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Preface

Biostatistics is one of the scientific fields for which the developments during
the last decades of the 20th century have been the most important. Bio-
statistics is a pluri-disciplinary area combining statistics and biology, but
also agronomics, medicine or health sciences. It needs a good knowledge of
the mathematical background inherent in statistical methodology, in order
to understand the various fields of applications. The idea of this book is to
present a variety of research papers on the state of art in modern biostatistics.

Biostatistics is interacting with many scientific fields. To highlight this wide
diversity, we deliberately put these interactions at the center of our project.
Our book is therefore divided into two parts. Part I is presenting several
statistical models and methods for different biologic applications, while Part
II will be concerned with problems and statistical methods coming from other
related scientific fields.

This book intends to provide a basis for many people interested in biostatis-
tics and related sciences. Students, teachers and academic researchers will
find an overview on modelling and statistical analysis of biological data. Also,
the book is meant for practicioners involved in research organisations (phar-
macologic industry, medicine, food industry,..) for which statistics is an in-
dispensable tool.

Biology is a science which has always been in permanent interaction with
many other fields such as medicine, physics, environmetrics, chemistry, math-
ematics, probability, statistics . . .. On the other hand, statistics is interacting
with many other fields of mathematics as with almost all other scientific dis-
ciplines, including biology. For all these reasons, biostatistics is strongly
dependent on other scientific fields, and in order to provide a wide angle
overview we present here a rich diversity of applied problems.

Each contribution of this book presents one (or more) real problem. The
variation ranges from biological problems (see Chapter 1 and 10), medical
contributions (see Chapters 2, 4, 5, 8, 9 or 11) and genomics contributions (see
Chapters 3 and 7), to applications coming from other scientific areas, such as
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environmetrics (see Chapters 12), chemometrics (see Chapter 13), geophysics
(see Chapters 17 and 18) or image analysis (see Chapter 18). Because all these
disciplines are continuously taking benefits one from each other, this choice
highlights as well how each biostatistical method and modelling is helpful in
other areas and vice versa.

A good illustration of such a duality is provided by hazard analysis, which is
originally a medical survival problem (see Chapters 4, 9 or 11) but which leads
to substancial interest in many other fields (see e.g. the microearthquakes
analysis presented in Chapter 17). Another example is furnished by spatial
statistics (see Chapters 15 or 18) or food industry problems (see Chapter 13),
which are apparently far from medical purposes but whose developments
have obvious (and strong) consequences in medical image analysis and in
biochemical studies.

Due to the variety of applied biostatistical problems, the scope of meth-
ods is also very large. We adress therefore the diversity of these statistical
approaches by presenting recent developments in descriptive statistics (see
Chapters 7, 9, 14 and 19), parametric modelling (see Chapters 1, 2, 6 and
18) nonparametric estimation (see Chapters 3, 4, 11, 15 and 17) and semi-
parametrics (see Chapters 5, 8 and 10). An important place is devoted to
methods for analyzing functional data (see Chapters 12, 13, 16), which is
currently an active field of modern statistics.

An important feature of biostatistics is to have to deal with rather large
statistical sample sizes. This is particular true for genomics applications (see
Chapters 3 and 7) and for functional data modelling (see Chapters 12, 13
and 16). The computational issues linked with the methodologies presented in
this book are carried out thanks to the capacities of the XploRe environment.
Most of the methodological contributions are accompanied with automatic
and/or interactive XploRe quantlets.

We would like to express our gratitude to all the contributors. We are confi-
dent that the scope of papers will insure a large impact of this book on future
research lines and/or on applications in biostatistics and related fields. We
would also like to express our sincere gratitude to all the researchers that
we had the opportunity to meet in the past years. It would be tedious (and
hardly exhaustive) to name all of them expressely here but specific thanks
have to be adressed to our respective teams, will special mention to Anton
Andriyashin in Berlin and to the participants of the STAPH working group
in Toulouse.

July 2006 Wolfgang Ha
..

rdle, Yuichi Mori
Berlin, Okoyama, Toulouse and Philippe Vieu
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Part I

Biostatistics



1 Discriminant Analysis Based on
Continuous and Discrete
Variables

Avner Bar-Hen and Jean-Jacques Daudin

1.1 Introduction

In discrimination, as in many multivariate techniques, computation of a dis-
tance between two populations is often useful. For example in taxonomy, one
can be interested not only in discriminating between two populations but in
having an idea of how far apart the populations are. Mahalanobis’ ∆2 has
become the standard measure of distance when the observations are quan-
titative and Hotelling derived its distribution for normal populations. The
aim of this chapter is to adapt these results to the case where the observed
characteristics are a mixture of quantitative and qualitative variables.

