Software
Development,
Design and Coding

With Patterns, Debugging, Unit Testing,
and Refactoring

Learn the principles of good software
design, and how to turn those principles
into great code

Second Edition

John F. Dooley

Apress’

Software Development,
Design and Coding

John F. Dooley

Apress®

Software Development, Design and Coding

John E. Dooley
Galesburg, Illinois, USA

ISBN-13 (pbk): 978-1-4842-3152-4 ISBN-13 (electronic): 978-1-4842-3153-1
https://doi.org/10.1007/978-1-4842-3153-1

Library of Congress Control Number: 2017961306
Copyright © 2017 by John F. Dooley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image designed by Vexels.com

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Todd Green
Development Editor: James Markham
Technical Reviewer: Michael Thomas
Coordinating Editor: Jill Balzano
Copy Editor: Corbin Collins
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484231524. For more
detailed information, please visit waw.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3153-1
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/
rights-permissions
www.apress.com/
rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484231524
www.apress.com/source-code

For Diane, who is always there, and for Patrick,
the best son a guy could have.

Contents

About the AUROFccccccemmiimnmnsmssssns s san s an s n s ann s nnnn s nnnnnnnns XV
About the Technical ReVIEWETccusessssssssssssassssnssssnssssssssnsssassssasssssssssnsssassssnsnsas xvii
Acknowledgments........ccccuussemmmsssnsmsssnsmssnnmsssnsssssnsssssnsssssnsssssnnssssnnssssnnssssnnsnssnnssnsas Xix
o - 1 XXi
Chapter 1: Introduction to Software Development...........ccccrnnsseennmnsssssnnnmsssssssnnns 1
What WE’re DOING....c.ceeerrerrersersersessessessssssssssssssessessanses 2
S0, How t0 Develop SOftWArE?cceeeeeiercirseesie s sss e sns s snssnssnssnssnssnssnennns 2
003 T 1] 4
RETBIBNCES ...t 5
Chapter 2: Software Process MoUEelScuuummmmmmmmmmmmmmmmssssssssnnsmssmmssssssssssssesssssnns 7
QL L 0 LT T 1o T 8
A Model That’s not a Model At All: Code and FiX...........ccoeerernncrennnennsesesesesese s 8
Cruising over the Waterfall.............cocvererrnenere e sae s 9
[terative MOGEIS..........coiireiec 11
Evolving the Iterative MOdel............ccocrercrsncrr e 12
Risk: The Problem with Plan-Driven Modelscoccoorennresnnescnseeseseeeseesesnenes 13
Agile MethOdOIOGIES.....cceueererrerrerrerrerersessessessessessessessessessessessessessessessesressessesaessnssnssansnns 13
Agile Values and PrinCiplEsc.ccoourrennnersnmnsesssssesssse s s sssssssens 14
eXtreme Programming (XP)......cccceeerrrerrersennensenses s sessesssssssssssesssssssssssassssssssssssssssssssssnns 15
XP OVEIVIBW ... s e e e ne e e e e se e sene e e nenesenenenes 15

The FOUr BaSIC ACHIVITIESc.cocreeererereresereseresesesese s sesesesesesesesesesenesenenes 16
Implementing XP: THE 12 PraCliCeSccvvrerererrerererereressersesersesesessssessssessesesssssssessssessssessesesssssssssansens 16

vi

CONTENTS

£ 1] 11 PSSP 18
T (1 1 20 19
TRE SPHINE ..o E e e e Re e b e R e e e R e e e e nrns 19
R T 1 A) U 19
SPHNT FIOW ...ttt s e e e bt e e R e e e R e e e e np e ns 20

Lean Software DevelopmMENtccccvivrrieere e rsse s sse s sse s sse s e saesnesaessnesanes 21
Principle 1: ElIMINAte WASTEceeeeererereeerre s sereseresessessesessesessesassessssessesessssessesessesassessesesssnssssnsnsens 22
Principle 2: BUild QUAIILY IN......ccoeverererereeeresere e seseressessesessesessesassessssessssessessssessssesassessesesssssssssansens 22
Principle 3: Create KNOWIEAQE.couverererrerrererrerereresessssessesessesessessssessssessesessessssessssessssessesesssnsssssansens 22
Principle 4: Defer COMMITMENT.........ccooevecererere st ra s sse e ae e sesas e sae e saenesaesesaesanaens 23
PrinCiple 5: DEIIVEE FAST.......covcecececerere s se s se e se e e sa s sae e ae e saesasaesassesaesesassenasananns 23
PrinCiple 6: RESPECT PEOPIEcoeeeeeeerereeerrererte e sesserassesaesessesessesassesassesaesessesssssssssesassessensssesssassanaens 23
Principle 7: Optimize the WROIE.........coceveeeeere et se e se e sa s sse e sae e ssesassesassesassesasnesassanaens 24

KaNDAN ...t ———— 24
The Kanban board, WIP, @nd FIOW ..o e ssssssssssssssssssssssnssssssssssssssnssnens 24
=T 1o 1] 11 26

00 T [T [0 o PR RTRRRN 26

REFEIBNCES ... 27

Chapter 3: Project Management Essentials.........cccussmmmmnsssnnnnmnssssnnnmssssssnssssssnnnnns 29

(0 (=103 0 1T 11 T 30
Project Organizationccoeeeeererererieresseseseresesseses e sessessesessesessesessessssesaesesaesssssssssesassessesessensnsesanaens 30
RISK ANAIYSIS....eueerereruerererarersesersesessessssessssessesessesssssssssessssesseessessssessssessesessesessensssessssessssessessssessssesansens 31
RESOUICE REQUITEIMENTScveereerereerereseeerseessesesaesessesassesaesessesessessssessssessesessesssessssessssessesesssssnseanaens 33

Task EStIMALEScccviiirir 33
ProJECT SCNEUUIE........ceeeeeeeeee ettt se s 34
L1 =] 017 35
ProjECt OVEISIGNT ...t 36

