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Preface

The physics of dense gases and nonideal plasmas, along with the physics of matter
with high energy density, form together a growing field. The physics of dense gases
is connected with the name of the pioneer Johannes Diderik van der Waals from the
Netherlands (Nobel Prize 1910). The foundations for the theory of nonideal plas-
mas were laid 50 years later by another pioneer from the Netherlands, Peter Debye
(Nobel Prize 1936), with the introduction of the screening concept. So it should be
no surprise that the quantum statistics of dense gases also began in the Netherlands
with the work of Uhlenbeck and Beth in 1936/1937. Important contributions to the
physics of real gases are due to subsequent work by Mayer, Fuchs, Kirkwood,
Bogolyubov, Yvon, Born, and Green. This development culminated in the van der
Waals Centennial Conference in Amsterdam 1973 and international conferences on
statistical physics organized by the IUPAP.

The physics of nonideal plasmas, otherwise known as strongly coupled plasmas,
began with the work of Debye and Hückel, Onsager, Falkenhagen, Bjerrum, Eggert,
and Saha in the 1920s and culminated in the 1960s. The first conference on
“Strongly Coupled Plasmas” was held in 1977 in Orleans la Source, France, and
was followed by a series of conferences under this name. A parallel series called
“Physics of Nonideal Plasmas” started in 1980 in a village near Rostock, and then
continued biennially, with the latest in Almaty, Kazakhstan, in 2015. The physics of
extreme states of matter is still in status nascendi. The increasing interest in dense
gases and plasmas is connected with the fact that more than 99% of the visible
Universe is evidently in this state, and a large part of this exists at extremely high
energy density. We are only just beginning to explore the world outside the narrow
window of the little solid state planet on which we live. In order to understand our
place in the Universe, we have to extend research to dense gases and plasmas
including exotic states.

In this view, we feel like part of a large international collaboration which
includes many researchers, universities, and very big research organizations such as
CERN in Geneva, DESY in Hamburg, UNILAC and SIS in Darmstadt, ITEP in
Moscow, SPS, LHC, and so on. A second group of big international collaborations
like COBE and subsequent projects is concentrating on the study of astrophysical

v



objects. This is also at present at the forefront of international research. It is based
on new possibilities for observing distant objects from satellites and rockets. Many
exciting insights have come recently from this field.

However, this book is definitely not about big colliders, telescopes, and space
missions. Our aim is to explore the basic physics and in particular the quantum
statistical thermodynamics and kinetics of states of matter, starting from dense
gases and nonideal plasmas and ending with matter at high energy densities. We are
convinced that thermodynamics and quantum statistics are still the main foundation
on which even the most advanced research is being built. In spite of the devel-
opment of so many modern concepts, the seemingly old concepts of thermody-
namics and transport are still the basis for the whole field.

The body of the present book is based on lectures at universities and presen-
tations at seminars and international conferences. Furthermore, the book draws
upon many original publications and in particular on a long collaboration between
the present authors which started in the 1970s. We mention in particular:

• The courses of lectures on quantum statistics and plasma physics given by
Werner Ebeling at the University of Rostock between 1970 and 1979, at the
University of Paris VI in 1977, at the Humboldt University in Berlin, between
1980 and 2001, and in guest lectures in Minneapolis 1986, Moscow 2003, and
Krakow 2005. The latest full lecture cycle was given at Humboldt University in
Berlin by Werner Ebeling in collaboration with Thorsten Pöschel and several
former coworkers, including Dieter Beule, Andreas Förster, Lutz Molgedey,
Jens Ortner, Waldemar Richert, and Ilya Valuev, and several former students
and aspirants, including Jörn Dunkel, Hendrik Hache, Stefan Hilbert, Dirk
Holste, Ines Leike, Ulf Leonhardt, Burkhard Militzer, Thomas Pohl, Saltanat
Sadykova, Friedemann Schautz, Michael Spahn, Mario Steinberg, and others.

• Lecture courses given by Vladimir Fortov at the Moscow Institute of Physics
and Technology on extreme states of matter on earth and in the cosmos (Fortov
2008, 2009, 2011).

• Presentations of the present authors at a series of international conferences, such
as the IUPAP conferences under the headings “Statistical Physics”
(STATPHYS), “Strongly Coupled Coulomb Systems” (SCCS), and “Physics of
Nonideal Plasmas” (PNP).

• The long-standing collaboration between the authors and their colleagues in
Berlin, Rostock, Moscow, and other research centers around the world, resulting
in many shared articles and several shared books since the 1980s.

Following the personal interests of these authors, which go along the same lines in
the tradition of quantum statistical thermodynamics in Berlin, Rostock, and
Moscow, we concentrate on the development of fundamentals and applications to
gases and plasmas, including dense nonideal and exotic gases and plasmas. Most
of the existing textbooks and monographs on quantum statistics have some bias
toward condensed matter and solid states.