A problem frequently encountered by the practitioner in Discriminant Analy-
sis is how to select the best variables. In mixed discriminant analysis (MDA),
i.e., discriminant analysis with both continuous and discrete variables, the
problem is more difficult because of the different nature of the variables.
Various methods have been proposed in recent years for selecting variables
in MDA. Here we use two versions of a generalized Mahalanobis distance
between populations based on the Kullback-Leibler divergence for the first
and on the Hellinger-Matusita distance for the second. Stopping rules are
established from distributional results.
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1.2 Generalisation of the Mahalanobis Distance

1.2.1 Introduction

Following Krzanowski (1983) the various distances proposed in the literature
can be broadly classified in two categories:

1. Measures based on ideas from information theory (like Kullback-Leibler
measures of information for example)

2. Measures related to Bhattacharya’s measure of affinity (like Matusita’s
distance for example)

A review of theses distance measures can be found, for example, in Adhikari
and Joshi (1956).

Mixture of continuous and discrete variables is frequently encountered in dis-
criminant analysis. The location model (Olkin and Tate, 1961; Krzanowski,
1990) is one possible way to deal with these data. Gower (1966) proposed
a formula for converting similarity to distance. Since this transformation
corresponds to the transformation of Bhattacharya’s measure of affinity to
Matusita’s distance, Krzanowski (1983) studied the properties of Matusita’s
distance in the framework of the location model. Since no distributional
properties were obtained, Krzanowski (1984), proposed to use Monte Carlo
procedures to obtain percentage points. This distance was also proposed as
a tool of selection of variables (Krzanowski, 1983). Distributional results
for Matusita will be presented in Section 1.2.3. At first we present another
generalization of the Mahalanobis distance, J , based on the Kullback-Leibler
divergence.

One of the aims of discriminant analysis is the allocation of unknown entities
to populations that are known a priori. A preliminary matter for considera-
tion before an outright or probabilistic allocation is made for an unclassified
entity X is to test the assumption that X belongs to one of the predefined
groups πi (i = 1, 2, . . . , n). One way of approaching this question is to test
if the smallest distance between X and πi is null or not. Most of the results
were obtained in the case of linear discriminant analysis where the probabil-
ity distribution function of the populations is assumed to be normal and with
a commom variance–covariance matrix Σ (McLachlan, 1992). Generally, the
squared Mahalanobis distance is computed between X and each population
πi. X will be assessed as atypical if the smallest distance is bigger than a
given threshold. Formally a preliminary test is of the form:

H0 : min
i

d(X, πi) = 0 versus H1 : min
i

d(X, πi) > 0
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In practical case, the assumption of normality can be unrealistic. For example
in taxonomy or in medicine, discrete and continuous measurements are taken.
We propose a preliminary test to the general parametric case

1.2.2 Kullback–Leibler Divergence

The idea of using distance to discriminate between population using both con-
tinuous and categorical variables was studied by various authors, see Cuadras
(1989), Morales, Pardo and Zografos (1998), Nakanishi (1996), Núñez, Vil-
larroya and Oller (2003). We generalise the Mahalanobis distance using the
divergence defined by Kullback-Leibler (Kullback, 1959) between two gener-
alised probability densities f1(X) and f2(X):

J = J {f1(X) ; f2(X)}

=
∫

{f1(X) − f2(X)} log
f1(X)
f2(X)

dλ

where λ , µ1 and µ2 are three probability measures absolutely continuous
with respect to each other and fi is the Radon–Nikodym derivative of µi

with respect to λ.

Except the triangular inequality, the Kullback-Leibler distance has the prop-
erties of a distance. Moreover, if f1 and f2 are multivariate normal distribu-
tions with common variance-covariance matrix then J(f1; f2) is equal to the
Mahalanobis distance.

Application to the Location Model

Suppose that q continuous variables X = (X1 , . . . , Xq)� and d discrete
variables Y = (Y1, . . . , Yd)� are measured on each unit and that the units
are drawn from the population π1 or the population π2.

Moreover suppose that the condition of the location model (Krzanowski,
1990) holds. This means that:

• The d discrete variables define a multinomial vector Z containing c
possible states. The probability of observing state m in the population
πi is:

pim > 0 (m = 1, . . . , c) and
c∑

m=1

pim = 1 , (i = 1, 2)
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• Conditionally on Z = m and πi, the q continuous variables X follow a
multivariate normal distribution with mean µ

(m)
i , variance–covariance

matrix Σ(m)
i and density:

fi,m(X) = f(X |Z = m,πi)

• For the sake of simplicity, we assume Σ(m)
1 = Σ(m)

2 = Σ.