Status Reviews and Presentations............cocccvrinrncnnncnssesssee s 36

DETECLS ...t ————————— 37

CONTENTS

The RetrOSPECTIVEcoceiereririr sttt sn e nn e n e nn 38
00] [0 o PSRRI 38
REFEIBNCESeeerererir et n e e nn e nn e nnenn e nan 38
Chapter 4: Requirements.......ccccusseenmmissssnnnsssssssssmsssssssnesssssssssssssssnsesssssnnssssssnnnnss 39
What Types of Requirements Are We Talking ADOUL?..........ccocveveersersersnssesses s sessessnnnnns 39
USEr REQUIFBIMENTSccueiecciecrieer et e e b s e e e n e a e e ne e e aenanne s 40
DOMain REQUITEMENTSccveiieiiiicece e sae e e s ae e e s e s aesae s e sae e e saesaesae e e saesaesaenaesaesaesennnns 40
Non-Functional ReQUIFEMENTS........cciiiiicercrene e sa e saesa e s sa e sa e sa e sa e saesnenaen 40
NON-REQUIFEMENTS ..o sa e s s a e s a e s a e b s a e sa e sa e e e e e e e saenaenaesaesnenens 41
Requirements Gathering in a Plan-Driven Project............coovvrennicnnscnessscsssesesenens 41
But 1 DON't LiIKE WIEINGL ..ottt 4
Outline of @ Functional SPECIfiCatioN...........ccceerriererreesrr e 42
Design and NeW FEALUIE IHBAS...........ccceererreererireeeerir e 43
ONE MO THING ..ot e st e s e e e e s e e e e Re e e e s s e e nn e nsnnn s 44
Requirements Gathering in an Agile Project..........ccccvvvrvrvrrrvnss e 44
THE THIEE B e e e e e ne e e ne e e e e e e e s 44
INVEST iN SEOMIES ..o s 45
Product BACKIOGccceuiueenererieeiresiseese s 47
SIMART TASKS ...vvvvereresesesesesesssssesssesesssssssssssssssssssssssssesesssssssesssssasasns 47
SPriNt/REration BACKIOG.......eeuvererereererrerereseresasessssessesessesessessssessesessessssessssessesessenssssssssesassessenessenssaes 48
Requirements Digging.......c.cccveririrnnssnsisses s sn s snssnssns e nnas 48
Why Requirements Digging IS Hard............coeorninncincrcrre e sss s senas 49
Analyzing the REQUIEMENTSccoviireririererre e 50
00] o (1 0 o SRS 51
REFEIBNCESeeerererir et n e e nn e nn e nnenn e nan 51
Chapter 5: Software Architecture.......ccuccmmrnisnmmnnssssnnnmsssssnmnsssssnessss e ———— 53
General Architectural Patterns ... 54
The Main Program—Subroutine Architectural Patternc.ccocvvvenriernsncsssesennennes 54
Pipe-and-Filter ArChiteCtUre.........cccvvrrerir e ene s 55

vii

CONTENTS

An Object-Oriented Architectural Pattern...........ccooecveenvenesnnennse s 56

An MVC EXampIe: LEt'S HUNT ...t 58
The Client-Server Architectural Pattern ... 60
The Layered APProach.........c.ccececvcrsssssisss s s sn s nnsnnn e 61
00 o (1 [0 o PSR STTRRRRN 62
RETBIENCES ... s 63
Chapter 6: Design PrinCiplesc..ccccuruusssmnnmmssssssnsmssssssnmsssssssssssssssssssssssssnsssssssnnnss 65
The DESIgN PrOCESS.......ciceeireerirsee st e s sn e s e s sn e s s n e s s sn e s ssn e nnne s 68
Desirable Design Characteristics (Things Your Design Should Favor)..........ccceceeevnnnee. 69
DESIgN HEUIISTICSceveercererrsesisse e sn s s s sn s 70
Designers and Creativitycocvvvvrreriensinsensesses s ses e se s s snssns e s ssssnssnssasnes 72
010 T 11 o o T 73
RETEBIBINCES ...t n e ae e p e nae e s 74
Chapter 7: Structured DesSignccccvusssmmmmmsssssnnmmsssssssnmssssssssssssssnssssssssnnnsssssnnnnss 75
Structured Programming.........c.cceeeeeeesessesssssssessssessssssessssesssssssesssssssssssssssssssssssssessessssens 75
Stepwise REfiNEMENT ... re e 76

Example of Stepwise Refinement: The Eight-Queens Problemccovvvvevrievncevsceve e neserennens 77
Modular DeCOMPOSITIONccceeerierierirser s sn e nn e nrennenas 84

Example: Keyword in CONEXL ..ot n e s se s snsnens 86
00] T 11 [0 o PSR SRTRRN 94
RETBIENCES ... ———————— 94
Chapter 8: Object-Oriented OVerVieWccccussseemmmsssssnsmmsssssnsssssssssnsssssssnsnssssssnnnss 95
An Object-Oriented Analysis and DeSign PrOCESScccverererrerressessessesssssessessessssssssenss 96

Requirements Gathering and ANIYSIS..........cuecrererererierrserereresessesessessesessesessesessessssessssessesessessssssassens 98

DT o 98

Implementation and TESHINGccvvvreere e ra e e e ae e ae e aenanaens 98

Release/MaintenanCe/EVOIULIONc.coceceeecrererereseresese e 98

viii

CONTENTS

DOING the PrOCESSccceeiereriirerinesre s s sn s s sn s sss e sne s s 98
The Problem StateMENT............ccceriieceeeerr e 98
THE FRALUIE LiST......ceeceeecee sttt nennns 99
USE CASESvveuerererrescesesseesesesseeseses e e sesse e e e sss e e e s ese e e e e se e e s e s Re e e e e e R e e e s b e R e e e e e e Re e e e s R e nnnn e nsenn s 99
DecompoSe the ProBIEM ... 100
ClaSS DIAQIAMS......cvceeererreueerersssesesessssessesessessesessssssesesssse e e ssssasesessssasesssessasassssssssssssssssssssssssansnsnsns 100
COUB ANYONE?coeeeeeeereeeeeses e e s s e s se e e s s se e e e s Re e e e s b e Re e e e A ase e nE s s ae e nensnse e e nensannnees 101

00 3T 1] o] 105

RETBIBNCES ... 106

Chapter 9: Object-Oriented Analysis and DeSign.......ccccusseeenrsssssnnsssssssnnssssssnnnns 107

ANIYSISveeeeeerecrererre e sre e re e e s e s s e r e r e r e r e r e R e R e R e R e R e R e R e R e R e R e R e R e R e nnenns 108
An ANAlYTICAl EXAMPIEcoveereeirccte e e s a e e np b e p e e 109

D12 T TSR 111

Change in the Right DIreClioN.........ccceverere s sa e e 112
RECOGNIZING CRANQEccveereereeereeereeserteresseresessssessesesaesessesassesae e saesessesessesassesassessssessssssesassesansessenenes 112
SONQGDIFUS FOTBVETveveveereerereerereseserseessesessesessesassessesessesssssssssessssessssesssssssssssessssessssessensssensssenansens 113
A NEW REQUIFEMENL.......cceererererertesereseseras e seeessesesaesessesassesasessesesassassesassesassesassessessssessssesssnessensnnes 113

Separating Analysis and DESIgN..........ccoceeererrreseesee s nne s 115

Shaping the DESIGNcocoiieriicrerirerer e 116

ADSTFACTION ... r e sns e srn e 117

0] T (1 0 o 119

RETEBIBNCES ...t nr e nn e nnas 120

Chapter 10: Object-Oriented Design PrinCiplescccuussmemmmmmnsrssssssssssssnnssssssssnns 121

List of Fundamental Object-Oriented Design PrinCiples.........ccouuvvernseresrssessnsessesenenns 122

Encapsulate Things in Your Design That Are Likely to Change...........ccecvververrrierseninnns 122

Code to an Interface Rather Than to an Implementation...........cccceeeeeeececrcscescenenens 123