This book is written at an intermediate level and addressed to students and young
scientists at an advanced level. We include a few results obtained only recently. In
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general, the book should be accessible to students of the higher semesters, doc-
torands, and young researchers in the field. We have tried to be self-contained,
repeating, and explaining the most relevant tools.

During their careers, the present authors, or at least some of them, have actually
met several of the pioneers of the quantum statistics of dense gases and plasmas,
such as Alexander A. Abrikosov, Nikolay N. Bogolyubov, Alexander S. Davydov,
Hans Falkenhagen, Michael Fisher, Vitali L. Ginzburg, Günter Kelbg, Yuri L.
Klimontovich, Rolf Landauer, Joel Lebowitz, Joseph E. Mayer, Ruslan L.
Stratonovich, Alexander A. Vedenov, Yakov B. Zeldovich, and others. These
people influenced our views through their advice and personal discussions, and so
we must express our gratitude to them. In particular, we are grateful to Günter
Kelbg, Yuri L. Klimontovich, and Yakov B. Zeldovich. Furthermore, we are very
grateful for a long and very fruitful collaboration with many colleagues in the field,
including David Blaschke (Wroclaw), Michael Bonitz (Kiel), Alexander
Chetverikov (Saratov), Dietmar Ebert (Berlin), Viktor A. Gryaznov
(Chernogolovka), Holger Fehske (Greifswald), Yuri B. Ivanov (Moscow), Wolf D.
Kraeft (Greifswald), Dietrich Kremp (Rostock), Pavel Levashov (Moscow), Genri
Norman (Moscow), Gerd Röpke (Rostock), Ronald Redmer (Rostock), Heidi
Reinholz (Rostock), Manfred Schlanges (Greifswald), Boris Sharkov (Moscow),
Werner Stolzmann (Kiel), Sergey Trigger (Berlin), and Manuel G. Velarde
(Madrid). We should also mention that the last two chapters were written in close
collaboration with A.S. Larkin, who provided the main contributions to the results.
Particularly sincere thanks go to Thorsten Pöschel, who actively participated in the
lectures at Humboldt University in Berlin and wrote lecture notes describing the
basic tools of quantum statistics, which will appear separately.

In conclusion, let us express the wish that the present book might contribute to
the general education of the present generation of physicists in the field of dense
fluids. Two of the authors are theoreticians, while the other (V.E.F.) took part in
many pioneering experiments in the field, including experiments with extreme
pressures generated by shocks or laser beams which helped, e.g., in experimentally
confirming plasma phase transitions. V.E.F. has also been in charge of major
international research projects and experiments. When running these and other big
research projects in our field, we have reached the conclusion that physicists of the
younger generation need more knowledge and ability to solve problems involving
dense gases, nonideal plasmas, and extreme states of matter. We hope the book will
help them to understand the problems and methods of a rather new and fascinating
field.

Berlin, Germany Werner Ebeling
Moscow, Russia Vladimir E. Fortov
Moscow, Russia Vladimir Filinov
May 2017
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Chapter 1
Physics of Dense Gases, Nonideal Plasmas,
and High Energy Density Matter

Here we summarize the most important results in this field of physics, which is
growing due to the dominant role of these forms of matter in the cosmos.We describe
the progress made in physical studies and the statistical theory of dense gases and
nonideal plasmas, including their historical roots in the work of van der Waals,
Debye, Saha, Planck, Einstein, and others. We present the basic tools required for
the quantum statistical description of nonideal fluid systems, including analytical
methods and computer simulations, and we discuss studies of plasma-like matter
with high energy density.

1.1 Strongly Coupled Fluid Matter: A New Field of Physics

In 1873, in his dissertation presented at the University of Leiden, the Dutch physicist
Johannes Diderik van der Waals developed a new model of dense gases and fluids.
This work opened the way to understanding matter in nonideal states (van der Waals
1873) (see Fig. 1.1). By nonideal states we mean here states of matter that are not
described by the classical ideal gas law, i.e., the relation between pressure, density,
and temperature p = nkBT . Fifty years later, Peter Debye (1884–1966), another
eminent Dutch scientist, founded the science of nonideal Coulomb systems with
a lecture given in 1923 to the Nederlandsch Natuuren Congres (see Fig. 1.2). The
enormous progress made in the science of nonideal gases and nonideal plasmas in
the 100 years after the initiation by van der Waals and his school and 50 years after
the work of Debye and his school was summarized in 1973 at the van der Waals
Centennial Physics Conference in Amsterdam.

