Statistical Methods for Biostatistics and Related Fields

# Wolfgang Härdle • Yuichi Mori Philippe Vieu 

# Statistical Methods for Biostatistics and Related Fields 

With 91 Figures and 57 Tables

Professor Wolfgang Härdle<br>CASE - Center for Applied Statistics and Economics<br>Institute for Statistics and Econometrics<br>School of Business and Economics<br>Humboldt Universität zu Berlin<br>Spandauer Str. 1<br>10178 Berlin<br>haerdle@wiwi.hu-berlin.de

Professor Yuichi Mori<br>Department of Socio-information<br>Okayama University of Sciences<br>1-1 Ridai-cho<br>700-0005 Okayama<br>mori@soci.ous.ac.jp

Professor Philippe Vieu<br>Laboratoire de Statistique et Probabilités<br>Université Paul Sabatier<br>118 route de Narbonne<br>31062 Toulouse Cedex<br>vieu@cict.fr

Library of Congress Control Number: 2006934207
ISBN-13 978-3-540-32690-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2007
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Production: LE-TEX Jelonek, Schmidt \& Vöckler GbR, Leipzig
Cover-design: Erich Kirchner, Heidelberg

## Preface

Biostatistics is one of the scientific fields for which the developments during the last decades of the 20th century have been the most important. Biostatistics is a pluri-disciplinary area combining statistics and biology, but also agronomics, medicine or health sciences. It needs a good knowledge of the mathematical background inherent in statistical methodology, in order to understand the various fields of applications. The idea of this book is to present a variety of research papers on the state of art in modern biostatistics.

Biostatistics is interacting with many scientific fields. To highlight this wide diversity, we deliberately put these interactions at the center of our project. Our book is therefore divided into two parts. Part I is presenting several statistical models and methods for different biologic applications, while Part II will be concerned with problems and statistical methods coming from other related scientific fields.

This book intends to provide a basis for many people interested in biostatistics and related sciences. Students, teachers and academic researchers will find an overview on modelling and statistical analysis of biological data. Also, the book is meant for practicioners involved in research organisations (pharmacologic industry, medicine, food industry,..) for which statistics is an indispensable tool.

Biology is a science which has always been in permanent interaction with many other fields such as medicine, physics, environmetrics, chemistry, mathematics, probability, statistics .... On the other hand, statistics is interacting with many other fields of mathematics as with almost all other scientific disciplines, including biology. For all these reasons, biostatistics is strongly dependent on other scientific fields, and in order to provide a wide angle overview we present here a rich diversity of applied problems.

Each contribution of this book presents one (or more) real problem. The variation ranges from biological problems (see Chapter 1 and 10), medical contributions (see Chapters 2, 4, 5, 8, 9 or 11) and genomics contributions (see Chapters 3 and 7), to applications coming from other scientific areas, such as
environmetrics (see Chapters 12), chemometrics (see Chapter 13), geophysics (see Chapters 17 and 18) or image analysis (see Chapter 18). Because all these disciplines are continuously taking benefits one from each other, this choice highlights as well how each biostatistical method and modelling is helpful in other areas and vice versa.

A good illustration of such a duality is provided by hazard analysis, which is originally a medical survival problem (see Chapters 4, 9 or 11) but which leads to substancial interest in many other fields (see e.g. the microearthquakes analysis presented in Chapter 17). Another example is furnished by spatial statistics (see Chapters 15 or 18) or food industry problems (see Chapter 13), which are apparently far from medical purposes but whose developments have obvious (and strong) consequences in medical image analysis and in biochemical studies.

Due to the variety of applied biostatistical problems, the scope of methods is also very large. We adress therefore the diversity of these statistical approaches by presenting recent developments in descriptive statistics (see Chapters 7, 9, 14 and 19), parametric modelling (see Chapters 1, 2, 6 and 18) nonparametric estimation (see Chapters $3,4,11,15$ and 17) and semiparametrics (see Chapters 5, 8 and 10). An important place is devoted to methods for analyzing functional data (see Chapters 12, 13, 16), which is currently an active field of modern statistics.

An important feature of biostatistics is to have to deal with rather large statistical sample sizes. This is particular true for genomics applications (see Chapters 3 and 7 ) and for functional data modelling (see Chapters 12, 13 and 16). The computational issues linked with the methodologies presented in this book are carried out thanks to the capacities of the XploRe environment. Most of the methodological contributions are accompanied with automatic and/or interactive XploRe quantlets.

We would like to express our gratitude to all the contributors. We are confident that the scope of papers will insure a large impact of this book on future research lines and/or on applications in biostatistics and related fields. We would also like to express our sincere gratitude to all the researchers that we had the opportunity to meet in the past years. It would be tedious (and hardly exhaustive) to name all of them expressely here but specific thanks have to be adressed to our respective teams, will special mention to Anton Andriyashin in Berlin and to the participants of the STAPH working group in Toulouse.