The Open-Closed PrinCIPIec.cvvrrerrerserserserses s se s e e e sn e s s 126

The Don’t Repeat Yourself PrinCiplecccocvverrreninnr s 127

The Single Responsibility PrinCipleccccvevvririrsscscr s 128

ix

CONTENTS

The Liskov Substitution PrinCiple...........cocvvrvrserversrsrcer et 129
The Dependency Inversion PriNCIPIEcccvvvvervrverienres s sae s 136
The Interface Segregation PrinCiple.........cccvovcrcrcscscs s 138
The Principle of Least KNOWIEAQE.........cccucereeerierenrienincreseseses e sessessesennens 138
Class DeSign GUIABIINESceereerrerereersersessessessesssssesssssssasssssssssssssssssssssssssssssssssssssanns 139
070 T (1 [0 o 140
RETEBIBNCES ...t e r e nr e nn e 140
Chapter 11: Design Patierns.......cccccccmmrrmmssssssssssnmmmmssssssssssssssssssssssssssssssssssessssnns 141
Design Patterns and the Gang of FOUFccccoveriiiennicnss s 142
The ClassiC DeSign PAIIBINScccvrerererreesireree s e r e 143
Patterns We Can USEccocoreeererercrerescsesessessesese e sssssse s e s sssssssssssassssssssssens 144
Creational PALLEIMS ... e 144
STUCTUPAL PALLEINS ...ttt s s s s s s s s s s s s enenesenennnnnas 151
BEhaVIOral PAIEINSc.cocoeecrecrcrecrcreree e 157
0] T (1 [0 o 166
RETEBIBNCES ...t n s 166
Chapter 12: Parallel Programmingcccousssssssssmmmsssssssssssssssssssssssssssssssnsssssssssns 167
Concurrency VS. ParalleliSm...........covceeeieienssesesssesessesese s sssse s 168
Parallel COMPULETS......cccviererierrere st se s se e e e sn e sn s sn e sn s sn s sn e snesnenens 170
L LR b(0] 0] 11 170
Parallel Programming........c.ccoccvereensensessesssssssssssessssssssessessesssssssssssssssssssssssssssssssssssssnsnns 171
SCAUADIITY ...cveeereceeerir e e AR e e Re AR e R e e Re e Reneeaeas 172
PEITOMMANCE ...ttt e b e e e s s e e bR e e e e ne e e 172
Obstacles to Performance IMProveMENtcccvevereierene s se e e s s sae s saesaesne s 173
How to Write @ Parallel Programccccuceeenennnmnennsessss s sss s ssssessessssssnes 174
Parallel Programming MOGEISceueeeerirreieienirieesesisese e sss s e e nens 174
Designing Parallel PrOgramsc.cocececrerrenenesesseesesessssssesesss e sesessesssesessssssssssssssssssssssssssssssssssssens 175

Parallel Design TECANIQUES.........ccceerereeeriree s a e nn s nnas 175

CONTENTS

Programming Languages and APIS (with eXamples)........ccccovvernrerenessennsesesessesensennes 177
Parallel Language FEATUIEScccovurueererirteese st nens 177
JAVA TIMBAUS ...ttt se bR e R e e e e s e e e pn s s 178
OPENIMP ...t e R E e e e R e e e e R e Re e e R e Re e e R Re e e e Rennneas 184

The Last Word on Parallel Programmingc.ccccvververressensensessessessessessessessessessssssssenses 188

REBIBINCES ...t s 189

Chapter 13: Parallel Design Patterns.......c.ccousmmmmnssnmnmmsssssnnmmssssssssssssssssssssssnnns 191

Parallel Patterns QVEIVIBWccccoiererenscsesise s s s snssesnas 191
Parallel Design Pattern DeSign SPACEScccocrururerererirerenisiree e 192

A List of Parallel PAErns..........ccoeeicerenncnnsisessess s sssesnas 199
Embarrassingly Parallel...........o oot 199
MASTEI/WOTKETeveeeeeeeeeees e s et e e e e s e e e s e se e e s s se e e nsnne e e e nsennnnas 200
MAP AN0 REUUCE........coeeeeeeeeririeeeris s s e e se e e e sa e s e 200
MAPREUUCE........ccereeeeeerireeier e e b e e e s e se e e s s ae e e s se e e e e sannneas 202
DiVIAE & CONQUET ...t e e s e se e s e s e e s e se e e s s se e sensnse e e nensannnnes 204
FOPK/JOMN .ttt e b e b e s ne b e ae e e e s e e e e nsennneas 205

A Last Word on Parallel Design Patterns.........cccceeeveveeveersressessessessessessssssssessessessessenses 209

REBIBINCES ...t s 209

Chapter 14: Code Construction.......ccccovuimmmsssssssnsmmmsmmmsssssssssssssssssssssssssssssssnnns 211

A CodiNg EXAMPIE ...t sn e sn e n e sn e sn s sn e sn e n e n e sn e sn e nn e nn e nn s 213

Functions and Methods and Sizecccuceernennnenesnsess e ssseenes 214

Formatting, Layout, and STYIe..........ccocrvrirvrrnsrrrrer e sa e 214

General Layout Issues and TEChNIQUESccceeeererererressessessessesssssesessssssessssssssssssssnns 215

WHRITE SPACEeevirirerir sttt n e sn e e n s 217

Block and Statement Style GUIAEIINESccccvververrerserrer s 217

Declaration Style GUIAEIINESc.cecrierirsirrrer e e 218

Commenting Style GUIAEIINESc.ccvvceeriereerererer e 220

Identifier Naming CONVENTIONSccccceriereemnere e 222

xi

CONTENTS

=] 2T (0] T TSR 224
WHEN 10 RETACTONc.ceeeeeceriee ettt p e 224
TYPES Of REFACIOMNG......cv ettt 226

Defensive Programming.........ccccveerrersensensessessessessessessessessessessssssssssssssssssssssssssssssssssssnns 228
ASSEItioNS Are HEIPTULcoveeeeereeere et res e e ae e sa s s e a e e e sasaesa s e sae e sae e aenesaesansesaenenaesnaen 229
(])0 T 230
L 0T 4o |1 T 230
L o= L[0T TN T - 232

The Last Word on Coding........c.ccuerrrrernmniessessessessessessss s ses s e ssssssssssnssssssssnssssssssnssnssns 234

RETEIBNCESeeuerererere ettt se e e sn e sn e sn e sn e nnen e 234

Chapter 15: Debuggingccccurusssnmnmmssssnnnmsssssnnnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 235

What IS @n Error, ANYWAY?ccoueeeenerierensesesessessesssnsssens 236

What NOETO DO.....coeeereecrere s 237

An Approach t0 DEDUGQING......coeereeerererecre e sae e e sresnesnesnesnesresnssnesresnesne s 238
Reproduce the Problem Reli@bly ... 238
Find the SOUrce Of the EFTOr ...t e 239
Fix the Error (JUSE TRt ONe)! ... e e e 245
LTS (T O 246
LOOK fOF IVIOFE EFTOFSeecceececcesesieeeses s se s sa s sa e s se bbb s sasne e e e s nenen e 246

SoUrce Code CONTIOL........ccveerierrerrerrer e res e se e sn e sr s sn e sr e sn e sr e nnens 246
The ColliSiON ProBIBM ...t e 247
Source Code CONIOl SYSTEMSccceeeerieererirre e re e se s s s 248

One Last Thought on Coding and Debugging: Pair Programming...........cceevvrverrersenienne 250

CONCIUSION......ceeeeeeeeriecserre e se e se e ssesse s e s e sesr e seesesnessesaesnessenresnennesnesnesnennasnnnnensnnnan 251

RETEIBNCESeeererererer ettt se e p e sn e e n e sn e n e sn e nnen e 251

Chapter 16: Unit Testingcccuuunmmmmmmmmmmmmmmsssssssmmmmesssssssssssssssesssssssssssssssssesssnns 253