Many physicists believe that this field is of less importance than the physics of
condensed matter, since solid state electronics has such a big impact on our everyday
life. But this is certainly a form of ignorance on their part, since less than one percent
of matter in the Universe is in a condensed state. More than 99 percent of our world

© Springer International Publishing AG 2017
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Fig. 1.1 J. D. van der Waals (1837–1923), Nobel Prize 1910. Photo from Nobelprize.org

Fig. 1.2 Peter Debye (1884–1966), Nobel Prize 1936, and his coworkers (Hans Falkenhagen, left,
Kasimir Fajans, second from the right, and Lars Onsager, right). Photo from Falkenhagen’s archive
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is in a gaseous, plasma, or extreme fluid state. Our planet is surrounded by a gas
atmosphere and we use gases in many technological devices. Space around the Earth
and interstellar matter is mostly in a gaseous or plasma state. Furthermore, we should
not forget thematter in the Sun and themany stars, from the giants to thewhite dwarfs
and exotic stars such as neutron stars and others, as well as many less known objects
like ‘dark matter’.

In the last few decades, condensed states of matter have dominated physicists’
education, but we should bear in mind that, on the scale of the Universe, the solid
state is a relatively rare form of matter. This rather special state is based on bound
states of electrons and nuclei, forming atoms and molecules. Bound states exist only
in a small region of density and temperature. Such conditions came into existence
a few billion years ago on our planet and made the evolution of life and technology
possible (see, e.g., Feistel et al. 1989, 2011). Life is based on the existence of atoms
and molecules as bound states of electrons and nuclei. However, in most parts of
our Universe, e.g., in stars, atoms do not exist, since the densities and temperatures
are too high. Most matter is in extreme plasma states under very high pressure, like
the matter in white dwarfs and neutron stars. The physics of gases and plasmas at
high pressures and temperatures plays an important role in our understanding of the
structure and evolution of astrophysical objects: neutron and ‘strange’ quark stars,
black holes, pulsars, supernovas, magnetars, giant planets, and exoplanets. In the
future, this new physics may also be relevant for technological development (Fortov
2011, 2013).

In the last few decades there has been extensive work on dense plasmas, with
applications ranging from inertial confinement fusion, Z-pinch experiments, X-ray
Thompson scattering, and exploding wire experiments to describing the astrophysics
of white dwarfs and the interiors of giant planets (Fortov 2011, 2013).

In the present book we consider mostly dense forms of hydrogen, helium, and
other noble gases and plasmas, as well as alkali plasmas. A topic of special interest
to us is chemical and phase equilibria. Central issues are the influence of strong
coupling on the equation of state and transport properties. Experimental methods
are not discussed in detail in the present book. A minimum of information is given
about important experiments and references (for more detail, see Fortov 2009, 2011,
2013).

1.2 Physics of Dense Classical Fluids

1.2.1 Van der Waals Equation of State and Interactions

The theory of gases developed in the dissertation presented by van derWaals in 1873,
and this may be considered as the starting point for the modern theory of nonideal
fluids and phase transitions. Van derWaals’ approach was based on a simple physical
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model of interactions betweenparticleswhich takes into account short range repulsive
and long range attractive forces.

The model equation for the pressure is

p = kBT

v − b
− a

v2
, v = V

N
= 1

n
, (1.1)

where V is the volume, N the particle number, n the density, and T the temperature.
The van der Waals model predicts that, below a critical temperature Tc, there will
coexistence two phases which differ from each other by the density of molecules. In
connection with the development of more rigorous theories, it became clear that van
der Waals’ approach is restricted to relatively weak attractive forces which either
decay with the distance faster than 1/r3 or satisfy the so-called Kac conditions.
Therefore the conditions for applicability to Coulomb forces are not given.

Prototype Models of Interaction

There are hundreds of models describing the interactions between molecules, atoms,
or elementary particles (Hirschfelder et al. 1954). There are forces of attraction like
van der Waals forces, chemical forces, etc., and repulsive forces due to Coulomb
repulsion between charges and the Pauli principle. The typical shape is a decaying
function with a minimum. Such systems are called prototype models when they
play a special role, either because they possess some universality for classes of real
substances or because they allow exact solutions. We restrict our study mainly to
three-dimensional problems.