Since the aim is to compute the distance between π1 and π2 on the basis of
the measurement made on X and Z, the joint density of X and Z given πi

is needed:

fi(x, z) =
c∑

m=1

fi,m(x)p(Z = m|πi)I(z = m)

=
c∑

m=1

fi,m(x)pimI(z = m)

This model was extended by some authors. Liu and Rubin (1998) relaxed
the normality assumption. Bedrick,, Lapidus and Powell (2000) considered
the inverse conditioning and end up with a probit model and de Leon and
Carrière (2004) generalize the Krzanowski and Bedrick approach.

PROPOSITION 1.1 By applying the Kullback–Leibler measure of dis-
tance to the location model, we obtain:

J = J1 + J2 (1.1)

with
J1 =

∑
m

(p1m − p2m) log
p1m

p2m

and
J2 =

1
2

∑
m

(p1m + p2m)(µ(m)
1 − µ

(m)
2 )�Σ−1(µ(m)

1 − µ
(m)
2 )

The proof is straightforward.

Remark: This expression is meaningless if pim = 0.
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COROLLARY 1.1 If the continuous variables are independent of the dis-
crete variables then:

µ
(m)
1 = µ1 and µ

(m)
2 = µ2 for all m

and
J =

∑
m

(p1m − p2m) log
p1m

p2m
+ (µ1 − µ2)�Σ−1(µ1 − µ2)

which means that the Kullback-Leibler distance is equal to the sum of the
contribution of the continuous and the discrete variables. This result is logical
since J1 represents the information based on Z, and J2 the information based
on X knowing Z.

Asymptotic Distribution of the Kullback-Leibler Distance in the Location
Model

Generally the pim, µim and Σ are unknown and have to be estimated from
a sample using a model. Consider that we have two samples of size n1

and n2 respectively available from the population π1 and π2 and let nim

be the number of individuals, in the sample drawn from πi, occupying the
state m of the multinomial variable Z. In the model, there are two kinds of
parameters: those which depend on the populations, and noisy parameters
which are independent from the populations. They can be considered as noisy
parameters since this category of parameters is not involved in the distance
J . For example, if the mean is modelled with an analysis of variance model:

µim = µ + αi + βm

where α is the population effect and β the discrete state effect. The expression
of the distance is:

µ1m − µ2m = α1 − α2

So the βm can be considered to be noisy parameters since they are not in-
volved in the distance.

Let p be the vector of probability associated to the multinomial state of Z
then

p̂ = p(η̂) (1.2)

where η = (ηa, ηib); ηa is the set of noisy parameters and ηib is the set of
parameters used to discriminate between two populations.

Let r be the cardinal of ηib. In the case of the location model, the pim are
generally estimated through a log-linear model.
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Let µ be the vector of the mean of the continuous variables for the different
states of Z then:

µ̂ = µ(ξ̂) (1.3)

where ξ = (ξa, ξib); ξa is the set of noisy parameters and ξib is the set of
parameters used to discriminate between two populations.

Let s be the cardinal of ξib. In the case of the location model, the µim are
generally estimated through an analysis of variance model. Asparoukhov
and Krzanowski (2000) also studied the smoothing of the location model
parameters.

The aim of this section is to study the distributional property of both parts
of the distance to obtain a test and a confidence interval for the classical
hypothesis. Formally the following hypothesis are tested:

H01 : J1 = 0 versus H11 : J1 > 0
H02 : J2 = 0 versus H12 : J2 > 0
H0 : J = 0 (H01 ∩ H02) versus H1 : J > 0 (H11 ∪ H12)

Asymptotic Results

Let θi = (ηa, ξa, ηib, ξib) = (θa, θib) for i = 1, 2 where ηa, ξa, ηib, ξib are defined
in (1.2) and (1.3). The following regularity conditions are assumed:

• θi is a point of the parameter space Θ, which is assumed to be an open
convex set in a (r + s)-dimensional Euclidean space.