The Problem With TESTING........cceivierenmiiernsiesissese e ses s snnnens 254

That Testing MINGSEtcccvvirirrercr e ae s 254

WREN 10 TEST? ...t s e n s 255

xii

CONTENTS

Testing in an Agile Development Environment...........cccccoeeivennnnennsesessssesessessesennens 256
L L U 0T L 256

Code Coverage: Test EVery STatement..........ccccvevererererererseresseree e sessesessesasessesessesessssessesassesssnenes 257

Data Coverage: Bad Data IS YOUr FIENA?coovceverererererereresseree e sessssessesssessssessesessssesssssssesssnenes 258
Characteristics 0f TESES ... s 259
HOW 10 WIite @ TEST......eceieeereresirere e 259

L LTC] (0] OSSOSO 260

THE TASKS.....viveueererteeesesie et se e se e e e s e b e e e e R e e b e Re e e A e R e e e b e R e e e e e s e e e e nrans 260

THE TESES.. ettt b e e E R b e R e AR e e e R e e e R e e e rans 260
JUnit: A Testing FrameworK.........ccocvververiensensensessessesses s sesses e e s e s sss s s sessssssssassssses 264
TESHING IS GOOMcerererirer s sn e sn e n e nn e n s 268
00 T [T [0 o PSS 268
RETEBIENCES ... 269
Chapter 17: Code Reviews and InSpectionsc.ccccmmnsssmmnmmsssssnnmssssssnnssssssnnns 271
Walkthroughs, Reviews, and INSPECLIONS..........cccvvervrvercerrenser e 272
WaLKERFOUQRNS ..ot s 273
COUE RBVIBWS.....ccurerrerreresrssessssessesssesss s sse s s s sss s sas e sse s s e sss s sssssssesssssssssssssssesnsenns 273
COUE INSPECLIONScveerereereerrereereersersessessesaessessessesasssesaesaesassassasssesassaesaesassaesassassssssnanns 274

TS L= (0 N 210 T 275

Inspection Phases and PrOCEAUIESccccveererrerereererereseresersssessesessesessessssessssessesessessssessssessssessenees 276
Reviews in Agile ProjECEScccvcrirsrsirsesserses s se e e e sn s e snssnssnenns 278

How to Do an Agile Peer Cotde REVIBWccccceeerrrereninesiresis s e s ssssssesssssssessssens 279
Summary of Review Methodologies..........ccocvvererrierenerennsesesesse e ssesesnens 279
Defect Tracking SYSIEMS........ccvcvcrirrrrrr s sa s sa e e 280
Defect Tracking in Agile PrOJECES.........cccvcrirsersersessis s se e s e e e s e snnnns 281
00 T (1 [0 o PSS 282
RETBIENCES ... 282

xiii

CONTENTS

Chapter 18: Ethics and Professional Practicecccuumssemmsmnnnnnsssssssssssnssssssssnns 283
INtroduction t0 EthICScceeeeeeeeee e nnenns 283
EthiCal TREOIY.....coeeeeerr e nr e 284
Deontol0giCal THEOKIESccoreeeeererereererer e a e pe e 284
Consequentialism (TeleologiCal TREOKIES).......ccccrurrrerererereereresee e ses e sessesenens 287
ELhICAI DFVEISeceeeeeecererese e ss s n s s sre s ena e 289
LT T L] T 289
ProfeSSIONAl DIVEIS.....ccccveeiererriresesessssessesssssesesssss s e s s se e s s e sesssse s e s sssssssssssssssesssssssssnsssssessnsnnes 289
Ethical Discussion and DeciSion MakKing.........cccuerrersersessessessesssssssssssssssssssssssssssssssnsnns 291
Identifying and Describing the Problem ... s 291
ANalyzing the ProODIEM........couceeecce e r e r e s p s p e n e nrnns 291
CaSE STUMIEScoveeeeeeereereericrre e rre e s e e sa e s aesa e s a e sr e sr e sresa e snesnennsnnennennnnens 292
H1 COPYING SOTLWATE ... et e s r e ne s e e s 292

#2 WH0'S COMPULET IS It e 292

#3 How Much Testing IS ENOUQGN?........c.coeeiieeerreeesire st 292

#4 HOw MUCh SROUIA YOU TEII? ...ttt 293
The Last WOrd on ETNICS?cccvceeerererneresensesse e ssssessessssesss s ssessssessssesssssssssssnsnsens 293
2T (=] (] 1T S 294
The ACM Code of Ethics and Professional Conduct.............cccovrvrercrircncescescee e 294
Lo (T2 T 111] RS 294
CONEENTS & GUIEIINES ...t se e e e nenpe e e 295
The ACM/IEEE-CS Software Engineering Code of EthiCs.........ccoevvrvririrrrsensessenene 300
PREAIMBLEoooveeuueesseessseessssnssssessssesssssnssssnsssssessssesssssessssessssnssssnssssnssssesssssnssssmsssssessssnsssssessssnness 300
PRINCIPLES..........ooeveeuueeessseessseesssmesssssesssesssssnssssnsssssessssessssssssssnsssssnssssnsssssnssssesssssessssmessssessssnsssssessssnness 301
Chapter 19: Wrapping It all UPccccvrnieemmmmnssnsnmmssssssnmmsssssssmsssssssssssssssnnssssssnnnes 305
What Have You Learned?..........cccoceeeiiernnesessnsesse e ssssessessssessssessessssessssssssssssesssssnsens 305
What 10 DO NEXL?.....ooeeeeererer st 306
RETEIBNCESeverererirer ettt se s n e sn s sn e n e nn s nn e nn e nrnnan 308
INA@X . ueuiiiisnnnnnnnsssnnnnnssssnnnnmssssnnnnesssnnnnessssnnnnsssssnnnnessssnnnsessssnnnsssssnnnnsssssnnnnesssnnnnssssn 311

xiv

About the Author

John F. Dooley is the William and Marilyn Ingersoll Emeritus Professor of
Computer Science at Knox College in Galesburg, Illinois. Before returning
to teaching in 2001, Professor Dooley spent nearly 18 years in the software
industry as a developer, designer, and manager working for companies
such as Bell Telephone Laboratories, McDonnell Douglas, IBM, and
Motorola, along with an obligatory stint as head of development at a
software startup. He has more than two dozen professional journal and
conference publications and four books to his credit, along with numerous
presentations. He has been a reviewer for the Association for Computing
Machinery Special Interest Group on Computer Science Education
(SIGCSE) Technical Symposium for the last 36 years and reviews papers
for the IEEE Transactions on Education, the ACM Innovation and
Technology in Computer Science Education (ITiCSE) Conference, and
other professional conferences. He has developed short courses in software development and created three
separate software engineering courses at the advanced undergraduate level.

XV

About the Technical Reviewer

Michael Thomas has worked in software development for more than 20 years as an individual contributor,
team lead, program manager, and vice president of engineering. Michael has more than ten years experience
working with mobile devices. His current focus is in the medical sector using mobile devices to accelerate
information transfer between patients and healthcare providers.

xvii

Acknowledgments

I'd like to thank Todd Green of Apress for encouraging me and making this book possible. The staff at Apress,
especially Jill Balzano and Michael Thomas, have been very helpful and gracious. The book is much better
for their reviews, comments, and edits.

