14	Vergleich von 1PL- und 2PL-Modell 239
Tab. 8.3.2	Antwortcodes (N1FQ/R)
Tab. 8.3.4	Bearbeitungsklassifikation (J9SD/E) 250
Tab. 8.3.8	Antwortcodes (Q ₃ WD)
Tab. 8.3.10	Antwortcodes (I6JG) 263
Tab. 8.3.12	Antwortcodes (G6UH/I)
Tab. 8.3.14	Bearbeitungsklassifikation (P5CX1) 270
Tab. 8.3.16	Bearbeitungsklassifikation (F7GH) 275
Tab. 8.3.21	Bearbeitungsklassifikation (A5CV/W) 284

XXII Tabellenverzeichnis

Tab. 8.3.24	Bearbeitungsklassifikation (B ₃ XY/Z)	289
Tab. 8.3.30	Antwortverhalten (R4TG)	
Tab. 8.3.32	Lösungsquoten (H4AB)	307
Tab. 8.3.36	Antwortcodes (Y2VK)	317
Tab. 8.3.44	Bearbeitungsklassifikation (S ₃ AB)	330
Tab. 8.3.47	Bearbeitungsklassifikation (V3RK)	337
Tab. 8.3.49	Bearbeitungsklassifikation (Z7PC)	342
Tab. 8.3.51	Bearbeitungsklassifikation (M8PL)	346
Tab. 8.3.58	Häufigkeit "Illusion of Linearity"	360
Tab. 8.3.59	Kennzahlen zur Gesamtstichprobe (nach Ausschluss	
	von Aufgabe Z7PC)	376
Tab. 8.3.60	Itemübersicht Neuberechnung Rasch-Modell (zweiter	
	Test)	377
Tab. 8.4.1	Ankeritems	380
Tab. 8.4.3	Itemübersicht Rasch-Modell (gleichzeitige Skalierung)	384
Tab. 8.5.1	Kennzahlen zu geschlechtsspezifischen Abweichungen	389
Tab. 8.5.4	Kennzahlen zu geschlechtsspezifischen Abweichun-	
	gen nach Schulform	392
Tab. 8.6.1	Mögliche Klassenanzahlen für die Latente-Klassen-	
	Analyse	399
Tab. 8.6.2	Mittlere Klassenzuordnungswahrscheinlichkeiten	401
Tab. 8.6.5	Geschlechterverhältnis innerhalb der Klassen	408
Tab. 8.6.6	Lösungswahrscheinlichkeiten für die Aufgaben C4XF,	
	P5CX sowie den Aufgaben, die qualitative Funktionen	
	einbinden	410
Tab. 8.7.1	Schätzwerte für die Reliabilität beider Tests	415
Tab. 8.7.2	Häufigkeit der Codes nach dem Aufgabenklassifikati-	
	onsmodell	
Tab. 9.1.1	Items mit Fit-Werten außerhalb des Intervalls [0.8, 1.2] .	435

Teil I

Einleitung

Einleitung

Albert Einstein soll einmal gesagt haben:

"Any fool can know. The point is to understand." (SIMMONS 1997, S. 1)

Er grenzt damit reines Faktenwissen gegenüber "echtem" Verstehen ab. Statt voneinander losgelöstem und möglicherweise schlicht auswendig gelerntem Wissen propagiert Einstein somit tiefgreifendes inhaltliches Verständnis. Dieses bei Schülerinnen und Schülern aufzubauen ist eines der vorrangigsten Ziele – wenn nicht sogar das Ziel – allen Unterrichts, jeder Lehrkraft und der Didaktik im Allgemeinen.

Vor diesem Hintergrund wirkt die folgende sinngemäß wiedergegebene Rückfrage besonders interessant, die der Autor dieser Arbeit einst erhielt, als er einem Bekannten gegenüber das Thema seines Promotionsprojektes erörterte:

"Ableitung? Ist das das, wo man den Exponent nach vorne multipliziert und dann eins abzieht?"

Es war jener Aspekt des Themas "Differentialrechnung", der sich am stärksten ins Gedächtnis gebrannt hatte und so auch noch Jahre nach Ablegen des Abiturs in Erinnerung geblieben war.

Beide Zitate stehen nicht losgelöst nebeneinander. Einsteins oben rezitierte Unterscheidung zwischen "knowing" und "understanding" bringt das Problem, welches im zweiten Zitat zum Vorschein kommt, auf den Punkt. Denn das Reduzieren einer ganzen Teildisziplin der Mathematik auf einen Teil eines Kalküls zeugt wohl vor allem davon, dass Letzteres – also Understanding – hier nicht erworben wurde. Dabei ist die Analysis mit ihren Anfängen in der Funktionenlehre der Sekundarstufe I und der

4 1 Einleitung

sukzessiven Konzeptentwicklung bis hin zum Ableitungs- und Integralbegriff ein Bereich des Mathematikunterrichts mit seinem dichten Geflecht an Zusammenhängen, der das Potential hat, zu einem breiten Gesamtkonzept entwickelt zu werden. In dessen Mittelpunkt sollten ausgebildete Vorstellungen und charakteristische Denkweisen stehen, die einen Blick auf das Warum freigeben.