• f(x, θi) has continuous second–order partial derivatives with respect to
the θi’s in Θ,

• θ̂i is the maximum likelihood estimator of θ̂i

• For all θi ∈ Θ,∫
∂f(x, θi)

∂θi
dλ(x) =

∫
∂2f(x, θi)

∂2θi
dλ(x) = 0 i = 1, 2

• The integrals

c(θi) =
∫ {

∂ log f(x, θi)
∂θi

}2

f(x, θi)dλ(x) i = 1, 2

are positive and finite for all θi ∈ Θ.
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It is obvious that the location model satisfies these conditions. Let Ĵ = J(θ̂)
be an estimator of J .

PROPOSITION 1.2 Under H0: θ1 = θ2 = θ0 , when n1 → ∞, n2 → ∞
and n1

n2
→ u :

n1n2

n1 + n2
Ĵ ∼ χ2(r + s) (1.4)

where r are s are the dimension of the space generated by ηib and ξib

Proof:

Ĵ =
∫ {

f(x, θ̂1) − f(x, θ̂2)
}

log

{
f(x, θ̂1)

f(x, θ̂2)

}
dλ(x) (1.5)

Since pim > 0, the regularity conditions are satisfied. Therefore,Under H0:
θ1 = θ2 = θ0 a Taylor expansion of first order of f(x, θ̂1) and f(x, θ̂2) at the
neighbourhood of θ0 can be used:

Ĵ = J + (θ̂1 − θ1)�
∂J

∂θ1
+ (θ̂2 − θ2)�

∂J

∂θ2

+
1
2
(θ̂1 − θ1)�

∂2J

∂θ2
1

(θ̂1 − θ1) +
1
2
(θ̂2 − θ2)�

∂2J

∂θ2
2

(θ̂2 − θ2)

+(θ̂2 − θ2)�
∂2J

∂θ1∂θ2
(θ̂1 − θ1) + σ(θ̂1 − θ1) + σ(θ̂2 − θ2)

Under H0:

∂J

∂θ1
=
∫ [

∂f(x, θ1)
∂θ1

log
{

f(x, θ1)
f(x, θ2)

}
− ∂f(x, θ1)

∂θ1

f(x, θ2)
f(x, θ1)

]
dλ(x) = 0

since θ1 = θ2 = θ0 and
∫ ∂f(x,θ1)

∂θ1
= 0. For the same reason ∂J

∂θ2
= 0

For all i, j = 1, 2:

∂2J

∂θi∂θj
= (θ̂i − θi)�

∫
f ′2(x, θ0)
f(x, θ0)

dλ(x)(θ̂j − θj)

= (θ̂i − θi)�I(θ0)(θ̂j − θj)

where I(θ0) represents the information matrix of Fisher.
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Asymptotically, under H0, (1.5) becomes:

Ĵ =
1
2
(θ̂1 − θ0)�I(θ0)(θ̂1 − θ0) +

1
2
(θ̂2 − θ0)�I(θ0)(θ̂2 − θ0)

+(θ̂1 − θ0)�I(θ0)(θ̂2 − θ0)

= (θ̂1 − θ̂2)�I(θ0)(θ̂1 − θ̂2)

Since θ̂i is the maximum likelihood estimator of θ0 (Rao, 1973):√
ni(θ̂i − θ0) ∼ Np

{
0, I−1(θ0)

}
(i = 1, 2) Then:√

n1n2

n1 + n2
(θ̂1 − θ0) ∼ Np

{
0,

1
1 + u

I−1(θ0)
}

√
n1n2

n1 + n2
(θ̂2 − θ0) ∼ Np

{
0,

u

1 + u
I−1(θ0)

}
Then √

n1n2

n1 + n2
I(θ0)

1
2

(
θ̂1 − θ̂2

)
∼ Np(0, 1)

Finally,
n1n2

n1 + n2

(
θ̂1 − θ̂2

)�
I(θ0)

(
θ̂1 − θ̂2

)
∼ χ2(r + s)

COROLLARY 1.2 Under H01:
n1n2

n1 + n2
Ĵ1 ∼ χ2(r) when n1 → ∞ , n2 → ∞ and

n1

n2
→ u

Proof: It is enough to apply the proposition 1.2 with q = 0, which means
the absence of continuous variables.

PROPOSITION 1.3 Under H02:
n1n2

n1 + n2
Ĵ2 ∼ χ2(s) when n1 → ∞ , n2 → ∞ and

n1

n2
→ u

Proof: The proof is very similar to the proof of the proposition 1.2.