Thanks also to all my students in CS 292 over the last 12 years, who have put up with successive versions
of the course notes that became this book, and to my CS department colleagues David Bunde and Jaime
Spacco, who put up with me for all these years. And my thanks also go to Knox College for giving me the time
and resources to finish both editions of this book.

Finally, I owe everything to Diane, who hates that I work nights, but loves that I can work at home.

Xix

Preface

What's this book all about? Well, it’s about how to develop software from a personal perspective. We'll look at
what it means for you to take a problem and produce a program to solve it from beginning to end. That said,
this book focuses a lot on design. How do you design software? What things do you take into account? What
makes a good design? What methods and processes are there to help you design software? Is designing small
programs different from designing large ones? How can you tell a good design from a bad one? What general
patterns can you use to help make your design more readable and understandable?

It's also about code construction. How do you write programs and make them work? “What?” you say.
“I've already written eight gazillion programs! Of course I know how to write code!” Well, in this book, we'll
explore what you already do and investigate ways to improve on that. We’ll spend some time on coding
standards, debugging, unit testing, modularity, and characteristics of good programs. We'll also talk about
reading code, what makes a program readable, and how to review code that others have written with an eye
to making it better. Can good, readable code replace documentation? How much documentation do you
really need?

And it’s about software engineering, which is usually defined as “the application of engineering
principles to the development of software.” What are engineering principles? Well, first, all engineering
efforts follow a defined process. So we'll be spending a bit of time talking about how you run a software
development project and what phases there are to a project. We'll talk a lot about agile methodologies, how
they apply to small development teams and how their project management techniques work for small- to
medium-sized projects. All engineering work has a basis in the application of science and mathematics to
real-world problems. So does software development. As I've said already, we’ll be spending a lot of time
examining how to design and implement programs that solve specific problems.

By the way, there’s at least one other person (besides me) who thinks software development is not an
engineering discipline. I'm referring to Alistair Cockburn, and you can read his paper, “The End of Software
Engineering and the Start of Economic-Cooperative Gaming,” at http://alistair.cockburn.us/The+end+o
f+software+engineering+and+the+start+of+economic-cooperative+gaming.

Finally, this book is about professional practice, the ethics and the responsibilities of being a software
developer, social issues, privacy, how to write secure and robust code, and the like. In short, those fuzzy
other things that one needs in order to be a professional software developer.

This book covers many of the topics described for the ACM/IEEE Computer Society Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science (known as CS2013).! In particular,
it covers topics in a number of the Knowledge Areas of the Guidelines, including Software Development
Fundamentals, Software Engineering, Systems Fundamentals, Parallel and Distributed Computing,
Programming Languages, and Social Issues and Professional Practice. It’s designed to be both a textbook

!The Joint Task Force on Computing Education. 2013. “Computer Science Curricula 2013: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science.” New York, NY: ACM/IEEE Computer Society. www.acm.org/
education/CS2013-final-report.pdf.

XXi

http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming
http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming
http://www.acm.org/education/CS2013-final-report.pdf
http://www.acm.org/education/CS2013-final-report.pdf

PREFACE

for a junior-level undergraduate course in software design and development and a manual for the working
professional. Although the chapter order generally follows the standard software development sequence,
one can read the chapters independently and out of order. I'm assuming that you already know how to
program and that you're conversant with at least one of these languages: Java, C, or C++. I'm also assuming
you're familiar with basic data structures, including lists, queues, stacks, maps, and trees, along with the
algorithms to manipulate them.

In this second edition, most of the chapters have been updated, some new examples have been added,
and the book discusses modern software development processes and techniques. Much of the plan-driven
process and project-management discussions from the first edition have been removed or shortened,
and longer and new discussions of agile methodologies, including Scrum, Lean Software Development,
and Kanban have taken their place. There are new chapters on parallel programming and parallel design
patterns, and a new chapter on ethics and professional practice.

I use this book in a junior-level course in software development. It’s grown out of the notes I've
developed for that class over the past 12 years. I developed my own notes because I couldn’t find a book that
covered all the topics I thought were necessary for a course in software development, as opposed to one in
software engineering. Software engineering books tend to focus more on process and project management
than on design and actual development. I wanted to focus on the design and writing of real code rather than
on how to run a large project. Before beginning to teach, I spent nearly 18 years in the computer industry,
working for large and small companies, writing software, and managing other people who wrote software.
This book is my perspective on what it takes to be a software developer on a small- to medium-sized team
and help develop great software.

I hope that by the end of the book you'll have a much better idea of what the design of good programs
is like, what makes an effective and productive developer, and how to develop larger pieces of software.
You'll know a lot more about design issues. You'll have thought about working in a team to deliver a product
to a written schedule. You'll begin to understand project management, know some metrics and how to
review work products, and understand configuration management. I'll not cover everything in software
development—not by a long stretch—and we’ll only be giving a cursory look at the management side of
software engineering, but you'll be in a much better position to visualize, design, implement, and test
software of many sizes, either by yourself or in a team.

xxii

CHAPTER 1

Introduction to Software
Development

“Not only are there no silver bullets now in view, the very nature of software makes
it unlikely that there will be any—no inventions that will do for software productivity,
reliability, and simplicity what electronics, transistors, and large-scale integration did for
computer hardware. We cannot expect ever to see twofold gains every two years.”

— FrederickJ. Brooks, Jr.!

So, you're asking yourself, why is this book called Software Development, Design and Coding? Why isn’t it
called All About Programming or Software Engineering? After all, isn’t that what software development is?
Well, no. Programming is a part of software development, but it’s certainly not all of it. Likewise, software
development is a part of software engineering, but it’s not all of it.

Here’s the definition of software development that we’ll use in this book: software development is the
process of taking a set of requirements from a user (a problem statement), analyzing them, designing a
solution to the problem, and then implementing that solution on a computer.

Isn’t that programming, you ask? No. Programming is really the implementation part, or possibly
the design and implementation part, of software development. Programming is central to software
development, but it’s not the whole thing.

Well, then, isn’t it software engineering? Again, no. Software engineering also involves a process and
includes software development, but it also includes the entire management side of creating a computer
program that people will use, including project management, configuration management, scheduling
and estimation, baseline building and scheduling, managing people, and several other things. Software
development is the fun part of software engineering.

So, software development is a narrowing of the focus of software engineering to just that part concerned

with the creation of the actual software. And it’s a broadening of the focus of programming to include
analysis, design, and release issues.

Brooks, Frederick. “No Silver Bullet.” IEEE Computer (1987). 20(4): 10-19.

© John F. Dooley 2017
J. F. Dooley, Software Development, Design and Coding, https://doi.org/10.1007/978-1-4842-3153-1_1

https://doi.org/10.1007/978-1-4842-3153-1_1

CHAPTER 1 © INTRODUCTION TO SOFTWARE DEVELOPMENT

What We’re Doing

It turns out that, after 70 or so years of using computers, we've discovered that developing software is

hard. Learning how to develop software correctly, efficiently, and beautifully is also hard. You're not

born knowing how to do it, and many people, even those who take programming courses and work in

the industry for years, don’t do it particularly well. It’s a skill you need to pick up and practice—a lot. You
don’t learn programming and development by reading books—not even this one. You learn it by doing it.
That, of course, is the attraction: to work on interesting and difficult problems. The challenge is to work on
something you've never done before, something you might not even know if you can solve. That’s what has
you coming back to create new programs again and again.

