

Millie Pant

Kanad Ray

Tarun K. Sharma

Sanyog Rawat

Anirban Bandyopadhyay *Editors*

Soft Computing: Theories and Applications

Proceedings of SoCTA 2016, Volume 2

Springer

Advances in Intelligent Systems and Computing

Volume 584

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily textbooks and proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchedo@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at <http://www.springer.com/series/11156>

Millie Pant · Kanad Ray
Tarun K. Sharma · Sanyog Rawat
Anirban Bandyopadhyay
Editors

Soft Computing: Theories and Applications

Proceedings of SoCTA 2016, Volume 2

Springer

Editors

Millie Pant
Department of Applied Science
and Engineering
IIT Roorkee
Saharanpur
India

Kanad Ray
Department of Physics
Amity School of Applied Sciences, Amity
University Rajasthan
Jaipur, Rajasthan
India

Tarun K. Sharma
Department of Computer Science
and Engineering
Amity School of Engineering
and Technology, Amity University
Rajasthan
Jaipur, Rajasthan
India

Sanyog Rawat
Department of Electronics
and Communication Engineering
SEEC, Manipal University Jaipur
Jaipur, Rajasthan
India

Anirban Bandyopadhyay
Surface Characterization Group, NIMS
Nano Characterization Unit, Advanced Key
Technologies Division
Tsukuba, Ibaraki
Japan

ISSN 2194-5357

Advances in Intelligent Systems and Computing

ISBN 978-981-10-5698-7

<https://doi.org/10.1007/978-981-10-5699-4>

ISSN 2194-5365 (electronic)

ISBN 978-981-10-5699-4 (eBook)

Library of Congress Control Number: 2017947482

© Springer Nature Singapore Pte Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature

The registered company is Springer Nature Singapore Pte Ltd.

The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

It is a matter of pride to introduce the first international conference in the series of “Soft Computing: Theories and Applications (SoCTA)”, which is a joint effort of researchers from Machine Intelligence Lab, USA, and the researchers and Faculty members from Indian Institute of Technology, Roorkee; Amity University Rajasthan.

The maiden conference took place in the historic city of Jaipur at the campus of research-driven university, Amity University Rajasthan. The conference stimulated discussions on various emerging trends, innovation, practices, and applications in the field of Soft Computing.

This book that we wish to bring forth with great pleasure is an encapsulation of 149 research papers, presented during the three-day international conference. We hope that the initiative will be found informative and interesting to those who are keen to learn on technologies that address to the challenges of the exponentially growing information in the core and allied fields of Soft Computing.

We are thankful to the authors of the research papers for their valuable contribution in the conference and for bringing forth significant research and literature across the field of Soft Computing.

The editors also express their sincere gratitude to SoCTA 2016 Patron, Plenary Speakers, Keynote Speakers, Reviewers, Programme Committee Members, International Advisory Committee and Local Organizing Committee, Sponsors without whose support the support and quality of the conference could not be maintained.

We would like to express our sincere gratitude to Prof. Sanghamitra Bandyopadhyay, Director, ISI Kolkata, for gracing the occasion as the Chief Guest for the Inaugural Session and delivering a Plenary talk.

We would like to express our sincere gratitude to Dr. Anuj Saxena, Officer on Special Duty, Chief Minister’s Advisory Council, Govt. of Rajasthan, for gracing the occasion as the Chief Guest for the Valedictory Session.

We would like to extend our heartfelt gratitude to Prof. Nirupam Chakraborti, Indian Institute of Technology, Kharagpur; Prof. Ujjwal Maulik, Jadavpur University; Prof. Kumkum Garg, Manipal University Jaipur; Dr. Eduardo Lugo,

Université de Montréal; Prof. Lalit Garg, University of Malta for delivering invited lectures.

We express our special thanks to Prof. Ajith Abraham, Director, MIR Labs, USA, for being a General Chair and finding time to come to Jaipur amid his very busy schedule.

We are grateful to Prof. W. Selvamurthy and Ambassador (Retd.) R.M. Aggarwal for their benign cooperation and support.

A special mention of thanks is due to our student volunteers for the spirit and enthusiasm they had shown throughout the duration of the event.

We express special thanks to Springer and its team for the valuable support in the publication of the proceedings.