1.2.3 Asymptotic Distribution of Matusita Distance

Krzanowski (1983) used Bhattacharya’s affinity measure:

ρ =
∫

f
1
2 (x, θ1)f

1
2 (x, θ2)dλ(x)
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to define the distance:

∆ =
∫ {

f
1
2 (x, θ1) − f

1
2 (x, θ2)

}2

dλ(x)

= 2 − 2ρ

This distance is also known as the Hellinger distance. In the location model
context Krzanowski has obtained:

K = 2 − 2
∑
m

(p1mp2m)
1
2 exp{−1

8
(µ1,m − µ2,m)�Σ−1(µ1,m − µ2,m)}

Let θi = (ηa, ξa, ηbi, ξbi) = (θa, θbi) for i = 1, 2. Under H0 = (θ1 = θ2), we
have ξbi = 0 and ηbi = 0 for i = 1, 2.

Under the usual regularity conditions, we prove the following result:

PROPOSITION 1.4 Let u ∈]0, 1[, K̂ = K(θ̂1, θ̂2) with

K̂ = 2 − 2
∑
m

(p̂1mp̂2m)
1
2 exp{−1

8
(µ̂1,m − µ̂2,m)�Σ̂−1(µ̂1,m − µ̂2,m)}

Assume that H0: θ1 = θ2 = θ0 is true and that θ̂1 and θ̂2 are indepen-
dent asymptotically efficient estimates of θ0. Then for n1 → ∞, n2 → ∞,
n1/n2 → u

4n1n2

(n1 + n2)
K(θ̂1, θ̂2) ∼ χ2(r + s)

Proof

Under H0: θ1 = θ2 = θ0, we obtain:

K(θ0) = 0

∂K

∂θ1
=

∂K

∂θ2
= 0

and
∂2K

∂θ2
1

=
∂2K

∂θ2
2

= − ∂2K

∂θ1∂θ2
=

1
2

∫
f ′2(x, θ0)
f(x, θ0)

dλ(x) =
1
2
I(θ0)

where I(θ0) is the information matrix of Fisher. Under usual regularity
conditions (Bar-Hen and Daudin, 1995), the Taylor expansion of the affinity
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at the neighborhood of θ0 can be derived and using the previous result we
have, under H0:

K(θ̂1, θ̂2) ≈
1
4
(θ̂1 − θ̂2)�I(θ0)(θ̂1 − θ̂2)

Since θ̂i are independent asymptotically efficient estimator of θ0,
n

1
2
i (θ̂i − θ0) ∼ Np

(
0, I−1(θ0)

)
(i = 1, 2). Then:

(
n1n2

n1 + n2

) 1
2

(θ̂1 − θ0) ∼ Np

{
0,

1
1 + u

I−1(θ0)
}

(
n1n2

n1 + n2

) 1
2

(θ̂2 − θ0) ∼ Np

{
0,

u

1 + u
I−1(θ0)

}
Then (

n1n2

n1 + n2

) 1
2

I(θ0)
1
2

(
θ̂1 − θ̂2

)
∼ Np(0, 1)

Additional results can be found in Bar-Hen and Daudin (1998).

1.2.4 Simulations

The level and the power of the test described in the previous section were
evaluated through simulations. One continuous variable and two binary vari-
ables are considered. Hence the multinomial vector Z has 4 levels. The
estimates of the means, the proportions and the variance are the maximum
likelihood estimates. These estimates corresponds to saturated model and
therefore the test of the distance has 7 degrees of freedom. It has to be noted
that no correction factor for the case pim = 0 and therefore empty cells are
taken into account for the computation of the distance.

Four cases were studied:

1. no population effect for the discrete variables and no population effect
for the continuous variables (K = 0);

2. no population effect for the discrete variables but a population effect
for the continuous variables;

3. a population effect for the discrete variables but no population effect
for the continuous variables;
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4. a population effect for the discrete and the continuous variables.

For the continuous variables, the population effect is equal to the standard
error:

µ1,m − µ2,m

σ
=
{

0 if population effect is present
1 if population effect is not present

For the discrete variables:

log
(

p1m

p2m

)
=
{

0 if population effect is present
1 if population effect is not present

Since the aim of these simulations is to estimate the rate of convergence of
the asymptotic distributions, populations of size 20 and 100 were considered.
This gives three new cases:

1. population π1 of size 10 and population π2 of size 10

2. population π1 of size 30 and population π2 of size 30

3. population π1 of size 100 and population π2 of size 100

There are 12 combinations of hypotheses and populations sizes. 1000 simula-
tions were done for each combination. The table below presents the number
of non–significant tests at the 5% level.