There are probably several ways to learn software development. But I think that all of them involve
reading excellent designs, reading a lot of code, writing a lot of code, and thinking deeply about how you
approach a problem and design a solution for it. Reading a lot of code, especially really beautiful and
efficient code, gives you lots of good examples about how to think about problems and approach their
solution in a particular style. Writing a lot of code lets you experiment with the styles and examples you've
seen in your reading. Thinking deeply about problem solving lets you examine how you work and how you
do design, and lets you extract from your labors those patterns that work for you; it makes your programming
more intentional.

So, How to Develop Software?

The first thing you should do is read this book. It certainly won't tell you everything, but it will give you a
good introduction into what software development is all about and what you need to do to write great code.
It has its own perspective, but that’s a perspective based on 20 years writing code professionally and another
22 years trying to figure out how to teach others to do it.

Despite the fact that software development is only part of software engineering, software development
is the heart of every software project. After all, at the end of the day what you deliver to the user is working
code. A team of developers working in concert usually creates that code. So, to start, maybe we should look
at a software project from the outside and ask what does that team need to do to make that project a success?

In order to do software development well, you need the following:

e A small, well-integrated team: Small teams have fewer lines of communication
than larger ones. It’s easier to get to know your teammates on a small team. You
can get to know their strengths and weaknesses, who knows what, and who is the
“go-t0” person for particular problems or particular tools. Well-integrated teams
have usually worked on several projects together. Keeping a team together across
several projects is a major job of the team’s manager. Well-integrated teams are more
productive, are better at holding to a schedule, and produce code with fewer defects
atrelease. The key to keeping a team together is to give them interesting work to do
and then leave them alone.

e Good communication among team members: Constant communication among
team members is critical to day-to-day progress and successful project completion.
Teams that are co-located are better at communicating and communicate more than
teams that are distributed geographically (even if they're just on different floors or
wings of a building). This is a major issue with larger companies that have software
development sites scattered across the globe.

e Good communication between the team and the customer: Communication with the
customer is essential to controlling requirements and requirements churn during
a project. On-site or close-by customers allow for constant interaction with the
development team. Customers can give immediate feedback on new releases and be

CHAPTER 1 * INTRODUCTION TO SOFTWARE DEVELOPMENT

involved in creating system and acceptance tests for the product. Agile development
methodologies strongly encourage customers to be part of the development team
and, even better, to be on site daily. See Chapter 2 for a quick introduction to a
couple of agile methodologies.

A process that everyone buys into: Every project, no matter how big or small, follows
a process. Larger projects and larger teams tend to be more plan-driven and follow
processes with more rules and documentation required. Larger projects require
more coordination and tighter controls on communication and configuration
management. Smaller projects and smaller teams will, these days, tend to follow
more agile development processes, with more flexibility and less documentation
required. This certainly doesn’t mean there is no process in an agile project; it just
means you do what makes sense for the project you're writing so that you can
satisfy all the requirements, meet the schedule, and produce a quality product.

See Chapter 2 for more details on process and software life cycles.

The ability to be flexible about that process: No project ever proceeds as you think it
will on the first day. Requirements change, people come and go, tools don’t work out
or get updated, and so on. This point is all about handling risk in your project. If you
identify risks, plan to mitigate them, and then have a contingency plan to address the
event where the risk actually occurs, you'll be in much better shape. Chapter 4 talks
about requirements and risk.

A plan that every one buys into: You wouldn’t write a sorting program without

an algorithm to start with, so you shouldn’t launch a software development

project without a plan. The project plan encapsulates what you're going to do to
implement your project. It talks about process, risks, resources, tools, requirements
management, estimates, schedules, configuration management, and delivery.

It doesn’t have to be long and it doesn’t need to contain all the minute details of the
everyday life of the project, but everyone on the team needs to have input into it,
they need to understand it, and they need to agree with it. Unless everyone buys into
the plan, you're doomed. See Chapter 3 for more details on project plans.

To know where you are at all times: It’s that communication thing again. Most
projects have regular status meetings so that the developers can “sync up” on their
current status and get a feel for the status of the entire project. This works very well
for smaller teams (say, up to about 20 developers). Many small teams will have daily
meetings to sync up at the beginning of each day. Different process models handle
this “stand-up” meeting differently. Many plan-driven models don’t require these
meetings, depending on the team managers to communicate with each other. Agile
processes often require daily meetings to improve communications among team
members and to create a sense of camaraderie within the team.

To be brave enough to say, “Hey, we're behind!”: Nearly all software projects have
schedules that are too optimistic at the start. It’s just the way we developers are.
Software developers are an optimistic bunch, generally, and it shows in their estimates
of work. “Sure, I can get that done in a week!” “T'll have it to you by the end of the day.”
“Tomorrow? Not a problem.” No, no, no, no, no. Just face it. At some point you'll be
behind. And the best thing to do about it is tell your manager right away. Sure, she
might be angry—but she’ll be angrier when you end up a month behind and she didn’t
know it. Fred Brooks’s famous answer to the question of how software projects get so
far behind is “one day at a time.” The good news, though, is that the earlier you figure
out you're behind, the more options you have. These include lengthening the schedule
(unlikely, but it does happen), moving some requirements to a future release, getting
additional help, and so on. The important part is to keep your manager informed.

http://dx.doi.org/10.1007/978-1-4842-3153-1_2
http://dx.doi.org/10.1007/978-1-4842-3153-1_2
http://dx.doi.org/10.1007/978-1-4842-3153-1_4
http://dx.doi.org/10.1007/978-1-4842-3153-1_3

CHAPTER 1 © INTRODUCTION TO SOFTWARE DEVELOPMENT

e Theright tools and the right practices for this project: One of the best things about
software development is that every project is different. Even if you're doing version
8.0 of an existing product, things change. One implication of this is that for every
project, one needs to examine and pick the right set of development tools for this
particular project. Picking tools that are inappropriate is like trying to hammer nails
with a screwdriver; you might be able to do it eventually, but is sure isn’t easy or
pretty or fun, and you can drive a lot more nails in a shorter period of time with a
hammer. The three most important factors in choosing tools are the application type
you are writing, the target platform, and the development platform. You usually can’t
do anything about any of these three things, so once you know what they are, you can
pick tools that improve your productivity. A fourth and nearly as important factor in
tool choice is the composition and experience of the development team. If your team
is composed of all experienced developers with facility on multiple platforms, tool
choice is pretty easy. If, on the other hand, you have a bunch of fresh-outs and your
target platform is new to all of you, you’ll need to be careful about tool choice and
fold in time for training and practice with the new tools.

e To realize that you don’t know everything you need to know at the beginning of
the project: Software development projects just don’t work this way. You'll always
uncover new requirements. Other requirements will be discovered to be not nearly
as important as the customer thought, and still others that were targeted for the next
release are all of a sudden requirement number 1. Managing requirements churn
during a project is one of the single most important skills a software developer
can have. If you're using new development tools—say, that new web development
framework—you’ll uncover limitations you weren’t aware of and side-effects that
cause you to have to learn, for example, three other tools to understand them—for
example, that that web development tool is Ruby based, requires a specific relational
database system to run, and needs a particular configuration of Apache to work
correctly.