The simplest model of interactions is the hard-sphere model. The interaction
between two hard spheres with diameter d is described by the hard core potential:

UHC(r) =
{∞ ifr < d,

0 ifr ≥ d.
(1.2)

Including a range of attractions yields the piecewise constant square-well potential.
Many results exist also for a prototype model with softer repulsion (Hansen et al.
1976):

USR(r) = ε
an

rn
, n = 6, 9, 12, . . . . (1.3)

These potential models are more or less empirical. The Coulomb potential is the
special case with n = 1. Calculations based on quantum-mechanical first order
perturbation theory yield an exponential repulsion based on the forces due to the Pauli
exclusion for overlapping atomic corewave functions. In the simplest approximation,
this leads to an exponential repulsive law:

UE(r) = U0 exp
[ − b(r − σ)

]
. (1.4)

This potential contains the hard-core potential in the limit b → ∞. Another interac-
tion potential based on quantum mechanical calculations is the Morse potential:
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UM(r) = D
{
exp

[ − 2b(r − σ)
] − 2 exp

[ − b(r − σ)
]}

. (1.5)

Here the positive term describes the repulsive forces due to the Pauli exclusion for
overlapping atomic core wave functions. The negative term models qualitatively the
attraction due to induced quantum-mechanical dipole–dipole forces.

The Todamodel is an exponential potential with an additional (nonphysical) linear
attraction, leading to a minimum of the potential at r = σ. Beside the depth of the
potential−D, further important physical information is contained in the frequency of
oscillations around the minimum mω2

0 = 2Db2 and in the stiffness of the potential
which is proportional to the parameter b. The Toda potential is very useful since
it allows fully analytical calculations. Figure1.3 shows that the Toda potential and
the Morse potential agree nicely at smaller distances, up to the minimum and a bit
beyond. Note that a good fit of the Toda and Morse potentials is obtained near the
minimum if the Toda parameters are related to the Morse parameters by the relations
aT = (2/3)bD, bT = 3b (Chetverikov et al. 2011).

A prototype model closely related to the exponential and the Morse model of
interactions is the Yukawa model:

V Y
ab(r) = gab

exp(−ηr)

r
. (1.6)

This potential was developed by Hideki Yukawa in 1935 in order to describe strong
forces in elementary particle physics, mediated by the exchange of massive particles.
The Yukawa potential now plays a paradigmatic role in statistical physics, since it
has found applications in many fields (Fortov 2013). We will use this potential as a
standard model for a gas with weak interactions and in particular for a quantum gas
with weak interactions. A specially important property of the Yukawa potential is
the existence of a Fourier transform, which is defined by

Ṽ Y
ab(t) =

∫
V
dr V Y

ab(r) exp(it · r) = 4πgab

t2 + η2
. (1.7)

The Yukawa potential contains the Coulomb potential in the limit η → 0. The
interaction between two charges ea and eb is described (in rational units) by the
potential

Vab(r) = eaeb

εrr
. (1.8)

In most cases we will assume without comment that the charges are in a vacuum
εr = 1.

The Coulomb potential is long-range. It was Joseph E. Mayer (1904–1983) who
first noticed that the Fourier transform of the Coulomb potential is of primary im-
portance for solving problems of screening and cluster theory (Mayer 1950). Strictly
speaking, the integral over the volume is divergent for Coulomb interactions when
the volume is infinite. This is an important problem and the Coulomb potential in its
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Fig. 1.3 Interaction between
the atoms: The depth,
frequency, stiffness, and
other details about the
interaction of atoms may be
fitted by different potentials.
Here we represent the Toda
potential (upper curve), the
Morse potential (middle
curve), and the (r−12, r−6)
Lennard-Jones potential
(lower curve), suitably
scaled around the minimum
to have identical values at the
minimum and identical
values of the second
derivative (frequency) and
the third derivative (stiffness)

original form, needs some regularization. The great pioneer of the statistical theory
of Coulomb systems, Joseph Mayer, proposed to introduce the Coulomb potential
as the limit of a Yukawa potential for small η → 0. This leads to a well defined limit
for the Fourier transform.

One of the most popular models in the theory of gases and liquids is the Lennard-
Jones (6–12)-potential which is semi-empirical with respect to the repulsive part, but
well founded by quantum calculations for the attractive part. We scale here in such
a way that the minimum (−D) is at r = σ:

UL(r) = D

(
σ12

r12
− 2

σ6

r6

)
. (1.9)

A more general form is the Lennard-Jones (n-m)-potential. Characteristics of the
potential are the energy at the minimum D, the distance r0 where the potential
energy goes from positive to negative values (crosses zero), and the location of the
minimum at r = σ. Some typical data are given in Table1.1. Note that there aremany
other potential models on the market, each adapted to certain practical applications
(Hirschfelder et al. 1954).

We consider in this book two classes of these prototypemodelswith quite different
methods:

1. Potentials with a hard core like the hard sphere, Morse, and Lennard-Jones po-
tentials. Here the classical limit is well defined and normally quantum effects
including degeneracy give only small corrections. A special case are gases at
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Table 1.1 Lennard-Jones
potential. Energy at the
minimum D and location of
the minimum σ for various
molecules

Substance D [eV] σ [Å]

H2 4.5 0.75

O2 5.1 1.20

C2 5.6 1.31

Cl2 2.5 1.98

extremely small temperatures, where quantum effects are strong. However, these
special systems are not the main focus of the book.