July 2006
Berlin, Okoyama, Toulouse

Wolfgang Härdle, Yuichi Mori
and Philippe Vieu

## Contents

I Biostatistics ..... 1
1 Discriminant Analysis Based on Continuous and Discrete Variables ..... 3
Avner Bar-Hen and Jean-Jacques Daudin
1.1 Introduction ..... 3
1.2 Generalisation of the Mahalanobis Distance ..... 4
1.2.1 Introduction ..... 4
1.2.2 Kullback-Leibler Divergence ..... 5
1.2.3 Asymptotic Distribution of Matusita Distance ..... 10
1.2.4 Simulations ..... 12
1.3 Methods and Stopping Rules for Selecting Variables ..... 13
1.4 Reject Option ..... 15
1.4.1 Distributional Result ..... 15
1.4.2 Derivation of the Preliminary Test ..... 18
1.5 Example ..... 22
1.5.1 Location Model ..... 22
1.5.2 Comparison with the Linear Discriminant Analysis ..... 24
1.5.3 Conclusion ..... 24
Bibliography ..... 25
2 Longitudinal Data Analysis with Linear Regression ..... 29
Jörg Breitung, Rémy Slama and Axel Werwatz
2.1 Introduction ..... 29
2.2 Theoretical Aspects ..... 32
2.2.1 The Fixed-effect Model ..... 32
2.2.2 The Random Effects Model ..... 36
2.3 Computing Fixed and Random-effect Models ..... 37
2.3.1 Data Preparation ..... 37
2.3.2 Fixed and Random-effect Linear Regression ..... 38
2.3.3 Options for panfix ..... 38
2.3.4 Options for panrand ..... 39
2.4 Application ..... 40
2.4.1 Results ..... 41
Bibliography ..... 43
3 A Kernel Method Used for the Analysis of Replicated Micro-array Experiments ..... 45
Ali Gannoun, Beno Liquetît, Jérôme Saracco and Wolfgang Urfer
3.1 Introduction ..... 45
3.2 Statistical Model and Some Existing Methods ..... 46
3.2.1 The Basic Model ..... 47
3.2.2 The T-test ..... 47
3.2.3 The Mixture Model Approach ..... 48
3.3 A Fully Nonparametric Approach ..... 49
3.3.1 Kernel Estimation of $f_{0}$ and $f$ ..... 50
3.3.2 The Reflection Approach in Kernel Estimation ..... 50
3.3.3 Implementation of the Nonparametric Method ..... 51
3.4 Data Analysis ..... 52
3.4.1 Results Obtained with the Normal Mixture Model ..... 53
3.4.2 Results Obtained with the Nonparametric Approach ..... 53
3.4.3 A Simulation Study ..... 56
3.5 Discussion and Concluding Remarks ..... 58
Bibliography ..... 59
4 Kernel Estimates of Hazard Functions for Biomedical Data Sets ..... 63
Ivana Horová and Jiří Zelinka
4.1 Introduction ..... 63
4.2 Kernel Estimate of the Hazard Function and Its Derivatives ..... 64
4.3 Choosing the Shape of the Kernel ..... 68
4.4 Choosing the Bandwidth ..... 69
4.5 Description of the Procedure ..... 74
4.6 Application ..... 75
Bibliography ..... 83
5 Partially Linear Models ..... 87
Wolfgang Härdle and Hua Liang
5.1 Introduction ..... 87
5.2 Estimation and Nonparametric Fits ..... 89
5.2.1 Kernel Regression ..... 89
5.2.2 Local Polynomial ..... 90
5.2.3 Piecewise Polynomial ..... 93
5.2.4 Least Square Spline ..... 96
5.3 Heteroscedastic Cases ..... 97
5.3.1 Variance Is a Function of Exogenous Variables ..... 98
5.3.2 Variance Is an Unknown Function of $T$ ..... 99
5.3.3 Variance Is a Function of the Mean ..... 99
5.4 Real Data Examples ..... 100
Bibliography ..... 102
6 Analysis of Contingency Tables ..... 105
Masahiro Kuroda
6.1 Introduction ..... 105
6.2 Log-linear Models ..... 105
6.2.1 Log-linear Models for Two-way Contingency Tables ..... 106
6.2.2 Log-linear Models for Three-way Contingency Tables ..... 107
6.2.3 Generalized Linear Models ..... 109
6.2.4 Fitting to Log-linear Models ..... 111
6.3 Inference for Log-linear Models Using XploRe ..... 113
6.3.1 Estimation of the Parameter Vector $\lambda$ ..... 113
6.3.2 Computing Statistics for the Log-linear Models ..... 113
6.3.3 Model Comparison and Selection ..... 114
6.4 Numerical Analysis of Contingency Tables ..... 115
6.4.1 Testing Independence ..... 115
6.4.2 Model Comparison ..... 119
Bibliography ..... 124
7 Identifying Coexpressed Genes ..... 125
Qihua Wang
7.1 Introduction ..... 125
7.2 Methodology and Implementation ..... 127
7.2.1 Weighting Adjustment ..... 128
7.2.2 Clustering ..... 132
7.3 Concluding Remarks ..... 142
Bibliography ..... 144
8 Bootstrap Methods for Testing Interactions in GAMs ..... 147
Javier Roca-Pardiñas, Carmen Cadarso-Suárez and Wenceslao González-Manteiga
8.1 Introduction ..... 147
8.2 Logistic GAM with Interactions ..... 149
8.2.1 Estimation: the Local Scoring Algorithm ..... 150
8.3 Bootstrap-based Testing for Interactions ..... 152
8.3.1 Likelihood Ratio-based Test ..... 153
8.3.2 Direct Test ..... 153
8.3.3 Bootstrap Approximation ..... 153
8.4 Simulation Study ..... 154
8.5 Application to Real Data Sets ..... 156
8.5.1 Neural Basis of Decision Making ..... 156
8.5.2 Risk of Post-operative Infection ..... 159
8.6 Discussion ..... 162
8.7 Appendix ..... 163
Bibliography ..... 165
9 Survival Trees ..... 167
Carmela Cappelli and Heping Zhang
9.1 Introduction ..... 167
9.2 Methodology ..... 170
9.2.1 Splitting Criteria ..... 170
9.2.2 Pruning ..... 173
9.3 The Quantlet stree ..... 174
9.3.1 Syntax ..... 174
9.3.2 Example ..... 175
Bibliography ..... 179
10 A Semiparametric Reference Curves Estimation ..... 181
Saracco Jérôme, Gannoun Ali, Guinot Christiane and Liquet Benoît 10.1 Introduction ..... 181
10.2 Kernel Estimation of Reference Curves ..... 184
10.3 A Semiparametric Approach Via Sliced Inverse Regression ..... 187
10.3.1 Dimension Reduction Context ..... 187
