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Chapter 1
Introduction

The purpose of this volume is to present some recent developments concerning
the mathematical aspects of discontinuous Galerkin finite element methods on
general computational meshes consisting of polygonal/polyhedral (henceforth,
jointly referred to as polytopic) element domains. We begin by providing some
historical background and motivation for this work, as well as introducing some
standard notation.

1.1 Background

Finite element methods (FEMs) represent an indispensable computational tool for
the accurate, efficient, and rigorous numerical approximation of continuum models
arising in engineering, physics, biology, and many other disciplines. Key reasons for
the astounding success of FEMs is their applicability to general classes of partial
differential equations (PDEs), simple treatment of complicated computational
geometries and enforcement of boundary conditions, and ease of adaptivity includ-
ing both local mesh subdivision (h-refinement) and local polynomial enrichment
(p-refinement). Furthermore, from a mathematical point of view, tools are available
for their rigorous error analysis, both in the a priori and a posteriori settings;
this latter topic is of particular practical interest for both error quantification and
automatic adaptive mesh design.

However, the exploitation of classical (conforming) FEMs for the numerical
approximation of hyperbolic, or ‘nearly’ hyperbolic problems, and other strongly
non-self-adjoint PDE problems is, generally speaking, unsatisfactory in the sense
that the underlying numerical scheme lacks sufficient stability. This typically man-
ifests itself through the production of spurious or unphysical oscillatory behaviour
in the computed approximation in the vicinity of strong gradients in the analytical
solution, for example, near boundary and internal layers. As a remedy, over the last
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2 1 Introduction

40 years or so, Petrov-Galerkin, or more generally, stabilized variants of the standard
FEM, have been devised; perhaps the most popular approach is the streamline
upwind Petrov-Galerkin (SUPG) scheme, cf. [46, 110], for example. However,
stabilized schemes often involve the determination of hard-to-evaluate user-defined
parameters. While this topic is beyond the scope of the current volume, we refer to
[43, 44, 51, 97], and the references cited therein.

At the other end of the spectrum, finite volume methods (FVMs) have been
predominantly used in industrial software packages, especially in computational
fluid dynamics (CFD), due to their efficiency of implementation, particularly on
parallel computer architectures, as well as their robustness. While, in principle, these
methods are typically second-order accurate, in practice, their convergence order
may deteriorate on irregular and/or highly stretched meshes. Thereby, for reliable
numerical predictions to be made by such methods, extremely fine meshes with a
large number of degrees of freedom are required; this, in turn, leads to excessively
long computing times. As an alternative approach, in recent years there has been
significant interest in the development of high-order discretization methods. On
a given computational mesh they allow for improved predictions of critical flow
phenomena, as well as force coefficients, such as, for example, the lift, drag, or
moment of a body immersed in a fluid. In particular, high-order methods are capable
of achieving the same level of accuracy while exploiting significantly fewer degrees
of freedom compared to classical FVMs.

In this volume, we focus on an extremely powerful class of arbitrary-order
numerical schemes referred to as discontinuous Galerkin finite element methods
(DGFEMs). Loosely speaking, DGFEMs can be considered as a hybrid between
classical FEMs and FVMs. Indeed, in common with FEMs, DGFEMs approxi-
mate the underlying PDE solution by employing polynomials of arbitrary degree,
defined over local element domains, but without the enforcement of any continuity
constraints between neighbouring elements. Instead, elements are coupled via
numerical flux functions in a similar manner to the design of FVMs. In the lowest-
order case, i.e., when piecewise constant functions are employed, the corresponding
DGFEM is equivalent to a cell-centred FVM, without a local recovery operator.
Thereby, given the construction of DGFEMs as Galerkin procedures, rigorous error
analysis is available for a variety of PDE problems.

The first DGFEM was introduced by Reed and Hill [148] for the numerical
solution of the neutron-transport equation. This method was later analysed by
Lesaint and Raviart [135] and by Johnson and Pitkäranta [127]; see, for example,
[41, 66, 68, 69, 71, 72, 93], and the volume [73]. In the context of elliptic PDEs,
Nitsche [143] introduced the idea of weakly imposing inhomogeneous essential
boundary conditions for (classical) FEMs. This was subsequently studied by Baker
[27] who proposed the first modern DGFEM for elliptic problems, later followed
by Wheeler [173], Arnold [16], Baker et al. [28], and others; cf., also, the related
penalty FEM studied in [23].