2. Potentials with no singularity at r = 0 or a weak singularity like r−1 and a
relatively long tail at r → ∞.

The main assumption is, however, that the Fourier transform is well defined. Exam-
ples are the Coulomb potential and the Yukawa potential. For this class of systems,
quantum effects are strong as a rule. In particular, for theCoulomb system, the ground
state is determined completely by quantum effects. Therefore perturbation theories
around the classical limit make no sense in this case and quantum-statistical tools are
essential from the very beginning. On the other hand, expansions with respect to in-
teractions including weak correlations, but without any restriction due to degeneracy,
are sometimes appropriate.

1.2.2 Statistical Theory of Dense Classical Gases

The van der Waals theory has a long prehistory which began in the seventeenth
century (Simonyi 1990). Robert Boyle (1627–1691) experimented with gases and
found the first gas law (Boyle’s law), which says that at a constant temperature
T , the volume V of a given mass of gas is inversely proportional to the pressure
(p = C/V , where here and in the following C denotes an appropriate constant).
The second perfect gas law says that, at constant volume, the absolute pressure is
proportional to the absolute temperature (p = CT ). One application is the hydrogen
thermometer. Standard temperature and pressure are defined as 273.15K (0 degrees
Celsius) and 101.325kPa (760mm Hg).

To change the state of a gas, heat is either added or taken away from it. If the state
of a gas is altered without a change in heat, we speak about an adiabatic change. If
a compressed gas expands adiabatically, cooling occurs. Since atoms and molecules
interact by attractive forces, energy is required as the gas expands to overcome the
intermolecular forces. A gas cools as it expands, and if it is rapidly compressed, its
temperature rises. Dalton’s law of partial pressures says that, in a mixture of gases,
the pressure each gas exerts is the same as if it alone occupied the volume.Avogadro’s
law states that equal volumes of gases at the same temperature and pressure contain
equal numbers of molecules. A mole is the amount of a substance containing the
number of particles 6.022 × 1023. Combining the perfect gas laws and Avogadro’s
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law, we get the universal ideal gas law due to Gay-Lussac (1778–1850):

p = νRT/V , or p = nkBT , n = N/V , (1.10)

where ν is the number of moles, N is the corresponding number of molecules, R is
Avogadro’s constant, and kB is Boltzmann’s constant. The energy density of an ideal
gas is given by

ρE(T ) = cvnT . (1.11)

Here, cv is the specific heat, which for normal gases is cv = f kB/2, with f the
number of degrees of freedom.

An adiabatic process is one without transfer of heat or matter between a system
and its surroundings. The equation of state for such processes reads

p = Cnγ , γ = 2 + f

f
, (1.12)

with γ = 5/3 for normal gases and C an appropriate constant.
In a first approach, the definition of temperature scales may be fixed by using the

universality of the ideal gas law and fixing the triple point of water by definition to
Tc = 273.16K. The triple point of water is that unique temperature at which pure
ice, pure water, and pure water vapor can coexist at equilibrium. The triple point
is important since there is only one pressure at which all three phases can be in
equilibrium with each other.

Soon after van der Waals’ work, the method of virial expansions for non-ideal
gaseswas developed.This expansion,which expresses the pressure of amany-particle
system in equilibrium as a power series in the density, was introduced in 1901 by
Heike Kamerlingh Onnes (1853–1926, Nobel Prize 1913), is a natural generalization
of the ideal gas law. Kamerling Onnes represented the pressure of a gas with density
n and temperature T as a power series in the density n (β = 1/kBT ):

β p = −
(

∂(βF)

∂V

)
T,N

= n
[
1 − nB2 − 2n2B3(T ) − · · · ] . (1.13)

The corresponding expansion for the free energy is

F = Fid − kBT V
[
n2B2(T ) + n3B3(T ) + · · · ] . (1.14)

An elementary way to get the virial functions including interaction effects starts from
the binary correlation functions g(r). By definition, in a fluid of density n, the number
of particles in a shell of thickness dr at distance r from a given center particle is

g(r)(4πnr2)dr . (1.15)
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In a first classical approximation, the binary correlations are given by a Boltzmann
factor g(r) ∼ exp(−βU (r) and provide the first order mean potential energy

g(1, 2) = exp
[ − βV (1, 2)

]
,

U = 〈
U (r)

〉 = 1

2

∫
dr1dr2U (r1, r2) exp

[ − βU (r1, r2)
]

.
(1.16)

Since the internal energy U and the free energy F are connected by the thermo-
dynamic relation U = ∂(βF)/∂β, for the second virial coefficient, we find by
integration

B2(T ) = 1

2

∫
dr

{
exp

[ − βV (r)
] − 1

}
. (1.17)

For the higher order virial coefficients we may derive explicit expressions by using
the cluster expansion methods of statistical mechanics worked out by Joseph Mayer
(1904–1983), Klaus Fuchs (1911–1988), and others (Hirschfelder et al. 1954; Hill
1956; Friedman 1962; Barker and Henderson 1967).