10.3.2 Estimation Procedure ..... 191
10.3.3 Asymptotic Property ..... 192
10.3.4 A Simulated Example ..... 193
10.4 Case Study on Biophysical Properties of the Skin ..... 195
10.4.1 Overview of the Variables ..... 196
10.4.2 Methodological Procedure ..... 197
10.4.3 Results and Interpretation ..... 198
10.5 Conclusion ..... 200
Bibliography ..... 201
11 Survival Analysis ..... 207
Makoto Tomita
11.1 Introduction ..... 207
11.2 Data Sets ..... 208
11.3 Data on the Period up to Sympton Recurrence ..... 208
11.3.1 Kaplan-Meier Estimate ..... 208
11.3.2 log-rank Test ..... 210
11.4 Data for Aseptic Necrosis ..... 211
11.4.1 Kaplan-Meier Estimate ..... 214
11.4.2 log-rank Test ..... 214
11.4.3 Cox's Regression ..... 215
Bibliography ..... 217
II Related Sciences ..... 219
12 Ozone Pollution Forecasting ..... 221
Hervé Cardot, Christophe Crambes and Pascal Sarda
12.1 Introduction ..... 221
12.2 A Brief Analysis of the Data ..... 222
12.2.1 Description of the Data ..... 222
12.2.2 Principal Component Analysis ..... 224
12.2.3 Functional Principal Component Analysis ..... 225
12.3 Functional Linear Model ..... 226
12.3.1 Spline Estimation of $\alpha$ ..... 227
12.3.2 Selection of the Parameters ..... 228
12.3.3 Multiple Functional Linear Model ..... 229
12.4 Functional Linear Regression for Conditional Quantiles Esti- mation ..... 231
12.4.1 Spline Estimator of $\Psi_{\alpha}$ ..... 232
12.4.2 Multiple Conditional Quantiles ..... 234
12.5 Application to Ozone Prediction ..... 235
12.5.1 Prediction of the Conditional Mean ..... 236
12.5.2 Prediction of the Conditional Median ..... 236
12.5.3 Analysis of the Results ..... 238
Bibliography ..... 242
13 Nonparametric Functional Chemometric Analysis ..... 245
Frédéric Ferraty, Aldo Goia and Philippe Vieu
13.1 Introduction ..... 245
13.2 General Considerations ..... 246
13.2.1 Introduction to Spectrometric Data ..... 246
13.2.2 Introduction to Nonparametric Statistics for Curves ..... 248
13.2.3 Notion of Proximity Between Curves ..... 249
13.2.4 XploRe Quantlets for Proximity Between Curves ..... 251
13.3 Functional Nonparametric Regression ..... 252
13.3.1 The Statistical Problem ..... 252
13.3.2 The Nonparametric Functional Estimate ..... 253
13.3.3 Prediction of Fat Percentage from Continuous Spectrum ..... 254
13.3.4 The XploRe Quantlet ..... 255
13.3.5 Comments on Bandwidth Choice ..... 256
13.4 Nonparametric Curves Discrimination ..... 257
13.4.1 The Statistical Problem ..... 257
13.4.2 A Nonparametric Curves Discrimination Method ..... 258
13.4.3 Discrimination of Spectrometric Curves ..... 260
13.4.4 The XploRe Quantlet ..... 261
13.5 Concluding Comments ..... 262
Bibliography ..... 263
14 Variable Selection in Principal Component Analysis ..... 265
Yuichi Mori, Masaya Iizuka, Tomoyuki Tarumi and Yutaka Tanaka 14.1 Introduction ..... 265
14.2 Variable Selection in PCA ..... 267
14.3 Modified PCA ..... 268
14.4 Selection Procedures ..... 269
14.5 Quantlet ..... 272
14.6 Examples ..... 273
14.6.1 Artificial Data ..... 273
14.6.2 Application Data ..... 279
Bibliography ..... 282
15 Spatial Statistics ..... 285
Pavel Čížek, Wolfgang Härdle and Jürgen Symanzik
15.1 Introduction ..... 285
15.2 Analysis of Geostatistical Data ..... 287
15.2.1 Trend Surfaces ..... 288
15.2.2 Kriging ..... 290
15.2.3 Correlogram and Variogram ..... 292
15.3 Spatial Point Process Analysis ..... 297
15.4 Discussion ..... 303
15.5 Acknowledgements ..... 303
Bibliography ..... 303
16 Functional Data Analysis ..... 305
Michal Benko
16.1 Introduction ..... 305
16.2 Functional Basis Expansion ..... 307
16.2.1 Fourier Basis ..... 308
16.2.2 Polynomial Basis ..... 309
16.2.3 B-Spline Basis ..... 309
16.2.4 Data Set as Basis ..... 309
16.3 Approximation and Coefficient Estimation ..... 310
16.3.1 Software Implementation ..... 312
16.3.2 Temperature Example ..... 313
16.4 Functional Principal Components ..... 314
16.4.1 Implementation ..... 317
16.4.2 Data Set as Basis ..... 319
16.5 Smoothed Principal Components Analysis ..... 321
16.5.1 Implementation Using Basis Expansion ..... 323
16.5.2 Temperature Example ..... 323
Bibliography ..... 326
17 Analysis of Failure Time with Microearthquakes Applications ..... 329
Graciela Estévez-Pérez and Alejandro Quintela del Rio
17.1 Introduction ..... 329
17.2 Kernel Estimation of Hazard Function ..... 330
17.3 An Application to Real Data ..... 336
17.3.1 The Occurrence Process of Earthquakes ..... 336
17.3.2 Galicia Earthquakes Data ..... 337
17.4 Conclusions ..... 342
Bibliography ..... 343
18 Landcover Prediction ..... 347
Frédéric Ferraty, Martin Paegelow and Pascal Sarda
18.1 Introduction ..... 347
18.2 Presentation of the Data ..... 348
18.2.1 The Area: the Garrotxes ..... 348
18.2.2 The Data Set ..... 348
18.3 The Multilogit Regression Model ..... 349
18.4 Penalized Log-likelihood Estimation ..... 351
18.5 Polychotomous Regression in Action ..... 352
18.6 Results and Interpretation ..... 353
Bibliography ..... 356
19 The Application of Fuzzy Clustering to Satellite Images Data ..... 357
Hizir Sofyan, Muzailin Affan and Khaled Bawahidi
19.1 Introduction ..... 357
19.2 Remote Sensing ..... 358
19.3 Fuzzy C-means Method ..... 359
19.3.1 Data and Methods ..... 361
19.4 Results and Discussions ..... 362
Bibliography ..... 366
Index ..... 367