An dieser Stelle soll nicht der Eindruck erweckt werden, Lehrkräfte würden dieses Ziel in ihrem Unterricht nicht anstreben. Dennoch ist gerade der Analysisunterricht in den letzten Jahren häufig der Kritik einer übermäßigen Kalkülorientierung ausgesetzt, welche der Entwicklung von sog. konzeptuellen Wissen entgegenstünde.

Doch wie steht es um das konzeptuelle Wissen der Schülerinnen und Schüler im Bereich von Funktionen und früher Analysis? Ein wichtiges Werkzeug für die Erörterung dieser Frage ist zweifelsohne ein Testinstrument, welches die entsprechenden stofflichen Bereiche fokussiert, aber auch die entsprechende Wissensart in den Mittelpunkt stellt.

Die vorliegende Arbeit beschreibt den Entwicklungsprozess eines solchen Instruments und gibt Einblicke in entsprechende empirische Befunde aus der gymnasialen Oberstufe Nordrhein-Westfalens. Insgesamt wurden zwei Tests entwickelt und 3202 bzw. 2665 Schülerinnen und Schülern zu Beginn bzw. gegen Ende des ersten Oberstufenjahres vorgelegt.

Im Mittelpunkt beider Tests steht das sog. Funktionale Denken, welches während der Funktionenlehre der Sekundarstufe I entwickelt wird und im Analysisunterricht der Oberstufe im Sinne des Spiralprinzips weiter ausgebaut wird. Es kann vor allem als Grundlage für das Understanding des Funktionsbegriffs betrachtet werden. In seinem Mittelpunkt stehen geeignete Grundvorstellungen, die konzeptuelles Wissen erst ermöglichen.

Hierbei ist gerade das erste Oberstufenjahr von besonderer Bedeutung, da hier unterschiedliche Funktionstypen der Sekundarstufe I von einem höheren und ganzheitlicheren Standpunkt betrachtet und somit zu einem allgemeineren Konzept funktionaler Zusammenhänge synthetisiert werden. Nicht zuletzt wird der für die weitere Analysis zentrale Begriff der Ableitungsfunktion eingeführt. In diesem Sinne erheben beide Tests das konzeptuelle Wissen im Themenbereich "Funktionen" an der Nahtstelle

zwischen Mittel- und Oberstufenmathematik. Sie fokussieren also *Funktionales Denken beim Übergang von der Funktionenlehre zur Analysis*.

1.1 Hintergrund zur Entstehung dieser Arbeit

Mit seinem Runderlass vom 27.06.2012 ordnete das Ministerium für Schule und Weiterbildung Nordrhein-Westfalen (MSW NRW) die "Verbindliche Einführung von graphikfähigen Taschenrechnern" (MSW NRW 2012) an Schulen mit gymnasialer Oberstufe und dem Beruflichen Gymnasium an. So setzen z.B. auch die Zentralabituraufgaben seit dem Jahr 2017 dieses Hilfsmittel voraus. Zur Begründung heißt es u.a.

"Die fachdidaktische Entwicklung in der Mathematik weist den so genannten "Werkzeugen" eine immer größere Bedeutung vor allem in der Sekundarstufe II zu. Der Gebrauch von graphikfähigen Taschenrechnern erlaubt nach fachdidaktischen Gesichtspunkten eine Entlastung von kalkülorientierten Routineberechnungen und eine schnelle Visualisierung von Graphen. Er ermöglicht damit einen kreativen Umgang mit mathematischen Fragestellungen." (MSW NRW 2012)

Für die Schulen ergibt sich somit die Verpflichtung graphikfähige Taschenrechner (GTR) spätestens mit Beginn der Oberstufenkohorte mit Abschlussjahr 2017 sukzessive in den Unterricht zu integrieren. In vielen Fällen fand daher eine erstmalige Verwendung zu Beginn der sog. Einführungsphase in die gymnasiale Oberstufe im Schuljahr 2014/15 statt.