A survey of the state of the art in the theory of nonideal gases was given in
1973 at the Van der Waals Centennial Conference. The program demonstrated that
most prominent scientists in the field like de Boer, Lebowitz, Langer, Widom and
Wilson honored van der Waals were working to develop this further (see Fig. 1.4).
In particular, we mention reports on the statistical foundations of the van der Waals
equation by Klein and Lebowitz and the theory of fluid phase transitions by Langer,
Levelt-Sengers, Widom, and Wilson.

1.3 Quantum Physics of Strongly Coupled Gases

1.3.1 Correlations in Bose–Einstein and Fermi–Dirac Gases

The notion of ideal gas is not uniquely defined. Often one understands as ‘ideal’ a
gas without interactions, i.e., having an additive Hamiltonian. However, this point of
view overlooks the fact that coupling between the particles is more essential than the
formal aspect of additivity. At high densities, Fermi–Dirac gases and Bose–Einstein
gases are strongly coupled gases due to the Pauli principle and the corresponding
exchange effects. So here we shall take an ideal gas to be just the usual classical
ideal gas consisting of independent particles. Since coupling due to exchange effects
plays an important role in dense gases, we first recall the theory of Bose–Einstein and
Fermi–Dirac gases. Then we go on to consider the quantum statistics of real gases
by including interaction forces, as was first done by Uhlenbeck and Beth in 1936–
1937. As we pointed out above, Bose–Einstein and Fermi–Dirac gases are strictly
speaking not ideal in the classical sense, since they show rather strong correlations
with increasing degeneracy.
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Fig. 1.4 Johannes D. van der Waals died in 1923, in the year Peter Debye presented the first theory
of nonideal charged particle systems. Fifty years later, in 1973, the van der Waals Centennial was
held in Amsterdam. Facsimile of the first page of the program

The first quantum statistics of a gas without interactions was in fact already de-
veloped in 1900 by Max Planck (1858–1947). Unfortunately, he started with a quite
complicated case, the photon gas. This is due to the fact that his colleagues in Berlin
had collected a lot of experimental data on radiation which needed theoretical inter-
pretation. The photon gas is a relativistic system of particles with zero mass, i.e., it
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is a quite special case of a gas. The generalization of Planck’s theory was given by
Einstein in 1924 for particles with rest mass and integer spins, and for particles with
half-integer spins by Fermi in 1926. Einstein’s work was based on the happy occa-
sion when the Bengali physicist Satyendra Nath Bose (1894–1974) sent his article
Planck’s law and the hypothesis on light quanta to Einstein. Einstein translated it
into German and sent the article to Zeitschrift für Physik (1924), appending several
remarks that essentially generalized Bose’s approach. He immediately saw the power
of Bose’s method and the way to apply it to gases (Einstein 1924; Kirsten and Körber
1975; Ginzburg 2001).

Bose had in fact proposed a new method for counting the probabilities of the
macrostates. In Bose’s interpretation, the radiation field looks like a gas of photons.
Einstein applied Bose’s new counting method to derive the quantum statistics of
monatomic ideal gases. Only eight days after the official date of receipt of Bose’s pa-
per, he presented his new results to a session of the Prussian Academy held on 10 July
in Berlin. What Einstein appreciated above all was Bose’s new method for counting
probabilities based on the indistinguishability of identical particles (see Ebeling and
Hoffmann 1991, 2014). Einstein successfully applied Bose’s new method to derive
the quantum statistics of monatomic ideal gases in three papers all printed in the
“Sitzungsberichte” of the Prussian Academy of Science in Berlin.

The work in Bose and Einstein’s papers was heavily criticized by Ehrenfest,
Planck, and other colleagues, since neither Einstein nor Bose gave any deeper foun-
dation to justify the new way of counting. Nernst and Schrödinger were among the
first colleagues to support Einstein’s new views. It was definitely Einstein who un-
derstood the connection between the new statistics and the indistinguishability of
identical particles. The new view was a genuine revolution in physics, something
that was first clearly understood by Planck and Ehrenfest, who expressed serious
protests against Einstein’s new views. The reason for these protests was in fact that
these scientists immediately understood that the independence of the quantum gas
particles was lost and that Einstein’s method introduced as yet unknown quantum
correlations between noninteracting particles.