## Part I

## Biostatistics

# 1 Discriminant Analysis Based on Continuous and Discrete Variables 

Avner Bar-Hen and Jean-Jacques Daudin

### 1.1 Introduction

In discrimination, as in many multivariate techniques, computation of a distance between two populations is often useful. For example in taxonomy, one can be interested not only in discriminating between two populations but in having an idea of how far apart the populations are. Mahalanobis' $\Delta^{2}$ has become the standard measure of distance when the observations are quantitative and Hotelling derived its distribution for normal populations. The aim of this chapter is to adapt these results to the case where the observed characteristics are a mixture of quantitative and qualitative variables.

A problem frequently encountered by the practitioner in Discriminant Analysis is how to select the best variables. In mixed discriminant analysis (MDA), i.e., discriminant analysis with both continuous and discrete variables, the problem is more difficult because of the different nature of the variables. Various methods have been proposed in recent years for selecting variables in MDA. Here we use two versions of a generalized Mahalanobis distance between populations based on the Kullback-Leibler divergence for the first and on the Hellinger-Matusita distance for the second. Stopping rules are established from distributional results.

### 1.2 Generalisation of the Mahalanobis Distance

### 1.2.1 Introduction

Following Krzanowski (1983) the various distances proposed in the literature can be broadly classified in two categories:

1. Measures based on ideas from information theory (like Kullback-Leibler measures of information for example)
2. Measures related to Bhattacharya's measure of affinity (like Matusita's distance for example)

A review of theses distance measures can be found, for example, in Adhikari and Joshi (1956).

Mixture of continuous and discrete variables is frequently encountered in discriminant analysis. The location model (Olkin and Tate, 1961; Krzanowski, 1990) is one possible way to deal with these data. Gower (1966) proposed a formula for converting similarity to distance. Since this transformation corresponds to the transformation of Bhattacharya's measure of affinity to Matusita's distance, Krzanowski (1983) studied the properties of Matusita's distance in the framework of the location model. Since no distributional properties were obtained, Krzanowski (1984), proposed to use Monte Carlo procedures to obtain percentage points. This distance was also proposed as a tool of selection of variables (Krzanowski, 1983). Distributional results for Matusita will be presented in Section 1.2.3. At first we present another generalization of the Mahalanobis distance, $J$, based on the Kullback-Leibler divergence.

One of the aims of discriminant analysis is the allocation of unknown entities to populations that are known a priori. A preliminary matter for consideration before an outright or probabilistic allocation is made for an unclassified entity $X$ is to test the assumption that $X$ belongs to one of the predefined groups $\pi_{i}(i=1,2, \ldots, n)$. One way of approaching this question is to test if the smallest distance between $X$ and $\pi_{i}$ is null or not. Most of the results were obtained in the case of linear discriminant analysis where the probability distribution function of the populations is assumed to be normal and with a commom variance-covariance matrix $\Sigma$ (McLachlan, 1992). Generally, the squared Mahalanobis distance is computed between $X$ and each population $\pi_{i}$. $X$ will be assessed as atypical if the smallest distance is bigger than a given threshold. Formally a preliminary test is of the form:

$$
H_{0}: \min _{i} \mathrm{~d}\left(X, \pi_{i}\right)=0 \quad \text { versus } \quad H_{1}: \min _{i} \mathrm{~d}\left(X, \pi_{i}\right)>0
$$

In practical case, the assumption of normality can be unrealistic. For example in taxonomy or in medicine, discrete and continuous measurements are taken. We propose a preliminary test to the general parametric case

### 1.2.2 Kullback-Leibler Divergence

The idea of using distance to discriminate between population using both continuous and categorical variables was studied by various authors, see Cuadras (1989), Morales, Pardo and Zografos (1998), Nakanishi (1996), Núñez, Villarroya and Oller (2003). We generalise the Mahalanobis distance using the divergence defined by Kullback-Leibler (Kullback, 1959) between two generalised probability densities $f_{1}(X)$ and $f_{2}(X)$ :

$$
\begin{aligned}
J & =J\left\{f_{1}(X) ; f_{2}(X)\right\} \\
& =\int\left\{f_{1}(X)-f_{2}(X)\right\} \log \frac{f_{1}(X)}{f_{2}(X)} d \lambda
\end{aligned}
$$

where $\lambda, \mu_{1}$ and $\mu_{2}$ are three probability measures absolutely continuous with respect to each other and $f_{i}$ is the Radon-Nikodym derivative of $\mu_{i}$ with respect to $\lambda$.

Except the triangular inequality, the Kullback-Leibler distance has the properties of a distance. Moreover, if $f_{1}$ and $f_{2}$ are multivariate normal distributions with common variance-covariance matrix then $J\left(f_{1} ; f_{2}\right)$ is equal to the Mahalanobis distance.

## Application to the Location Model

Suppose that $q$ continuous variables $X=\left(X_{1}, \ldots, X_{q}\right)^{\top}$ and $d$ discrete variables $Y=\left(Y_{1}, \ldots, Y_{d}\right)^{\top}$ are measured on each unit and that the units are drawn from the population $\pi_{1}$ or the population $\pi_{2}$.

Moreover suppose that the condition of the location model (Krzanowski, 1990) holds. This means that:

- The $d$ discrete variables define a multinomial vector $Z$ containing $c$ possible states. The probability of observing state $m$ in the population $\pi_{i}$ is:

$$
p_{i m}>0 \quad(m=1, \ldots, c) \quad \text { and } \quad \sum_{m=1}^{c} p_{i m}=1, \quad(i=1,2)
$$

- Conditionally on $Z=m$ and $\pi_{i}$, the $q$ continuous variables $X$ follow a multivariate normal distribution with mean $\mu_{i}^{(m)}$, variance-covariance matrix $\Sigma_{i}^{(m)}$ and density:

$$
f_{i, m}(X)=f\left(X \mid Z=m, \pi_{i}\right)
$$

- For the sake of simplicity, we assume $\Sigma_{1}^{(m)}=\Sigma_{2}^{(m)}=\Sigma$.

Since the aim is to compute the distance between $\pi_{1}$ and $\pi_{2}$ on the basis of the measurement made on $X$ and $Z$, the joint density of $X$ and $Z$ given $\pi_{i}$ is needed:

$$
\begin{aligned}
f_{i}(x, z) & =\sum_{m=1}^{c} f_{i, m}(x) p\left(Z=m \mid \pi_{i}\right) \boldsymbol{I}(z=m) \\
& =\sum_{m=1}^{c} f_{i, m}(x) p_{i m} \boldsymbol{I}(z=m)
\end{aligned}
$$

This model was extended by some authors. Liu and Rubin (1998) relaxed the normality assumption. Bedrick,, Lapidus and Powell (2000) considered the inverse conditioning and end up with a probit model and de Leon and Carrière (2004) generalize the Krzanowski and Bedrick approach.