With great fervor, we wish to bring together researchers and practitioners in the field of Soft Computing year after year to explore new avenues in the field.

Saharanpur, India

Dr. Millie Pant

Jaipur, India

Dr. Kanad Ray

Jaipur, India

Dr. Tarun K. Sharma

Jaipur, India

Dr. Sanyog Rawat

Tsukuba, Japan

Dr. Anirban Bandyopadhyay

Organizing Committee

Patrons-in-Chief

Dr. Ashok K. Chauhan, Founder President, Ritnand Balved Education Foundation (RBEF)

Dr. Aseem Chauhan, Chancellor, Amity University Rajasthan

Patron

Prof. (Dr.) S.K. Dube, Vice Chancellor, AUR

Co-patron

Prof. (Dr.) S.L. Kothari, Pro Vice Chancellor, AUR

General Chair

Prof. (Dr.) Ajith Abraham, Director, MIR Labs, USA

Dr. Millie Pant, Indian Institute of Technology, Roorkee

Prof. (Dr.) Kanad Ray, Amity University Rajasthan

Program Chairs

Dr. Tarun K. Sharma, Amity University Rajasthan
Dr. Sanyog Rawat, Manipal University Jaipur

Organizing Chair

Prof. D.D. Shukla, Amity University Rajasthan
Prof. Jagdish Prasad, Amity University Rajasthan

Finance Chair

Brig. (Retd) S.K. Sareen, Amity University Rajasthan
Mr. Sunil Bhargawa, Amity University Rajasthan

Conference Proceedings and Printing & Publication Chair

Dr. Millie Pant, Indian Institute of Technology, Roorkee
Prof. (Dr.) Kanad Ray, Amity University Rajasthan
Dr. Tarun K. Sharma, Amity University Rajasthan
Dr. Sanyog Rawat, Manipal University Jaipur
Dr. Anirban Bandoypadhyay, NIMS, Japan

Best Paper and Best Ph.D. Thesis Chair

Prof. S.C. Sharma, Indian Institute of Technology, Roorkee
Prof. K.K. Sharma, MNIT, Jaipur
Dr. Anirban Bandoypadhyay, NIMS, Japan

Technical and Special Sessions Chair

Dr. Musrrat Ali, Glocal University Saharanpur
Dr. Sushil Kumar, Amity University Uttar Pradesh

Publicity Chair

Dr. Pravesh Kumar, Jaypee University Noida
Mr. Jitendra Rajpurohit, Amity University Rajasthan
Mr. Anil Saroliya, Amity University Rajasthan
Dr. Divya Prakash, Amity University Rajasthan
Mr. Anurag Tripathi, Arya, Jaipur

Registration Chair

Mr. Amit Hirawat, Amity University Rajasthan
Mr. Jitendra Rajpurohit, Amity University Rajasthan

Outcome Committee

Prof. Kanad Ray, Amity University Rajasthan
Dr. Tarun K. Sharma, Amity University Rajasthan
Prof. (Dr.) P.V.S. Raju, Amity University Rajasthan

Web Administrator

Mr. Chitreshh Banerjee, Amity University Rajasthan

Reporting

Dr. Ratnadeep Roy, Amity University Rajasthan
Ms. Pooja Parnami, Amity University Rajasthan

Hospitality Chair

Mr. Vikas Chauhan, Amity University Rajasthan
Ms. Preeti Gupta, Amity University Rajasthan
Dr. Divya Prakash, Amity University Rajasthan

Mr. Jitendra Rajpurohit, Amity University Rajasthan
Mr. Amit Chaurasia, Amity University Rajasthan
Mr. Deepak Panwar, Amity University Rajasthan

Local Organizing Committee

Prof. Upendra Mishra, Amity University Rajasthan
Dr. Swapnesh Taterth, Amity University Rajasthan
Ms. Parul Pathak, JECRC Jaipur
Mr. Anurag Tripathi, Arya, Jaipur
Mr. Ashwani Yadav, Amity University Rajasthan
Ms. Vaishali Yadav, Amity University Rajasthan
Ms. Bhawana Sharma, Amity University Rajasthan
Ms. Pallavi Sharma, Amity University Rajasthan
Mr. Abhay Sharma, Amity University Rajasthan
Dr. Irshad Ansari, Indian Institute of Technology, Roorkee
Mr. Bilal, Indian Institute of Technology, Roorkee
Mr. Nathan Singh, Indian Institute of Technology, Roorkee
Mr. Sunil K. Jauhar, Indian Institute of Technology, Roorkee
Ms. Meenu Singh, Indian Institute of Technology, Roorkee
Mr. Het, Indian Institute of Technology, Roorkee