The first physicist who understood the general physical principle behind the new
mysterious correlations found by Einstein was Wolfgang Pauli, who formulated his
exclusion principle in 1925. The first application of the new quantum statistics to the
electron gas was given in 1926 by Enrico Fermi (1901–1954) and in the same year
by Paul Dirac (1902–1984). Fermi–Dirac statistics applies to identical particles with
half-integer spin in a system in thermodynamic equilibrium. The particles in this
system have negligible mutual interactions. Note that very important applications of
the new statistics were soon given by Fowler and Sommerfeld, who were treating
electron plasmas with the new Fermi–Dirac statistics.

Today, particles that obey the exclusion principle, such as particles with spin
s = 1/2, are called fermions, and particles with integer spinswhich are like the atoms
in Einstein’s theory are called bosons. Like Bose–Einstein gases, dense Fermi–Dirac
gases also behave at low temperatures in a completely different way to the standard
classical ideal gas. In order to demonstrate this, we consider the energy density,
defined as the energy per unit of volume ρE = E/V . For Boltzmann gases, the
energy density and the pressure increase linearly with density n and temperature
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Fig. 1.5 Density–
temperature plane for an
electron gas on a log-scale,
including the lines
nΛ3 = 100, 1, 0.01
separating strongly
degenerate (above upper
line) from moderately
degenerate (between lines)
from non-degenerate (below
lower line)

T . For degenerate Fermi gases, the temperature dependence is rather weak, but the
energy density and the pressure increase strongly with the density:

ρE = Cn4/3 , p = Cn4/3 . (1.18)

Aswewill show later, due to the high pressures and energy densities in dense systems,
all bound states will be destroyed at higher densities. Very dense fermion systems
behave like Fermi–Dirac gases. The transition, which is rather sharp, occurs at a
density where the thermal de Broglie wavelength begins to overlap (see Fig. 1.5).

We note that the behavior of a quantum gas changes at the transition from non-
degenerate gas to degenerate gas, and the masses play a big role here. Typical Fermi
systems consist of light electrons which soon reach degeneracy and heavy particles
like nuclei which need extreme densities to become degenerate. For Bose gases,
the changes at the degeneracy line may be even more dramatic. This was already
observed by Einstein, who predicted a new condensation phenomenon in a second
talk at the academy, given on 8 January 1925. As a consequence of the theory, he
described the phenomenon now known as Bose–Einstein condensation. We note as
a matter of fact that the prediction of a condensation phenomenon belongs clearly
only to Einstein (Ebeling and Hoffmann 2014). The negative reaction to the idea of
Einstein condensation changed only later, when Uhlenbeck, Bogolyubov, and others
succeeded in including interactions in the theory, and finally, 70 years later, when
experimentalists succeeded in reaching low enough temperatures.
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The Einstein condition for condensation is this: in a cube with length equal to 10
thermal de Broglie wavelengths should be more than 2612 gas particles. Here the
thermal de Broglie wavelength is the wavelength corresponding to the thermal mo-
menta at temperature T . Erwin Schrödinger found this role of the De Broglie matter
waves very interesting and inspiring, and exchanged letters with Einstein which were
important for his formulation of wave mechanics. But Schrödinger could not believe
that such conditions could be reached for real gases. The experimental verification
of Einstein’s prediction of a condensation of atomic gases at low temperatures was
confirmed only 70 years after the prediction, in 1995. At the International Confer-
ence of Laser Spectroscopy on the island of Capri, Eric Cornell reported experiments
at the University of Boulder which confirmed Einstein’s prediction, as did parallel
experiments by Wolfgang Ketterle’s group at MIT. Nowadays, many groups around
the world work in that field, and several Nobel Prizes have been attributed. Note that
the effects we have discussed here, from the destruction of bound states in fermion
gases to the condensation phenomena in boson systems, are clearly strong correlation
effects.

1.3.2 Quantum Statistics of Interacting Gases

One of the difficulties in confirming experimentally the early theories of quantum
gaseswas that the particles in real gases or plasmas are always interacting. Themodels
by Einstein and Fermi, based on additive Hamiltonians, were just an abstraction. So
the need to include at least weak interactions as a perturbation was seen immediately.
For weakly degenerate systems, i.e., when the gas is still below the degeneracy line,
in order to go from classical statistics to the quantum case only a few changes are
needed in the classical theory. To see this, we study the mean potential energy, which
in quantum statistics is expressed by an expectation value and given by a trace, viz.,

U = 〈V 〉 = 1

2
Tr

[
U (12)ρ̂2(1, 2)

]
, (1.19)

where ρ̂2 is a two-particle density operator. An easy way to proceed is by using the
coordinate representations. The pair probability given classically by a Boltzmann
factor is to be replaced by its quantum-statistical counterpart, the Slater sum of pairs.
In this way, as shown by Beth and Uhlenbeck, the classical expressions remain valid
if we simply replace the Boltzmann factor by binary Slater sums (Uhlenbeck and
Beth 1936). The second virial coefficient expressed in terms of the binary Slater
function or Slater sum is