PROPOSITION 1.1 By applying the Kullback-Leibler measure of distance to the location model, we obtain:

$$
\begin{equation*}
J=J_{1}+J_{2} \tag{1.1}
\end{equation*}
$$

with

$$
J_{1}=\sum_{m}\left(p_{1 m}-p_{2 m}\right) \log \frac{p_{1 m}}{p_{2 m}}
$$

and

$$
J_{2}=\frac{1}{2} \sum_{m}\left(p_{1 m}+p_{2 m}\right)\left(\mu_{1}^{(m)}-\mu_{2}^{(m)}\right)^{\top} \Sigma^{-1}\left(\mu_{1}^{(m)}-\mu_{2}^{(m)}\right)
$$

The proof is straightforward.
Remark: This expression is meaningless if $p_{i m}=0$.

COROLLARY 1.1 If the continuous variables are independent of the discrete variables then:

$$
\mu_{1}^{(m)}=\mu_{1} \quad \text { and } \quad \mu_{2}^{(m)}=\mu_{2} \quad \text { for all } m
$$

and

$$
J=\sum_{m}\left(p_{1 m}-p_{2 m}\right) \log \frac{p_{1 m}}{p_{2 m}}+\left(\mu_{1}-\mu_{2}\right)^{\top} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)
$$

which means that the Kullback-Leibler distance is equal to the sum of the contribution of the continuous and the discrete variables. This result is logical since $J_{1}$ represents the information based on $Z$, and $J_{2}$ the information based on $X$ knowing $Z$.

## Asymptotic Distribution of the Kullback-Leibler Distance in the Location Model

Generally the $p_{i m}, \mu_{i m}$ and $\Sigma$ are unknown and have to be estimated from a sample using a model. Consider that we have two samples of size $n_{1}$ and $n_{2}$ respectively available from the population $\pi_{1}$ and $\pi_{2}$ and let $n_{i m}$ be the number of individuals, in the sample drawn from $\pi_{i}$, occupying the state $m$ of the multinomial variable $Z$. In the model, there are two kinds of parameters: those which depend on the populations, and noisy parameters which are independent from the populations. They can be considered as noisy parameters since this category of parameters is not involved in the distance $J$. For example, if the mean is modelled with an analysis of variance model:

$$
\mu_{i m}=\mu+\alpha_{i}+\beta_{m}
$$

where $\alpha$ is the population effect and $\beta$ the discrete state effect. The expression of the distance is:

$$
\mu_{1 m}-\mu_{2 m}=\alpha_{1}-\alpha_{2}
$$

So the $\beta_{m}$ can be considered to be noisy parameters since they are not involved in the distance.

Let $p$ be the vector of probability associated to the multinomial state of $Z$ then

$$
\begin{equation*}
\hat{p}=p(\hat{\eta}) \tag{1.2}
\end{equation*}
$$

where $\eta=\left(\eta_{a}, \eta_{i b}\right) ; \eta_{a}$ is the set of noisy parameters and $\eta_{i b}$ is the set of parameters used to discriminate between two populations.

Let $r$ be the cardinal of $\eta_{i b}$. In the case of the location model, the $p_{i m}$ are generally estimated through a log-linear model.

Let $\mu$ be the vector of the mean of the continuous variables for the different states of $Z$ then:

$$
\begin{equation*}
\hat{\mu}=\mu(\hat{\xi}) \tag{1.3}
\end{equation*}
$$

where $\xi=\left(\xi_{a}, \xi_{i b}\right) ; \xi_{a}$ is the set of noisy parameters and $\xi_{i b}$ is the set of parameters used to discriminate between two populations.
Let $s$ be the cardinal of $\xi_{i b}$. In the case of the location model, the $\mu_{i m}$ are generally estimated through an analysis of variance model. Asparoukhov and Krzanowski (2000) also studied the smoothing of the location model parameters.

The aim of this section is to study the distributional property of both parts of the distance to obtain a test and a confidence interval for the classical hypothesis. Formally the following hypothesis are tested:

$$
\begin{array}{lll}
H_{01}: J_{1}=0 & \text { versus } & H_{11}: J_{1}>0 \\
H_{02}: J_{2}=0 & \text { versus } & H_{12}: J_{2}>0 \\
H_{0}: J=0 \quad\left(H_{01} \cap H_{02}\right) & \text { versus } & H_{1}: J>0 \quad\left(H_{11} \cup H_{12}\right)
\end{array}
$$

## Asymptotic Results

Let $\theta_{i}=\left(\eta_{a}, \xi_{a}, \eta_{i b}, \xi_{i b}\right)=\left(\theta_{a}, \theta_{i b}\right)$ for $i=1,2$ where $\eta_{a}, \xi_{a}, \eta_{i b}, \xi_{i b}$ are defined in (1.2) and (1.3). The following regularity conditions are assumed:

- $\theta_{i}$ is a point of the parameter space $\Theta$, which is assumed to be an open convex set in a $(r+s)$-dimensional Euclidean space.
- $f\left(x, \theta_{i}\right)$ has continuous second-order partial derivatives with respect to the $\theta_{i}$ 's in $\Theta$,
- $\hat{\theta}_{i}$ is the maximum likelihood estimator of $\hat{\theta}_{i}$
- For all $\theta_{i} \in \Theta$,

$$
\int \frac{\partial f\left(x, \theta_{i}\right)}{\partial \theta_{i}} d \lambda(x)=\int \frac{\partial^{2} f\left(x, \theta_{i}\right)}{\partial^{2} \theta_{i}} d \lambda(x)=0 \quad i=1,2
$$

- The integrals

$$
c\left(\theta_{i}\right)=\int\left\{\frac{\partial \log f\left(x, \theta_{i}\right)}{\partial \theta_{i}}\right\}^{2} f\left(x, \theta_{i}\right) d \lambda(x) \quad i=1,2
$$

are positive and finite for all $\theta_{i} \in \Theta$.

It is obvious that the location model satisfies these conditions. Let $\hat{J}=J(\hat{\theta})$ be an estimator of $J$.