International Advisory Board

Aboul Ella Hassanien, University of Cairo, Egypt
Adel Alimi, University of Sfax, Tunisia
Aditya Ghose, University of Wollongong, Australia
André Ponce de Leon F de Carvalho, University of São Paulo, Brazil
Ashley Paupiah, Amity Mauritius
Bruno Apolloni, University of Milano, Italy
Francesco Marcelloni, University of Pisa, Italy
Francisco Herrera, University of Granada, Spain
Imre J. Rudas, Obuda University, Hungary
Javier Montero, Complutense University of Madrid, Spain
Jun Wang, Chinese University of Hong Kong, Hong Kong
Naren Sukurdeep, Amity Mauritius
Mo Jamshidi, University of Texas at San Antonio, USA
Sang-Yong Han, Chung-Ang University, Korea
Sebastián Ventura, University of Cordoba, Spain

Sebastian Basterrech, Technical University of Ostrava, Czech Republic
Witold Pedrycz, University of Alberta, Canada

National Advisory Committee

Ankush Mittal, Dehradun
Aruna Tiwari, IIT Indore
Ashish Verma, IIT Guwahati
Ashok Deshpande, Pune
Ashok Kumar Singh, DST, New Delhi
B.K. Das, Delhi University, India
C. Thangaraj, IIT Roorkee, India
D. Gnanaraj Thomas, Madras Christian College, Chennai
D. Nagesh Kumar, IISc., Bangalore
Debasish Ghose, IISc., Bangalore
Deepti, AHEC, IIT Roorkee
Dharmdutt, Saharanpur Campus, IIT Roorkee
Ghanshyam Singh Thakur, MANET Bhopal
Himani Gupta, IIFT, Delhi
Kanti S. Swarup, IIT Chennai
M.P. Biswal, IIT Kharagpur
Manoj Kumar Tiwari, IIT Kharagpur
N.R. Pal, ISI, Kolkata
Nirupam Chakraborti, IIT Kharagpur
P.C. Jha, Delhi University
Pankaj Gupta, Delhi University
Punam Bedi, University of Delhi
Raju George, (IIST), Trivandrum
Rama Mehta, NIH IIT Roorkee
Rama Sushil, Dehradun
Ravindra Gudi, IIT Bombay
Steven Fernandes, Sahyadri College of Engineering & Management, Mangaluru, Karnataka

Contents

Designing ANFIS Model to Predict the Reliability of Component-Based System.....	1
Rajni Sehgal, Deepti Mehrotra and Manju Bala	
Bone Fracture Detection Using Edge Detection Technique	11
Nancy Johari and Natthan Singh	
Virtual Experimental Analysis of Redundant Robot Manipulators Using Neural Networks.....	21
H.P. Singh, Surendra Kumar, Pravesh Kumar and Akanshu Mahajan	
Selection of Energy-Efficient Material: An Entropy-TOPSIS Approach.....	31
Chiranjib Bhowmik, Sachin Gangwar, Sumit Bhowmik and Amitava Ray	
Analyses and Detection of Health Insurance Fraud Using Data Mining and Predictive Modeling Techniques.....	41
Pallavi Pandey, Anil Saroliya and Raushan Kumar	
Software Cost Estimation Using Artificial Neural Network.....	51
Shaina Arora and Nidhi Mishra	
SteganoCrypt: An App for Secure Communication	59
Neha Mudgal, Pallavi Singh and Shweta Saxena	
Step-Stress Partially Accelerated Life Testing Plan for Rayleigh Distribution Using Adaptive Type-II Progressive Hybrid Censoring.....	67
Showkat Ahmad Lone, Ahmadur Rahman and Arif-Ul-Islam	
A Three-Layer Approach for Overlay Text Extraction in Video Stream	79
Lalita Kumari, Vidyut Dey and J. L. Raheja	