B2(T ) = 1

2

∫
dr

[
Sab(r) − 1

]
, (1.20)
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where r is the displacement vector between the two particles. In the classical case,
the Slater sum is identical to the Boltzmann factor. The pioneers Uhlenbeck and
Beth represented the Slater sum in terms of the wave functions, including bound
and scattering states. They thus expressed the second virial coefficient in terms of
the energy spectrum and the density of states nl(k). The density of states may be
expressed in terms of the scattering phase shifts or the Jost functions, using the
relations between scattering phase shifts and the Jost functions of scattering theory
(Uhlenbeck and Beth 1936; Kraeft et al. 1986; Kremp et al. 2005; Ebeling et al.
1976; Blaschke et al. 2014).

The extension of the statistical theory to strongly degenerate quantum gases can
be attributed to several scientific schools. We mention, for example, Alexei A.
Abrikosov, Nikolai N. Bogolyubov, Richard Feynman, Vitaly L. Ginzburg, Ryogo
Kubo,WalterKohn,LevD.Landau,ElliotMontroll, and JulianSchwinger (Abrikosov
et al. 1962;BogolyubovandBogolyubov1992;Feynman1972;Martin andSchwinger
1959;Montroll andWard1958).Among them,NikolaiN.Bogolyubovholds a special
place in our view. Coming originally from the Kiev school of nonlinear mechanics
and mathematics, he turned to statistical physics in the 1940s and 1950s, in par-
ticular to the method of distribution functions, where he developed with others the
method of the BBGKY hierarchy to derive the kinetic equations. He then turned to
the theory of superfluidity and superconductivity, formulated the microscopic theory
of superfluidity, and made other essential contributions. Later he worked on quantum
field theory, introduced the Bogolyubov transformation, and formulated and proved
several theorems now named after him.

1.4 Ionic Fluids and Dense Low-Temperature Plasmas

1.4.1 Coulomb Forces and Debye–Hückel–Wigner Theories

The lawof interaction between charged particleswas formulated byCharlesAugustin
de Coulomb around 1785. The force between two charges ea and eb is as a function
of the distance r in the radial direction (in Gaussian units)

F = −eaeb

εrr2
. (1.21)

This force is repulsive for equal charges and attractive for opposite charges. We
assume here that the two particles belong to species a and b and that εr is the
relative dielectric constant of the imbedding medium. The corresponding potential
was introduced above. The potential at distance r from a charge e and the related
field E(r) decay as 1/r . In the following, we work in the Gaussian system of units.
In the denominator, εr is the relative dielectric constant of the medium. In most cases
we will assume without comment that the plasma is imbedded in a vacuum, so that
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Fig. 1.6 Poster for a conference in 1999 in theUkrainian capitalKiev,whereNikolaiN.Bogolyubov
(1909–1992) was educated and begin his career

εr = 1. The electric field is source-free, except at the locations of the point charges,
which are the sources of the field. This leads to the Poisson equation for the potential,
which is the basic tool for the Debye–Hückel theory Fig. 1.6.

The idea due to Milner in 1912 is that free charges in an electroneutral ensemble
of charges are always surrounded by opposite charges which screen the Coulomb
fields. Milner’s theoretical treatment, which used mainly graphical tools, was quite
complicated. In 1923, Peter Debye presented a simpler theory based on Poisson’s
law and showed that the Milner effect is responsible for an exponential screening of
the fields. This regularization is needed since the integral over the naked Coulomb
potential is divergent, whence direct application of the method of virial expansions
fails. All the standard virial coefficients known from the statistical theory of gases
diverge for Coulomb potentials. As a consequence, it is known from the work of
Milner, Debye, and Debye–Hückel (1923) that the form of the thermodynamic func-
tions for gases or solutions containing particles satisfying Coulomb’s law, like plas-
mas and electrolytic solutions, show essential deviations from those of typical gases.
Density expansions of thermodynamic functions fail and completely different series
expansions are needed. In particular, the pressure or its analogue in solutions, the
osmotic pressure, cannot be expanded in Taylor series with respect to density. In the
statistically well founded approach due to Debye and Hückel (Debye 1923; Debye
and Hückel 1923; Kelbg 1963, 1972), the modern screening concept was developed.
Further important contributions to the classical statistical theory of screening ef-
fects were made by Bogolyubov, Mayer, Meeron, Zubarev, Yukhnovsky, Kelbg, and
Friedman (Friedman 1962; Bogolyubov and Bogolyubov 1992).

Let us now briefly discuss the concept of Debye screening based on the Pois-
son equation and some extensions, such as the Bogolyubov theory based on integral