Conclusion

Software development is the heart of every software project and is the heart of software engineering. Its
objective is to deliver excellent, defect-free code to users on time and within budget—all in the face of
constantly changing requirements. That makes development a particularly hard job to do. But finding a
solution to a difficult problem and getting your code to work correctly is just about the coolest feeling in the
world.

“[Programming is] the only job I can think of where I get to be both an engineer and an
artist. There’s an incredible, rigorous, technical element to it, which I like because you
have to do very precise thinking. On the other hand, it has a wildly creative side where
the boundaries of imagination are the only real limitation. The marriage of those two
elements is what makes programming unique. You get to be both an artist and a scientist.
like that. I love creating the magic trick at the center that is the real foundation for writing
the program. Seeing that magic trick, that essence of your program, working correctly for
the first time, is the most thrilling part of writing a program.”

—Andy Hertzfeld (designer of the first Mac OS)?

’Lammers, Susan. Programmers at Work. (Redmond, WA: Microsoft Press, 1986).

4

CHAPTER 1 * INTRODUCTION TO SOFTWARE DEVELOPMENT

References

Brooks, Frederick. “No Silver Bullet” IEEE Computer (1987). 20(4): 10-19.
Lammers, Susan. Programmers at Work. (Redmond, WA: Microsoft Press, 1986).

CHAPTER 2

Software Process Models

Ifyou don’t know where you're going, any road will do.
Ifyou don’t know where you are, a map won't help.

—Watts Humphrey

Every program has a life cycle. It doesn’t matter how large or small the program is, or how many people are
working on the project—all programs go through the same steps:

1. Conception

Requirements gathering/exploration/modeling
Design

Coding and debugging

Testing

Release

N o a &~ DN

Maintenance/software evolution
8. Retirement

Your program may compress some of these steps, or combine two or more steps into a single piece of
work, but all programs go through all steps of the life cycle.

Although every program has a life cycle, many different process variations encompass these steps. Every
development process, however, is a variation on two fundamental types. In the first type, the project team
will generally do a complete life cycle—at least steps 2 through 7—before they go back and start on the next
version of the product. In the second type, which is more prevalent now, the project team will generally do a
partial life cycle—usually steps 3 through 5—and iterate through those steps several times before proceeding
to the release step.

These two general process types can be implemented using two classes of project management models.
These are traditional plan-driven models,' and the newer agile development models.? In plan-driven models,
the methodology tends to be stricter in terms of process steps and when releases happen. Plan-driven
models have more clearly defined phases, and more requirements for sign-off on completion of a phase

'Paulk, M. C. The Capability Maturity Model: Guidelines for Improving the Software Process. (Reading, MA:
Addison-Wesley, 1995.)

2Martin, R. C. Agile Software Development, Principles, Patterns, and Practices. (Upper Saddle River, NJ:
Prentice Hall, 2003.)

© John F. Dooley 2017 7
J. F. Dooley, Software Development, Design and Coding, https://doi.org/10.1007/978-1-4842-3153-1_2

https://doi.org/10.1007/978-1-4842-3153-1_2

CHAPTER 2 © SOFTWARE PROCESS MODELS

before moving on to the next phase. Plan-driven models require more documentation at each phase and
verification of completion of each work product. These tend to work well for large contracts for new software
with well-defined deliverables. The agile models are inherently incremental and make the assumption

that small, frequent releases produce a more robust product than larger, less frequent ones. Phases in agile
models tend to blur together more than in plan-driven models, and there tends to be less documentation of
work products required, the basic idea being that code is what is being produced, so developer efforts should
focus there. See the Agile Manifesto web page at http://agilemanifesto.org to get a good feel for the agile
development model and goals.

This chapter takes a look at several software life cycle models, both plan driven and agile, and compares
them. There is no one best process for developing software. Each project must decide on the model that
works best for its particular application and base that decision on the project domain, the size of the project,
the experience of the team, and the timeline of the project. But first we have to look at the four factors, or
variables, that all software development projects have in common.

The Four Variables

The four variables of software development projects are as follows:

e Cost is probably the most constrained; you can’t spend your way to quality or being
on schedule, and as a developer you have very limited control over cost. Cost can
influence the size of the team or, less often, the types of tools available to the team.
For small companies and startups, cost also influences the environment where the
developers will work.

e Timeisyour delivery schedule and is unfortunately many times imposed on you
from the outside. For example, most consumer products (be they hardware or
software) will have a delivery date somewhere between August and October in
order to hit the holiday buying season. You can’t move Christmas. If you're late, the
only way to fix your problem is to drop features or lessen quality, neither of which is
pretty. Time is also where Brooks’s law gets invoked (adding programmers to a late
project just makes it later).

e Qualityis the number and severity of defects you're willing to release with. You can make
short-term gains in delivery schedules by sacrificing quality, but the cost is enormous: it
will take more time to fix the next release, and your credibility is pretty well shot.

e Features (also called scope) are what the product actually does. This is what
developers should always focus on. It’s the most important of the variables from the
customer’s perspective and is also the one you as a developer have the most control
over. Controlling scope allows you to provide managers and customers control over
quality, time, and cost. If the developers don’t have control over the feature set for
each release, then they are likely to blow the schedule. This is why developers should
do the estimates for software work products.

A Model That’s not a Model At All: Code and Fix

The first model of software development we’ll talk about isn’t really a model at all. But it is what most of us do
when we're working on small projects by ourselves, or maybe with a single partner. It’s the code and fix model.

The code and fix model, shown in Figure 2-1, is often used in lieu of actual project management. In this
model there are no formal requirements, no required documentation, and no quality assurance or formal
testing, and release is haphazard at best. Don’t even think about effort estimates or schedules when using
this model.

8

http://agilemanifesto.org/

CHAPTER 2 © SOFTWARE PROCESS MODELS

Conceptual
Development
S A
Code Prayer optional
And
Fix
‘ |
Y
Release
Product

Figure 2-1. The code and fix process model

Code and fix says take a minimal amount of time to understand the problem and then start coding.
Compile your code and try it out. If it doesn’t work, fix the first problem you see and try it again. Continue
this cycle of type-compile-run-fix until the program does what you want with no fatal errors and then ship it.

Every programmer knows this model. We've all used it way more than once, and it actually works in
certain circumstances: for quick, disposable tasks. For example, it works well for proof-of-concept programs.
There’s no maintenance involved, and the model works well for small, single-person programs. It is,
however, a very dangerous model for any other kind of program.

With no real mention of configuration management, little in the way of testing, no architectural
planning, and probably little more than a desk check of the program for a code review, this model is good for
quick and dirty prototypes and really nothing more. Software created using this model will be small, short on
user interface niceties, and idiosyncratic.

That said, code and fix is a terrific way to do quick and dirty prototypes and short, one-off programs.

It's useful to validate architectural decisions and to show a quick version of a user interface design. Use it to
understand the larger problem you're working on.

Cruising over the Waterfall

The first and most traditional of the plan-driven process models is the waterfall model. Illustrated in

Figure 2-2, it was created in 1970 by Winston Royce,® and addresses all of the standard life cycle phases.

It progresses nicely through requirements gathering and analysis, to architectural design, detailed

design, coding, debugging, integration and system testing, release, and maintenance. It requires detailed
documentation at each stage, along with reviews, archiving of the documents, sign-offs at each process
phase, configuration management, and close management of the entire project. It’s an exemplar of the plan-
driven process.