A Comprehensive Review and Open Challenges of Stream Big Data.....	89
Bharat Tidke and Rupa Mehta	
Biomass Estimation at ICESat/GLAS Footprints Using Support Vector Regression Algorithm for Optimization of Parameters	101
Sonika and Priya Rathi	
Novel Miniaturized Microstrip Patch Antenna for Body Centric Wireless Communication in ISM Band.....	113
Raghvendra Singh, Pinki Kumari, Pushpendra Singh, Sanyog Rawat and Kanad Ray	
Recognition of Noisy Numbers Using Neural Network.....	123
Chanda Thapliyal Nautiyal, Sunita Singh and U.S. Rana	
Pollution Check Control Using License Plate Extraction via Image Processing.....	133
Shivani Garg and Nidhi Mishra	
Watermarking Technology in QR Code with Various Attacks	147
Azeem Mohammed Abdul, Srikanth Cherukuvada, Annaram Soujanya, G. Sridevi and Syed Umar	
Cognitive Networked Redemption Operational Conception and Devising (CNROCD).....	157
Azeem Mohammed Abdul, Srikanth Cherukuvada, Annaram Soujanya, G. Sridevi and Syed Umar	
Secure Group Authentication Scheme for LTE-Advanced.....	167
M. Prasad and R. Manoharan	
Modeling the Alterations in Calcium Homeostasis in the Presence of Protein and VGCC for Alzheimeric Cell	181
Devanshi D. Dave and Brajesh Kumar Jha	
Solution of Multi-objective Portfolio Optimization Problem Using Multi-objective Synergetic Differential Evolution (MO-SDE).....	191
Hira Zaheer and Millie Pant	
Frequency Fractal Behavior in the Retina Nano-Center-Fed Dipole Antenna Network of a Human Eye	201
P. Singh, R. Doti, J.E. Lugo, J. Faubert, S. Rawat, S. Ghosh, K. Ray and A. Bandyopadhyay	
DNA as an Electromagnetic Fractal Cavity Resonator: Its Universal Sensing and Fractal Antenna Behavior.....	213
P. Singh, R. Doti, J.E. Lugo, J. Faubert, S. Rawat, S. Ghosh, K. Ray and A. Bandyopadhyay	

Compact Half-Hexagonal Monopole Planar Antenna for UWB Applications	225
Ushaben Keshwala, Sanyog Rawat and Kanad Ray	
Effective Data Acquisition for Machine Learning Algorithm in EEG Signal Processing	233
James Bonello, Lalit Garg, Gaurav Garg and Eliazar Elisha Audu	
Solving Nonlinear Optimization Problems Using IUMDE Algorithm	245
Pravesh Kumar, Millie Pant and H.P. Singh	
Health Recommender System and Its Applicability with MapReduce Framework	255
Ritika Bateja, Sanjay Kumar Dubey and Ashutosh Bhatt	
Trigonometric Probability Tuning in Asynchronous Differential Evolution	267
Vaishali, Tarun Kumar Sharma, Ajith Abraham and Jitendra Rajpurohit	
Relevance Index for Inferred Knowledge in Higher Education Domain Using Data Mining	279
Preeti Gupta, Deepti Mehrotra and Tarun Kumar Sharma	
Analytical Study on Cardiovascular Health Issues Prediction Using Decision Model-Based Predictive Analytic Techniques	289
Anurag Bhatt, Sanjay Kumar Dubey and Ashutosh Kumar Bhatt	
Automated Sizing Methodology for CMOS Miller Operational Transconductance Amplifier	301
Pankaj P. Prajapati and Mihir V. Shah	
Analytical Review on Image Compression Using Fractal Image Coding	309
Sobia Amin, Richa Gupta and Deepti Mehrotra	
Biological Infrared Antenna and Radar	323
P. Singh, R. Doti, J.E. Lugo, J. Faubert, S. Rawat, S. Ghosh, K. Ray and A. Bandyopadhyay	
The Fulcrum Principle Between Parasympathetic and Sympathetic Peripheral Systems: Auditory Noise Can Modulate Body's Peripheral Temperature	333
J.E. Lugo, R. Doti and J. Faubert	
Fractal Information Theory (FIT)-Derived Geometric Musical Language (GML) for Brain-Inspired Hypercomputing	343
Lokesh Agrawal, Rutuja Chhajed, Subrata Ghosh, Batu Ghosh, Kanad Ray, Satyajit Sahu, Daisuke Fujita and Anirban Bandyopadhyay	