PROPOSITION 1.2 Under $H_{0}: \theta_{1}=\theta_{2}=\theta_{0}$, when $n_{1} \rightarrow \infty, n_{2} \rightarrow \infty$ and $\frac{n_{1}}{n_{2}} \rightarrow u$ :

$$
\begin{equation*}
\frac{n_{1} n_{2}}{n_{1}+n_{2}} \hat{J} \sim \chi^{2}(r+s) \tag{1.4}
\end{equation*}
$$

where $r$ are $s$ are the dimension of the space generated by $\eta_{i b}$ and $\xi_{i b}$

## Proof:

$$
\begin{equation*}
\hat{J}=\int\left\{f\left(x, \hat{\theta}_{1}\right)-f\left(x, \hat{\theta}_{2}\right)\right\} \log \left\{\frac{f\left(x, \hat{\theta}_{1}\right)}{f\left(x, \hat{\theta}_{2}\right)}\right\} d \lambda(x) \tag{1.5}
\end{equation*}
$$

Since $p_{i m}>0$, the regularity conditions are satisfied. Therefore, Under $H_{0}$ : $\theta_{1}=\theta_{2}=\theta_{0}$ a Taylor expansion of first order of $f\left(x, \hat{\theta}_{1}\right)$ and $f\left(x, \hat{\theta}_{2}\right)$ at the neighbourhood of $\theta_{0}$ can be used:

$$
\begin{aligned}
\hat{J}= & J+\left(\hat{\theta}_{1}-\theta_{1}\right)^{\top} \frac{\partial J}{\partial \theta_{1}}+\left(\hat{\theta}_{2}-\theta_{2}\right)^{\top} \frac{\partial J}{\partial \theta_{2}} \\
& +\frac{1}{2}\left(\hat{\theta}_{1}-\theta_{1}\right)^{\top} \frac{\partial^{2} J}{\partial \theta_{1}^{2}}\left(\hat{\theta}_{1}-\theta_{1}\right)+\frac{1}{2}\left(\hat{\theta}_{2}-\theta_{2}\right)^{\top} \frac{\partial^{2} J}{\partial \theta_{2}^{2}}\left(\hat{\theta}_{2}-\theta_{2}\right) \\
& +\left(\hat{\theta}_{2}-\theta_{2}\right)^{\top} \frac{\partial^{2} J}{\partial \theta_{1} \partial \theta_{2}}\left(\hat{\theta}_{1}-\theta_{1}\right)+\sigma\left(\hat{\theta}_{1}-\theta_{1}\right)+\sigma\left(\hat{\theta}_{2}-\theta_{2}\right)
\end{aligned}
$$

Under $H_{0}$ :

$$
\frac{\partial J}{\partial \theta_{1}}=\int\left[\frac{\partial f\left(x, \theta_{1}\right)}{\partial \theta_{1}} \log \left\{\frac{f\left(x, \theta_{1}\right)}{f\left(x, \theta_{2}\right)}\right\}-\frac{\partial f\left(x, \theta_{1}\right)}{\partial \theta_{1}} \frac{f\left(x, \theta_{2}\right)}{f\left(x, \theta_{1}\right)}\right] d \lambda(x)=0
$$

since $\theta_{1}=\theta_{2}=\theta_{0}$ and $\int \frac{\partial f\left(x, \theta_{1}\right)}{\partial \theta_{1}}=0$. For the same reason $\frac{\partial J}{\partial \theta_{2}}=0$

For all $i, j=1,2$ :

$$
\begin{aligned}
\frac{\partial^{2} J}{\partial \theta_{i} \partial \theta_{j}} & =\left(\hat{\theta}_{i}-\theta_{i}\right)^{\top} \int \frac{f^{\prime 2}\left(x, \theta_{0}\right)}{f\left(x, \theta_{0}\right)} d \lambda(x)\left(\hat{\theta}_{j}-\theta_{j}\right) \\
& =\left(\hat{\theta}_{i}-\theta_{i}\right)^{\top} I\left(\theta_{0}\right)\left(\hat{\theta}_{j}-\theta_{j}\right)
\end{aligned}
$$

where $I\left(\theta_{0}\right)$ represents the information matrix of Fisher.

Asymptotically, under $H_{0}$, (1.5) becomes:

$$
\begin{aligned}
\hat{J}= & \frac{1}{2}\left(\hat{\theta}_{1}-\theta_{0}\right)^{\top} I\left(\theta_{0}\right)\left(\hat{\theta}_{1}-\theta_{0}\right)+\frac{1}{2}\left(\hat{\theta}_{2}-\theta_{0}\right)^{\top} I\left(\theta_{0}\right)\left(\hat{\theta}_{2}-\theta_{0}\right) \\
& +\left(\hat{\theta}_{1}-\theta_{0}\right)^{\top} I\left(\theta_{0}\right)\left(\hat{\theta}_{2}-\theta_{0}\right) \\
= & \left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)^{\top} I\left(\theta_{0}\right)\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)
\end{aligned}
$$

Since $\hat{\theta}_{i}$ is the maximum likelihood estimator of $\theta_{0}$ (Rao, 1973):
$\sqrt{n_{i}}\left(\hat{\theta}_{i}-\theta_{0}\right) \sim N_{p}\left\{0, I^{-1}\left(\theta_{0}\right)\right\}(i=1,2)$ Then:

$$
\begin{aligned}
& \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}}\left(\hat{\theta}_{1}-\theta_{0}\right) \sim N_{p}\left\{0, \frac{1}{1+u} I^{-1}\left(\theta_{0}\right)\right\} \\
& \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}}\left(\hat{\theta}_{2}-\theta_{0}\right) \sim N_{p}\left\{0, \frac{u}{1+u} I^{-1}\left(\theta_{0}\right)\right\}
\end{aligned}
$$

Then

$$
\sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}} I\left(\theta_{0}\right)^{\frac{1}{2}}\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right) \sim N_{p}(0,1)
$$

Finally,

$$
\frac{n_{1} n_{2}}{n_{1}+n_{2}}\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)^{\top} I\left(\theta_{0}\right)\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right) \sim \chi^{2}(r+s)
$$

COROLLARY 1.2 Under $H_{01}$ :

$$
\frac{n_{1} n_{2}}{n_{1}+n_{2}} \hat{J}_{1} \sim \chi^{2}(r) \quad \text { when } n_{1} \rightarrow \infty, n_{2} \rightarrow \infty \text { and } \frac{n_{1}}{n_{2}} \rightarrow u
$$

Proof: It is enough to apply the proposition 1.2 with $q=0$, which means the absence of continuous variables.