Aufgrund des oben beschriebenen Umstands hat das Deutsche Zentrum für Lehrerbildung Mathematik (DZLM, s. Kramer & Lange 2014) in Zusammenarbeit mit dem MSW NRW beschlossen, die Lehrerfortbildung "GTR kompakt" (heute "Lehren und Lernen mit digitalen Werkzeugen"; s. Klinger et al. 2018) zum Einsatz des graphikfähigen Taschenrechners zu konzipieren und ab Ende 2014 erstmals durchzuführen. Im Fokus des Fortbildungskonzeptes steht dabei weniger die Handhabung solcher Handheld-Geräte als primär die wissenschaftlich-fundierte und didaktisch-bedachte Integration in den Mathematikunterricht. Die so konzipierte Fortbildungsmaßnahme besteht aus vier eintägigen Modulen, wel-

6 1 Einleitung

che durch Erprobungsphasen im eigenen Unterricht ergänzt und parallel an den Standorten Bochum, Düsseldorf und Münster durchgeführt wurden. Im Rahmen der Erstdurchführung wurden so etwa 90 Mathematiklehrkräfte von November 2014 bis April 2015 fortgebildet.

Zu den Zielen des DZLM zählen nicht nur die Konzeption von Fortbildungseinheiten in der Breite, sondern auch die ständige Weiterentwicklung der angebotenen Qualifizierungsmaßnahmen auf wissenschaftlicher Basis. Daher wurde parallel zur erstmaligen Durchführung von "GTR kompakt" das Projekt "GTR NRW" initiiert, welches von Daniel Thurm sowie dem Autor dieser Arbeit als Bündelung ihrer Promotionsprojekte geführt wird (s. Thurm, Klinger & Barzel 2015; Klinger, Thurm & Barzel 2015a; Thurm 2016). Um den Wissensstand der Schülerinnen und Schüler zu erheben und etwaige Veränderungen durch die Fortbildung der entsprechenden Lehrkräfte festzustellen, wurden Testinstrumente benötigt, die zu den spezifischen Zeitpunkten zu Beginn und gegen Ende der Fortbildungsreihe einsetzbar sind.

Die vorliegende Arbeit beschreibt die Entwicklung dieser Instrumente, ist aber inhaltlich losgelöst von der beschriebenen Fortbildungsreihe zu betrachten.

1.2 Notwendigkeit eines neuen Testinstruments

Zu Beginn der Arbeiten stand eine Literaturrecherche mit dem Ziel, ein geeignetes Testinstrument zu finden, das die spezifischen Anforderungen erfüllt:

- Es umfasst einen Leistungstest mit einem Fokus auf konzeptuelles Wissen im Inhaltsbereich der Funktionenlehre der Sekundarstufe I.
- Es umfasst einen Leistungstest mit einem Fokus auf konzeptuelles Wissen im Inhaltsbereich der Analysis des ersten Oberstufenjahres.
- Es bietet eine geeignete Möglichkeit der Verbindung beider Tests,
 z.B. in Form von Ankeritems, welche einen Vergleich der Ergebnisse jeweiliger Erhebungen mittels beider Tests ermöglicht.

Zwar gibt es einige Testinstrumente, die die Anforderungen zwar in Teilen, jedoch nicht gänzlich erfüllen (z.B. Nitsch 2015; Busch, Barzel & Leuders 2015; Moormann 2009; Kendal & Stacey 2001), so dass dies die Entwicklung spezifischer Testinstrumente nötig machte. Teilweise standen die entsprechenden Arbeiten zum damaligen Zeitpunkt auch noch nicht zur Verfügung. Hinzu kommt außerdem, dass Autorinnen und Autoren die genutzten Tests häufig unter Verschluss halten und nur Beispielitems zeigen. Am prominentesten sind hier wohl die Testinstrumente der großen Schulleistungsstudien wie TIMSS und PISA zu nennen, welche vor allem mit Blick auf die Wiederverwendbarkeit des Itemsatzes auf eine vollständige Veröffentlichung verzichten.

Die Entwicklung der Testinstrumente soll im Gegensatz dazu in dieser Arbeit möglichst transparent dargestellt werden, was auch einen vollständigen Einblick in den verwendeten Itemsatz erfordert. Die entsprechenden Aufgaben werden dazu an den jeweiligen Stellen dieser Arbeit abgebildet. Die vollständigen Testinstrumente sind zudem im Anhang dieser Arbeit enthalten (s. Abschnitt 10.1).

1.3 Gliederung der Arbeit

Die vorliegende Arbeit gliedert sich in vier Teile. Der erste Teil wird dabei bereits von dieser Einleitung gebildet.