SRoyce, W. W. Managing the Development of Large Software Systems. Proceedings of [EEE WESCON.
(Piscataway, NJ, IEEE Press. 1970.)

CHAPTER 2 © SOFTWARE PROCESS MODELS

Conceptual
Development
T
Requirements
Analysis
L
Architectural
Design
. ¥

Detailed
Design

Code
And
Debug

System
Testing

L
Release
And
Maintenance

Figure 2-2. The waterfall process model

It also doesn’t work.

There are two fundamental and related problems with the waterfall model that hamper its acceptance
and make it very difficult to implement. First, it generally requires that you finish phase N before you
continue on to phase N+1. In the simplest example, this means you must nail down all your requirements
before you start your architectural design, and finish your coding and debugging before you start anything
but unit testing. In theory, this is great. You'll have a complete set of requirements, you'll understand exactly
what the customer wants and everything the customer wants, so you can then confidently move on to
designing the system.

In practice, though, this never happens. I've never worked on a project where all the requirements
were nailed down at the beginning of the work. I've never seen a project where big things didn’t change
somewhere during development. So, finishing one phase before the other begins is problematic.

The second problem with the waterfall is that, as stated, it has no provision for backing up. It is
fundamentally based on an assembly-line mentality for developing software. The nice little diagram shows
no way to go back and rework your design if you find a problem during implementation. This is similar to the
first problem above. The implications are that you really have to nail down one phase and review everything
in detail before you move on. In practice this is just not practical. The world doesn’t work this way. You never
know everything you need to know at exactly the time you need to know it. This is why software is a wicked
problem. Most organizations that implement the waterfall model modify it to have the ability to back up one
or more phases so that missed requirements or bad design decisions can be fixed. This helps and generally
makes the waterfall model usable, but the requirement to update all the involved documentation when you
do back up makes even this version problematic.

All this being said, the waterfall is a terrific theoretical model. It isolates the different phases of the life
cycle and forces you to think about what you really do need to know before you move on. It’s also a good way
to start thinking about very large projects; it gives managers a warm fuzzy because it lets them think they
know what's going on (they don't, but that’s another story). It's also a good model for inexperienced teams
working on a well-defined, new project because it leads them through the life cycle.

10

CHAPTER 2 © SOFTWARE PROCESS MODELS

Iterative Models

The best practice is to iterate and deliver incrementally, treating each iteration as a closed-
end “mini-project,” including complete requirements, design, coding, integration, testing,
and internal delivery. On the iteration deadline, deliver the (fully-tested, fully-integrated)
system thus far to internal stakeholders. Solicit their feedback on that work, and fold that
feedback into the plan for the next iteration.

(From “How Agile Projects Succeed”)

Although the waterfall model is a great theoretical model, it fails to recognize that all the requirements aren’t
typically known in advance, and that mistakes will be made in architectural design, detailed design, and
coding. Iterative process models make this required change in process steps more explicit and create process
models that build products a piece at a time.

In most iterative process models, you'll take the known requirements—a snapshot of the requirements
at some time early in the process—and prioritize them, typically based on the customer’s ranking of what
features are most important to deliver first. Notice also that this is the first time we’ve got the customer
involved except at the beginning of the whole development cycle.

You then pick the highest priority requirements and plan a series of iterations, where each iteration is a
complete project. For each iteration, you'll add a set of the next highest priority requirements (including some
you or the customer may have discovered during the previous iteration) and repeat the project.

By doing a complete project with a subset of the requirements every time at the end of each iteration, you end
up with a complete, working, and robust product, albeit with fewer features than the final product will have.

According to Tom DeMarco, these iterative processes follow one basic rule:

Your project, the whole project, has a binary deliverable. On the scheduled completion
day, the project has either delivered a system that is accepted by the user, or it hasn't.
Everyone knows the result on that day. The object of building a project model is to divide
the project into component pieces, each of which has this same characteristic: each activity
must be defined by a deliverable with objective completion criteria. The deliverables are
demonstrably done or not done.” ®

So, what happens if you estimate wrong? What if you decide to include too many new features in an
iteration? What if there are unexpected delays?

Well, if it looks as if you won’t make your iteration deadline, there are only two realistic alternatives:
move the deadline or remove features. We’ll come back to this problem later when we talk about estimation
and scheduling.

The key to iterative development is “live a balanced life—learn some and think some and draw and
paint and sing and dance and play and work every day some,’® or in the software development world,
analyze some and design some and code some and test some every day. We'll revisit this idea when we talk
about the agile development models later in this chapter.

“www.adaptionsoft.com/on_time.html

SDeMarco, T. Controlling Software Projects: Management, Measurement and Estimation. (Upper Saddle River, NJ:
Yourdon Press, 1983.)

®Fulghum, Robert. Al I Really Need to Know I Learned in Kindergarten. New York, NY: Ivy Books. 1986.)

11

http://www.adaptionsoft.com/on_time.html

CHAPTER 2 © SOFTWARE PROCESS MODELS

Evolving the Iterative Model

A traditional way of implementing the iterative model is known as evolutionary prototyping.” In evolutionary
prototyping, illustrated in Figure 2-3, one prioritizes requirements as they are received and produces a
succession of increasingly feature-rich versions of the product. Each version is refined using customer
feedback and the results of integration and system testing. This is an excellent model for an environment of
changing or ambiguous requirements, or a poorly understood application domain. This is the model that
evolved into the modern agile development processes.

Initial Concept
And
Requirements |

L)
*| Quick Design |
Refine Design .
& Prot Build Prototype
g —— Customer
Evaluation
updated/inew
E:tl Dene Requirements

Happy

ki

‘ Final Testing | o Product Release

Figure 2-3. Evolutionary prototyping process model

Evolutionary prototyping recognizes that it’s very hard to plan the full project from the start and
that feedback is a critical element of good analysis and design. It's somewhat risky from a scheduling
point of view, but when compared to any variation of the waterfall model, it has a very good track record.
Evolutionary prototyping provides improved progress visibility for both the customer and project
management. It also provides good customer and end user input to product requirements and does a good
job of prioritizing those requirements.

On the downside, evolutionary prototyping leads to the danger of unrealistic schedules, budget
overruns, and overly optimistic progress expectations. These can happen because the limited number of
requirements implemented in a prototype can give the impression of real progress for a small amount of
work. On the flip side, putting too many requirements in a single prototype can result is schedule slippages
because of overly optimistic estimation. This is a tricky balance to maintain. Because the design evolves
over time as the requirements change, there is the possibility of a bad design, unless there’s the provision
of re-designing—something that becomes harder and harder to do as the project progresses and your
customer is more heavily invested in a particular version of the product. There is also the possibility of low
maintainability, again because the design and code evolve as requirements change. This may lead to lots of
re-work, a broken schedule, and increased difficulty in fixing bugs post-release.

Evolutionary prototyping works best with tight, experienced teams who have worked on several projects
together. This type of cohesive team is productive and dexterous, able to focus on each iteration and usually
producing the coherent, extensible designs that a series of prototypes requires. This model is not generally
recommended for inexperienced teams.

"McConnell, S. Rapid Development: Taming Wild Software Schedules. (Redmond, WA: Microsoft Press, 1996.)

12