Over the last 20 years tremendous progress has been made on the development
of both the analytical and computational aspects of DGFEMs for the numerical
approximation of a wide variety of PDEs; see, for example, the recent mono-
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graphs [73, 79, 117, 151] and the review articles [18, 65]. This progress has been
stimulated by a number of important factors: firstly, the combination of FVM-type
stability with the exploitation of high-order polynomials within the FEM setting
means that DGFEMs can treat advection-dominated diffusion problems, without
excessive numerical stabilization, in an accurate and efficient manner. Furthermore,
the lack of continuity between neighbouring elements, allows for extremely general
meshes to be employed; in particular, DGFEMs offer higher-order discretizations
with a minimal computational stencil, irrespective of the element shape. On a more
technical level, the simple communication via numerical fluxes at element interfaces
afforded by DGFEMs allows for the natural incorporation of so-called hanging
nodes, thereby simplifying local mesh refinement (h-refinement). Additionally,
the mode of communication at elemental interfaces is independent of the order
of the method which simplifies the use of schemes with different polynomial
orders p in adjacent elements. This allows for the variation of the order of
polynomials over the computational domain (p-refinement), which in combination
with h-refinement leads to so-called hp-version approximations. Recent advances
in domain decomposition techniques have highlighted that DGFEMs naturally
admit Schwarz-type preconditioners, cf. [3–7, 11, 94]; see, also, [10, 13, 15] for
the design of multigrid algorithms for DGFEMs. As a final remark, the level
of generality offered by DGFEMs, in terms of both the method definition via
numerical fluxes and the flexibility in the mesh design, has contributed to their
use in practically relevant simulations for a wide variety of applications, ranging
from CFD and electromagnetics to structural mechanics and mathematical biology;
indeed, DGFEMs naturally treat multi-physics problems within a unified manner,
cf. [120, 159].

On the other hand, many practitioners often conclude that DGFEMs are com-
putationally expensive, since for a given mesh and polynomial order, DGFEMs
lead to an increase in the number of degrees of freedom compared to classical
FEMs with comparable accuracy, though it is important to note that such statements
are typically made in the context of discretizing second-order self-adjoint elliptic
PDEs. This is a rather simplistic argument, since it overlooks all of the key
aforementioned and other potential advantages of DGFEMs in terms of their
applicability, versatility, and mesh-flexibility. Indeed, as we shall see below, within
the DGFEM framework, it is possible to employ the same underlying approximating
space of discontinuous piecewise polynomials, irrespective of the structure of the
PDE of interest and the type of computational mesh exploited. Moreover, the
flexibility offered by different choices of numerical fluxes allows for the design
of DGFEMs with desirable conservation properties of important quantities, such
as, for example, mass, momentum, and energy. Furthermore, in the context of
implicit discretizations, the size of the resulting linear systems can be reduced in
such a manner that DGFEMs may be either competitive or, in some cases, cheaper
to compute than the corresponding standard (conforming) FEM. Indeed, we first
mention the pioneering work of Cockburn and his collaborators on the so-called
hybridizable DGFEM (HDG), see, for example, [67, 74]. In this setting, additional
unknowns are introduced on the boundary of each element within the underlying
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computational mesh. Thereby, through a process of static condensation, a global
matrix problem involving only the additional unknowns needs to be solved; the
remaining unknowns are then recovered by solving local elementwise problems.

Secondly, we highlight the fact that, within the DGFEM framework, elemental
polynomial bases can be constructed which contain less degrees of freedom than
their FEM counterparts on quadrilateral/hexahedral elements. The essential idea
is to construct a basis in the physical frame, without resorting to the use of local
element mappings to a given reference element. In this way, spaces of polynomials
of total degree p, denoted by Pp, may be employed, irrespective of the shape
of the element; see, for example, [32–34, 54]. We also refer to [35] where this
technique was first used to exactly resolve curved boundaries. Thereby, the order
of convergence of the underlying method is independent of the element shape; we
refer to [17, 19] for a detailed discussion of this issue when element mappings
are employed. Indeed, as noted in our recent work [54], when the underlying
mesh consists of tensor-product elements, for example, quadrilaterals in 2D and
hexahedra in 3D, the use of Pp polynomial spaces not only renders the underlying
DGFEM more efficient than the standard DGFEM using tensor-product polynomials
of degree p in each coordinate direction (Qp), but also more efficient than the
corresponding standard FEM, as the polynomial degree p increases. Going one
step further, the exploitation of DGFEMs using polynomial spaces defined in the
physical frame, means that DGFEMs naturally allow for the use of computational
meshes consisting of general polytopic elements; indeed, this is the principle topic
of this volume.