PROPOSITION 1.3 Under $H_{02}$ :

$$
\frac{n_{1} n_{2}}{n_{1}+n_{2}} \hat{J}_{2} \sim \chi^{2}(s) \quad \text { when } n_{1} \rightarrow \infty, n_{2} \rightarrow \infty \text { and } \frac{n_{1}}{n_{2}} \rightarrow u
$$

Proof: The proof is very similar to the proof of the proposition 1.2.

### 1.2.3 Asymptotic Distribution of Matusita Distance

Krzanowski (1983) used Bhattacharya's affinity measure:

$$
\rho=\int f^{\frac{1}{2}}\left(x, \theta_{1}\right) f^{\frac{1}{2}}\left(x, \theta_{2}\right) d \lambda(x)
$$

to define the distance:

$$
\begin{aligned}
\Delta & =\int\left\{f^{\frac{1}{2}}\left(x, \theta_{1}\right)-f^{\frac{1}{2}}\left(x, \theta_{2}\right)\right\}^{2} d \lambda(x) \\
& =2-2 \rho
\end{aligned}
$$

This distance is also known as the Hellinger distance. In the location model context Krzanowski has obtained:

$$
K=2-2 \sum_{m}\left(p_{1 m} p_{2 m}\right)^{\frac{1}{2}} \exp \left\{-\frac{1}{8}\left(\mu_{1, m}-\mu_{2, m}\right)^{\top} \Sigma^{-1}\left(\mu_{1, m}-\mu_{2, m}\right)\right\}
$$

Let $\theta_{i}=\left(\eta_{a}, \xi_{a}, \eta_{b i}, \xi_{b i}\right)=\left(\theta_{a}, \theta_{b i}\right)$ for $i=1,2$. Under $H_{0}=\left(\theta_{1}=\theta_{2}\right)$, we have $\xi_{b i}=0$ and $\eta_{b i}=0$ for $i=1,2$.

Under the usual regularity conditions, we prove the following result:

PROPOSITION 1.4 Let $u \in] 0,1\left[, \hat{K}=K\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)\right.$ with

$$
\hat{K}=2-2 \sum_{m}\left(\hat{p}_{1 m} \hat{p}_{2 m}\right)^{\frac{1}{2}} \exp \left\{-\frac{1}{8}\left(\hat{\mu}_{1, m}-\hat{\mu}_{2, m}\right)^{\top} \hat{\Sigma}^{-1}\left(\hat{\mu}_{1, m}-\hat{\mu}_{2, m}\right)\right\}
$$

Assume that $H_{0}: \theta_{1}=\theta_{2}=\theta_{0}$ is true and that $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ are independent asymptotically efficient estimates of $\theta_{0}$. Then for $n_{1} \rightarrow \infty, n_{2} \rightarrow \infty$, $n_{1} / n_{2} \rightarrow u$

$$
\frac{4 n_{1} n_{2}}{\left(n_{1}+n_{2}\right)} K\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right) \sim \chi^{2}(r+s)
$$

## Proof

Under $H_{0}: \theta_{1}=\theta_{2}=\theta_{0}$, we obtain:

$$
\begin{gathered}
K\left(\theta_{0}\right)=0 \\
\frac{\partial K}{\partial \theta_{1}}=\frac{\partial K}{\partial \theta_{2}}=0
\end{gathered}
$$

and

$$
\frac{\partial^{2} K}{\partial \theta_{1}^{2}}=\frac{\partial^{2} K}{\partial \theta_{2}^{2}}=-\frac{\partial^{2} K}{\partial \theta_{1} \partial \theta_{2}}=\frac{1}{2} \int \frac{f^{\prime 2}\left(x, \theta_{0}\right)}{f\left(x, \theta_{0}\right)} d \lambda(x)=\frac{1}{2} I\left(\theta_{0}\right)
$$

where $I\left(\theta_{0}\right)$ is the information matrix of Fisher. Under usual regularity conditions (Bar-Hen and Daudin, 1995), the Taylor expansion of the affinity
at the neighborhood of $\theta_{0}$ can be derived and using the previous result we have, under $H_{0}$ :

$$
K\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right) \approx \frac{1}{4}\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)^{\top} I\left(\theta_{0}\right)\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)
$$

Since $\hat{\theta}_{i}$ are independent asymptotically efficient estimator of $\theta_{0}$, $n_{i}^{\frac{1}{2}}\left(\hat{\theta}_{i}-\theta_{0}\right) \sim N_{p}\left(0, I^{-1}\left(\theta_{0}\right)\right)(i=1,2)$. Then:

$$
\begin{aligned}
& \left(\frac{n_{1} n_{2}}{n_{1}+n_{2}}\right)^{\frac{1}{2}}\left(\hat{\theta}_{1}-\theta_{0}\right) \sim N_{p}\left\{0, \frac{1}{1+u} I^{-1}\left(\theta_{0}\right)\right\} \\
& \left(\frac{n_{1} n_{2}}{n_{1}+n_{2}}\right)^{\frac{1}{2}}\left(\hat{\theta}_{2}-\theta_{0}\right) \sim N_{p}\left\{0, \frac{u}{1+u} I^{-1}\left(\theta_{0}\right)\right\}
\end{aligned}
$$

Then

$$
\left(\frac{n_{1} n_{2}}{n_{1}+n_{2}}\right)^{\frac{1}{2}} I\left(\theta_{0}\right)^{\frac{1}{2}}\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right) \sim N_{p}(0,1)
$$

Additional results can be found in Bar-Hen and Daudin (1998).

### 1.2.4 Simulations

The level and the power of the test described in the previous section were evaluated through simulations. One continuous variable and two binary variables are considered. Hence the multinomial vector $Z$ has 4 levels. The estimates of the means, the proportions and the variance are the maximum likelihood estimates. These estimates corresponds to saturated model and therefore the test of the distance has 7 degrees of freedom. It has to be noted that no correction factor for the case $p_{i m}=0$ and therefore empty cells are taken into account for the computation of the distance.

Four cases were studied:

1. no population effect for the discrete variables and no population effect for the continuous variables $(K=0)$;
2. no population effect for the discrete variables but a population effect for the continuous variables;
3. a population effect for the discrete variables but no population effect for the continuous variables;
4. a population effect for the discrete and the continuous variables.