Eine literaturbasierte Aufarbeitung des aktuellen Forschungsstands gibt überblicksartig Einsicht in die verwendete Theorie und findet sich im zweiten Teil. Hierbei wird in Kapitel 2 zunächst auf allgemeine fachdidaktische Rahmentheorien eingegangen, auf welche sich diese Arbeit im Besonderen stützt. Zunächst wird so der Begriff des konzeptuellen Wissens geklärt und auf seine Bedeutung für diese Dissertation eingegangen. Das konzeptuelle Wissen wird im Rahmen der entwickelten Testinstrumente vor allem durch den Einsatz verschiedener Repräsentationen mathematischer Inhalte operationalisiert, so dass Abschnitt 2.2 von einem allgemeinen Standpunkt auf das Wesen von Repräsentationen und auf ihre besondere Rolle für den Mathematikunterricht und die Mathematik im Allgemeinen eingeht. Einen weiteren wichtigen Grundbaustein bildet die Verwendung mathematischer Vorstellungen. Der Fokus liegt hier einer-

8 1 Einleitung

seits auf der Grundvorstellungstheorie wie sie sich innerhalb der deutschsprachigen Mathematikdidaktik häufig findet, anderseits auf der Theorie von Concept Image und Concept Definition, die vor allem im angloamerikanischen Sprachraum verbreitet ist. Gemeinsamkeiten und Unterschiede beider Theoriekomplexe werden aufgearbeitet.

In Kapitel 3 wird sodann auf die relevante fachdidaktische Theorie hinsichtlich des Funktionsbegriffs eingegangen. Hierbei werden die zuvor genannten Theorien für den Funktionsbegriff spezifiziert. Insbesondere wird die Grundvorstellungstheorie für den Funktionsbegriff konkretisiert und auf übliche Repräsentationen und Repräsentationswechsel im Kontext von Funktionen eingegangen. Ferner wird der Begriff des Funktionalen Denkens aus historischer und didaktischer Perspektive erörtert.

Kapitel 4 liefert den fachdidaktischen Hintergrund zur Analysis und zum Ableitungsbegriff. Neben üblichen Grundvorstellungen wird zudem auf die Gefahr einer Überbetonung des Ableitungskalküls und den Begriff des Infinitesimalen Denkens eingegangen. Letzterer wird schließlich hinsichtlich seines Zusammenhangs zum Funktionalen Denken untersucht. Weiterhin wird die Beziehung von Funktionalem Denken zum Analysisunterricht aufgezeigt und auf den Unterschied zwischen der Funktionenlehre der Sekundarstufe I und dem Analysisunterricht der Oberstufe eingegangen.

Kapitel 5 bildet das letzte Kapitel des zweiten Teils. Es klärt den Begriff des mathematischen Leistungstests und liefert allgemeine Gütekriterien, die für die Entwicklung solcher Instrumente zu berücksichtigen sind. Es geht ferner auf das Rasch-Modell ein, welches die methodologische Grundlage der Testentwicklung bilden soll. Ein weiterer wichtiger Aspekt, der im Rahmen dieser Arbeit besondere Berücksichtigung erfahren soll, ist die in solchen Leistungstests häufig beobachtete Leistungsdifferenz zwischen männlichen und weiblichen Probanden.

Den dritten Teil bildet schließlich die empirische Untersuchung. Kapitel 6 geht zunächst auf die für diese Arbeit zentralen Fragen ein und bereitet den theoretischen Hintergrund in Form eines Zwischenfazits auf.

Kapitel 7 beschreibt sodann das Vorgehen während der Testentwicklung und die Durchführung jeweiliger Pilotierungsphasen für die Testinstrumente. Hier wird exemplarisch dargestellt, wie die verwendeten

Items konstruiert, getestet und schließlich in der Haupterhebung verwendet oder aber ausgeschlossen wurden.

Kapitel 8 stellt den Kern der empirischen Untersuchung dar. Es beschreibt zunächst die durchgeführte Erhebung hinsichtlich der Durchführung und der erhaltenen Stichprobe. Es folgt die Skalierung mithilfe des Rasch-Modells und die Überprüfung der Modellgeltung mittels Modellgeltungstests sowie die Diskussion von Alternativmodellen. Abschnitt 8.3 diskutiert die Ergebnisse schließlich itemweise. Hierbei wird für jedes Item der didaktische Hintergrund aufbereitet und eine Verbindung zu den jeweiligen Ergebnissen der Erhebung geschlagen. Auf diese Weise wird ein differenzierter Blick auf die Fähigkeiten und Leistungen der Schülerinnen und Schüler in Nordrhein-Westfalen ermöglicht.

Der vierte und letzte Teil beantwortet die zuvor gestellten Forschungsfragen in Kapitel 9 und fasst somit die zentralen Ergebnisse dieser Arbeit und des Promotionsprojektes insgesamt zusammen. Mögliche Konsequenzen für die Praxis werden aus unterrichtlicher Perspektive sowie aus Sicht von Lehrerfortbildungen beleuchtet. Das Kapitel schließt mit der Reflexion der vorliegenden Arbeit und der durch sie repräsentierten Studie sowie mit der Benennung von Anknüpfungspunkten für weitere Forschungsunterfangen.