By using the property of the binomial distribution, one may expect to obtain
50± 1.96× (1000× 0.5× 0.95)

1
2 = 50± 14 tests to be non–significant if the

null hypothesis is true.

From Table 1.1, we deduce that the level of the test is respected as soon as
n ≥ 30. This means 30/4 observations per cell. The power of the test tends
to 1 but the convergence is slower for the discrete variables. This result is
not surprising.

It has to be noted that these simulations are limited. The use of non-saturated
model for the estimation of the parameters and the use of a correction factor
for empty cell can probably alter the results.

1.3 Methods and Stopping Rules for Selecting
Variables

As in the usual discriminant analysis with continuous variables, selection of
variables is a problem of practical importance. In fact, in the location model
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Table 1.1: Number of significant test at the 5% level for the various hypothe-
ses

population effect for size of population Hypothesis tested
discrete var. continuous var. π1 π2 K = 0

no no 10 10 68
no no 30 30 60
no no 100 100 60
no yes 10 10 251
no yes 30 30 798
no yes 100 100 1000
yes no 10 10 144
yes no 30 30 255
yes no 100 100 711
yes yes 10 10 344
yes yes 30 30 872
yes yes 100 100 1000

context, the question is more precisely ”which terms and which continuous
variables must be included in the model?” where the models concerned are
log-linear and MANOVA. Interest in this topic has been shown regularly
since the paper published by Vlachnonikolis and Marriot (1982). Krzanowski
(1983) used a Matusita-Hellinger distance between the populations, Daudin
(1986) used a modified AIC method and Krusinska (1989), Krusinska (1990)
used several methods based on the percentage of misclassification, Hotelling’s
T 2 and graphical models.

Based on Hellinger distance, Krzanowski (1983) proposed the use of a dis-
tance K to determine the most discriminative variables.

Our asymptotic results allow us to propose stopping rules based on the P -
value of the test of J = 0 or K = 0. These two methods were then com-
pared with a third, based on the Akaike Information Criterion (AIC) de-
scribed by Daudin (1986): classically, AIC penalize the likelihood by the
number of parameters. A direct use of AIC on MANOVA models (described
in Section 1.2.2) will lead to noncomparable log-likelihood. Daudin (1986)
proposed to eliminate the noisy parameters (noted βm) and to penalize the
log-likelihood by the number of parameters related to the population effect.
It permits to judge whether the log-likelihood and the increase of AIC is only
due to population factor terms in the ANOVA model and is not coming from
noisy parameters.
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Krzanowski (1983) used the distance K to select variables. It should be
noted that K̂ increases when the location model contains more variables
without guaranteeing that this increase is effective: it is therefore necessary
to discount any slight increase that may be caused by chance. We propose to
include a new discriminant variable or a new term in the location model if it
increases the evidence that H0 (K = 0) is false as measured by the P -value
of the test of the null hypothesis, using the asymptotic distribution of K̂.

It would be interesting to test whether the increase of K due to a new term
in the model is positive. Unfortunately when K is positive (H0 false) the
asymptotic distribution of the increase in K̂ due to a new term is not easily
tractable under the hypothesis that the new parameter is null.

An alternative criterion is an Akaike-like one: K−AIC = 4 n1n2
n1+n2

K̂−2(r+s).
According to this method, the best model is that which maximizes K−AIC.

It is also possible to use Ĵ with the same methods: we can use the P -value
of the chi-square test of J = 0 or alternatively J −AIC = n1n2

n1+n2
Ĵ − 2(r + s)

Based on simulations, Daudin and Bar-Hen (1999) showed that all three
competing methods (two distances and Daudin-AIC ) gave good overall per-
formances (nearly 85% correct selection). The K-method has weak power
with discrete variables when sample sizes are small but is a good choice
when a simple model is requested. The J-method possesses an interesting
decomposition property of J = J1 + J2 between the discrete and continuous
variables. The K-AIC and J-AIC methods select models that have more
parameters than the P -value methods. For distance, the K-AIC method
may be used with small samples, but the J-AIC method is not interesting
for it increases the overparametrization of the J − P method. The Daudin-
AIC method gives good overall performance with a known tendency toward
overparametrization.

1.4 Reject Option

1.4.1 Distributional Result

Since the aim is to test the atypicality of X, we have to derive the distribution
of the estimate of the divergence J between X and πi under the hypothesis
J(X, πi) > 0. We don’t make assumptions about the distribution of the
populations but the same regularity conditions as before are assumed. Bar-
Hen and Daudin (1997) and Bar-Hen (2001) considered the reject option for
the case of normal populations.