For the continuous variables, the population effect is equal to the standard error:

$$
\frac{\mu_{1, m}-\mu_{2, m}}{\sigma}= \begin{cases}0 & \text { if population effect is present } \\ 1 & \text { if population effect is not present }\end{cases}
$$

For the discrete variables:

$$
\log \left(\frac{p_{1 m}}{p_{2 m}}\right)= \begin{cases}0 & \text { if population effect is present } \\ 1 & \text { if population effect is not present }\end{cases}
$$

Since the aim of these simulations is to estimate the rate of convergence of the asymptotic distributions, populations of size 20 and 100 were considered. This gives three new cases:

1. population $\pi_{1}$ of size 10 and population $\pi_{2}$ of size 10
2. population $\pi_{1}$ of size 30 and population $\pi_{2}$ of size 30
3. population $\pi_{1}$ of size 100 and population $\pi_{2}$ of size 100

There are 12 combinations of hypotheses and populations sizes. 1000 simulations were done for each combination. The table below presents the number of non-significant tests at the $5 \%$ level.

By using the property of the binomial distribution, one may expect to obtain $50 \pm 1.96 \times(1000 \times 0.5 \times 0.95)^{\frac{1}{2}}=50 \pm 14$ tests to be non-significant if the null hypothesis is true.

From Table 1.1, we deduce that the level of the test is respected as soon as $n \geq 30$. This means $30 / 4$ observations per cell. The power of the test tends to 1 but the convergence is slower for the discrete variables. This result is not surprising.

It has to be noted that these simulations are limited. The use of non-saturated model for the estimation of the parameters and the use of a correction factor for empty cell can probably alter the results.

### 1.3 Methods and Stopping Rules for Selecting Variables

As in the usual discriminant analysis with continuous variables, selection of variables is a problem of practical importance. In fact, in the location model

Table 1.1: Number of significant test at the $5 \%$ level for the various hypotheses

| population effect for |  | size of population |  | Hypothesis tested |
| :---: | :---: | ---: | ---: | ---: |
| discrete var. | continuous var. | $\pi_{1}$ | $\pi_{2}$ | $K=0$ |
| no | no | 10 | 10 | 68 |
| no | no | 30 | 30 | 60 |
| no | no | 100 | 100 | 60 |
| no | yes | 10 | 10 | 251 |
| no | yes | 30 | 30 | 798 |
| no | yes | 100 | 100 | 1000 |
| yes | no | 10 | 10 | 144 |
| yes | no | 30 | 30 | 255 |
| yes | no | 100 | 100 | 711 |
| yes | yes | 10 | 10 | 344 |
| yes | yes | 30 | 30 | 872 |
| yes | yes | 100 | 100 | 1000 |

context, the question is more precisely "which terms and which continuous variables must be included in the model?" where the models concerned are log-linear and MANOVA. Interest in this topic has been shown regularly since the paper published by Vlachnonikolis and Marriot (1982). Krzanowski (1983) used a Matusita-Hellinger distance between the populations, Daudin (1986) used a modified AIC method and Krusinska (1989), Krusinska (1990) used several methods based on the percentage of misclassification, Hotelling's $T^{2}$ and graphical models.

Based on Hellinger distance, Krzanowski (1983) proposed the use of a distance $K$ to determine the most discriminative variables.

Our asymptotic results allow us to propose stopping rules based on the $P$ value of the test of $J=0$ or $K=0$. These two methods were then compared with a third, based on the Akaike Information Criterion (AIC) described by Daudin (1986): classically, AIC penalize the likelihood by the number of parameters. A direct use of AIC on MANOVA models (described in Section 1.2.2) will lead to noncomparable log-likelihood. Daudin (1986) proposed to eliminate the noisy parameters ( noted $\beta_{m}$ ) and to penalize the log-likelihood by the number of parameters related to the population effect. It permits to judge whether the log-likelihood and the increase of AIC is only due to population factor terms in the ANOVA model and is not coming from noisy parameters.

Krzanowski (1983) used the distance $K$ to select variables. It should be noted that $\hat{K}$ increases when the location model contains more variables without guaranteeing that this increase is effective: it is therefore necessary to discount any slight increase that may be caused by chance. We propose to include a new discriminant variable or a new term in the location model if it increases the evidence that $H_{0}(K=0)$ is false as measured by the $P$-value of the test of the null hypothesis, using the asymptotic distribution of $\hat{K}$.

It would be interesting to test whether the increase of $K$ due to a new term in the model is positive. Unfortunately when $K$ is positive ( $H_{0}$ false) the asymptotic distribution of the increase in $\hat{K}$ due to a new term is not easily tractable under the hypothesis that the new parameter is null.

An alternative criterion is an Akaike-like one: $K-A I C=4 \frac{n_{1} n_{2}}{n_{1}+n_{2}} \hat{K}-2(r+s)$. According to this method, the best model is that which maximizes $K-A I C$.

It is also possible to use $\hat{J}$ with the same methods: we can use the $P$-value of the chi-square test of $J=0$ or alternatively $J-A I C=\frac{n_{1} n_{2}}{n_{1}+n_{2}} \hat{J}-2(r+s)$

Based on simulations, Daudin and Bar-Hen (1999) showed that all three competing methods (two distances and Daudin-AIC ) gave good overall performances (nearly $85 \%$ correct selection). The $K$-method has weak power with discrete variables when sample sizes are small but is a good choice when a simple model is requested. The $J$-method possesses an interesting decomposition property of $J=J_{1}+J_{2}$ between the discrete and continuous variables. The $K$-AIC and $J$-AIC methods select models that have more parameters than the $P$-value methods. For distance, the $K$-AIC method may be used with small samples, but the $J$-AIC method is not interesting for it increases the overparametrization of the $J-P$ method. The DaudinAIC method gives good overall performance with a known tendency toward overparametrization.

### 1.4 Reject Option

### 1.4.1 Distributional Result

Since the aim is to test the atypicality of $X$, we have to derive the distribution of the estimate of the divergence $J$ between $X$ and $\pi_{i}$ under the hypothesis $J\left(X, \pi_{i}\right)>0$. We don't make assumptions about the distribution of the populations but the same regularity conditions as before are assumed. BarHen and Daudin (1997) and Bar-Hen (2001) considered the reject option for the case of normal populations.