Numerical methods defined on computational meshes consisting of polytopic
elements, with, potentially, many faces, have gained substantial traction in recent
years for a number of important reasons. Clearly, a key underlying issue for
all classes of FEMs/FVMs is the design of a suitable computational mesh upon
which the underlying PDE problem will be discretized. The task of generating
the mesh must address two competing issues: on the one hand, the mesh should
provide a good representation of the given computational geometry with suffi-
cient resolution for the computation of accurate numerical approximations. On
the other hand, the mesh should not be so fine that computational turn-around
times are too high, or in some cases even intractable, due to the high number
of degrees of freedom in the resulting FEM/FVM. Traditionally, standard mesh
generators generate grids consisting of triangular/quadrilateral elements in 2D and
tetrahedral/hexahedral/prismatic/pyramidal elements in 3D; these will, henceforth,
be collectively referred to as standard element shapes. In the presence of essen-
tially lower-dimensional solution features, for example, boundary/internal layers,
anisotropic meshing may be exploited. However, in regions of high curvature, the
use of such highly-stretched elements may lead to element self-intersection, unless
the curvature of the geometry is carefully ‘propagated’ into the interior of the mesh
through the use of (computationally expensive) isoparametric element mappings.
These issues are particularly pertinent in the context of high-order methods, since in
this setting, accuracy is often achieved by exploiting coarse meshes in combination
with local high-order polynomial basis functions. Thereby, flexibility, in terms of
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Fig. 1.1 Example of a porous scaffold used for in vitro bone tissue growth, cf. [12, 21, 22]

the shape of the elements admitted within a given coarse mesh, is crucial in this
context for the efficient approximation of localized geometrical features present
in the underlying geometry. Indeed, we highlight that the use of standard element
shapes necessitates the exploitation of very fine computational meshes when the
geometry possesses small details or microstructures. In such situations, an extremely
large number of elements may be required for a given mesh generator to produce
even a ‘coarse’ mesh which adequately describes the underlying geometry. As an
example arising in biomedical applications, in Fig. 1.1 we show a finite element
mesh, consisting of 3.2 million hexahedral elements, for a porous scaffold employed
for in vitro bone tissue growth, cf. [12, 21, 22]. This computationally taxing mesh
granularity is necessitated by the domain representation only. By dramatically
increasing the flexibility in terms of the set of admissible element shapes present in
the computational mesh, the resulting FEM/FVM can potentially deliver dramatic
savings in computational costs. Indeed, allowing for polytopic element shapes, the
number of elements can be substantially reduced without enforcing any domain
approximation.

In the context of designing FEMs posed on meshes consisting of polytopic
elements, a number of prominent techniques have been developed within the
literature. For the discretization of PDEs in complicated geometries, Composite
Finite Elements (CFEs) were originally proposed in the conforming setting by
Hackbusch and Sauter [106, 107]; these techniques have been generalized to
include DGFEMs in the series of articles [8, 12, 103]. We point out that CFEs
are defined on general meshes consisting of polytopic elements generated as
agglomerates of standard shaped elements. A closely related technique is the so-
called agglomerated DGFEM [32–34]; this is very similar in spirit to the DGFEM
CFE developed in [8], though the CFE methodology admits more general classes
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of elemental shape functions. Another approach supporting general meshes is the
recently introduced Hybrid High-Order method [80, 81, 83] which is related to
the aforementioned HDG [75]. In the conforming setting, we also mention the
Polygonal FEM [164] and the Extended FEM [98]; these two approaches achieve
conformity by enriching/modifying the standard polynomial finite element spaces,
in the spirit of the Generalized Finite Element framework of Babuška and Osborn
[24]. Typically, the handling of non-standard shape functions carries an increase in
computational effort. The recently proposed Virtual Element Method [2, 37, 39, 59],
overcomes this difficulty, achieving the extension of conforming FEMs to polytopic
elements, while maintaining the ease of implementation of these schemes; see, also,
the closely related Mimetic Finite Difference method, cf. the monograph [38] and
the references cited therein. We further refer to the volume [30] for a collection of
review articles on the aforementioned techniques.

The ability to incorporate polytopic meshes offers a number of advantages also in
the context of multilevel linear solvers, such as Schwarz-based domain decomposi-
tion preconditioners and multigrid. Indeed, a key difficulty in the implementation of
the latter is the construction of a hierarchy of coarser meshes starting from a given
fine one. The use of simple coarsening strategies may lead to the generation of
‘holes’ in the coarse meshes, and the poor approximation of fine scale geometric
features; consequently, this can lead to a degradation in the performance of the
resulting solver. This issue is trivially resolved when polytopic meshes are admitted,
since hierarchies of coarser meshes can be constructed via agglomeration of fine-
scale elements into coarser polytopes; see, for example, [9, 15, 102], and the
references cited therein. Moreover, unstructured and/or hybrid meshes, consisting of
mixed element shapes and nonconforming meshes containing hanging nodes, may
be easily treated. DGFEMs are particularly pertinent in this context, as coarsening
and refinement via element agglomeration and subdivision produce hierarchically-
related approximation spaces. This is of crucial importance when projecting from
one mesh to another, for example, in adaptive methods for evolution PDEs.

In conclusion, from a meshing point of view, the exploitation of general polytopic
elements provides enormous flexibility. In addition to meshing complicated geome-
tries using a minimal number of elements, polytopic elements are naturally suited
to applications in complicated/moving domains, for example, in solid mechanics,
fluid-structure interaction, geophysical problems including earthquake engineering
and flows in fractured porous media, and mathematical biology. Indeed, general
element shapes are often exploited as transitional elements in finite element meshes,
for example, when fictitious domain methods, unfitted methods, or overlapping
meshes are employed, cf., for example, [48–50, 125, 137]. The use of similar
techniques in the context of characteristic-based/Lagrange–Galerkin methods is also
relevant.

The principal aim of this volume is to provide a comprehensive mathematical
introduction to the construction and analysis of DGFEMs on extremely general
classes of meshes consisting of polytopic elements. Particular importance will be
given to the key issue that, under mesh enrichment, shape-regular polytopes in
R

d, d > 1, may permit degenerate .d � k/-dimensional facets, k D 1; : : : ; d � 1.
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This issue does not typically arise when studying FEMs on standard shape-regular
meshes consisting of simplicial/tensor-product elements. Indeed, shape-regular (cf.
Definition 2 below for the precise meaning) d-dimensional polytopes with more than
dC1 faces may admit arbitrarily small .d�k/-dimensional facets, k D 1; : : : ; d�1,
relative to their diameter. This issue is intimately related to the correct choice
of the (user-defined) discontinuity-penalization function present in the DGFEM
discretization of second-order elliptic PDE problems. In the analysis presented
below, stability and hp-version a priori error bounds will be established, which
are sharp with respect to this type of degeneration. Additionally, under mesh
refinement, the number of faces that each polytopic element possesses may not
remain uniformly bounded; conditions under which this type of degeneration can be
admitted will also be studied. While the following exposition is, naturally, focused
on areas of interest of the authors, the concepts presented here are far-reaching;
where applicable, we shall highlight potential extensions throughout this volume.

1.2 Overview and Scope

We assume that the reader is familiar with the derivation and construction of
classical FEMs based on employing continuous piecewise polynomials defined
over a given fixed computational mesh Th; for background, we refer, for example,
to [42, 90, 126, 133]. The outline of this volume is as follows. The construction
of DGFEMs starting from a local elementwise formulation with weakly imposed
boundary conditions, together with the corresponding flux formulation for first-
order hyperbolic problems, is covered in the first part of Chap. 2. On the basis of
this flux formulation, the treatment of second-order PDEs is then also considered.
The key theoretical tools needed to analyze DGFEMs on general polytopic meshes
are outlined in Chap. 3; here, both hp-version inverse inequalities and approximation
results are established. On the basis of these bounds, in Chap. 4 we consider the a
priori error analysis of the so-called symmetric interior penalty DGFEM for the
numerical approximation of pure diffusion problems, though we stress that the
analysis naturally extends to include other DGFEM formulations. The analysis is
extended to general second-order PDEs with nonnegative characteristic form in
Chap. 5; here, we also consider the treatment of space-time DGFEMs for the numer-
ical approximation of parabolic PDEs. The implementation aspects of DGFEMs on
general polytopes are discussed in Chap. 6. Here the three main practical challenges,
namely, mesh generation, construction of the elemental polynomial basis, and
numerical integration, are discussed. To demonstrate the flexibility of this approach,
in Chap. 7 we discuss automatic mesh refinement for DGFEMs posed on general
agglomerated elements, based on exploiting dual-weighted-residual a posteriori
error indicators. Finally, in Chap. 8 we summarize the work presented in this volume
and outline potential future areas of research.