Design and Analysis of Fabricated Rectangular Microstrip Antenna with Defected Ground Structure for UWB Applications	373
Sandeep Toshniwal, Tanushri Mukherjee, Prashant Bijawat, Sanyog Rawat and Kanad Ray	
Improved Clustering Algorithm for Wireless Sensor Network	379
Santar Pal Singh and S.C. Sharma	
Performance Measurement of Academic Departments: Case of a Private Institution	387
Sandeep Kumar Mogha, Alok Kumar, Amit Kumar and Mohd Hussain Kunroo	
Application of Shuffled Frog-Leaping Algorithm in Regional Air Pollution Control	397
Divya Prakash, Anurag Tripathi and Tarun Kumar Sharma	
Estimating Technical Efficiency of Academic Departments: Case of Government PG College.	405
Imran Ali, U.S. Rana, Millie Pant, Sunil Kumar Jauhar and Sandeep Kumar Mogha	
Fuzzy-based Probabilistic Ecological Risk Assessment Approach: A Case Study of Heavy Metal Contaminated Soil	419
Vivek Kumar Gaurav, Chhaya Sharma, Rakesh Buhlan and Sushanta K. Sethi	
Performance Evaluation of DV-HOP Localization Algorithm in Wireless Sensor Networks	433
Vikas Gupta and Brahmjit Singh	
Performance Comparisons of Four Modified Structures of Log Periodic Three Element Microstrip Antenna Arrays	441
Abhishek Soni and Sandeep Toshniwal	
Optimization of Compressive Strength of Polymer Composite Brick Using Taguchi Method	453
Nitesh Singh Rajput, Dipesh Dilipbhai Shukla, Lav Ishan and Tarun Kumar Sharma	
Application of Unnormalized and Phase Correlation Techniques on Infrared Images.	461
Himanshu Singh, Millie Pant, Sudhir Khare and Yogita Saklani	
Modified Least Significant Bit Algorithm of Digital Watermarking for Information Security	473
Devendra Somwanshi, Indu Chhipa, Trapti Singhal and Ashwani Yadav	
Megh: A Private Cloud Provisioning Various IaaS and SaaS	485
Tushar Bhardwaj, Mohit Kumar and S.C. Sharma	

Predicting the Calorific Value of Municipal Solid Waste of Ghaziabad City, Uttar Pradesh, India, Using Artificial Neural Network Approach	495
Dipti Singh, Ajay Satija and Athar Hussain	
Advertisement Scheduling Models in Television Media: A Review	505
Meenu Singh, Millie Pant, Arshia Kaul and P.C. Jha	
Preliminary Study of E-commerce Adoption in Indian Handicraft SME: A Case Study	515
Rohit Yadav and Tripti Mahara	
Optimization of End Milling Process for Al2024-T4 Aluminum by Combined Taguchi and Artificial Neural Network Process	525
Shilpa B. Sahare, Sachin P. Untawale, Sharad S. Chaudhari, R.L. Shrivastava and Prashant D. Kamble	
Dynamic Classification Mining Techniques for Predicting Phishing URL	537
Surbhi Gupta and Abhishek Singhal	
Protection from Spoofing Attacks Using Honeypot in Wireless Ad Hoc Environment	547
Palak Khurana, Anshika Sharma, Sushil Kumar and Shailendra Narayan Singh	
Threat Detection for Software Vulnerability Using DE-Based Adaptive Approach	555
Anshika Sharma, Palak Khurana, Sushil Kumar and Shailendra Narayan Singh	
An Implementation Case Study on Ant-based Energy Efficient Routing in WSNs	567
Kavitha Kadarla, S.C. Sharma and K. Uday Kanth Reddy	
Comparison Between Gaming Consoles and Their Effects on Children	577
Devansh Chopra, Ekta Sharma, Anchal Garg and Sushil Kumar	
Design of Chamfered H-bend in Rectangular Substrate Integrated Waveguide for K-band Applications	585
Anamika Banwari, Shailza Gotra, Zain Hashim and Sanjeev Saxena	
An Approach to Vendor Selection on Usability Basis by AHP and Fuzzy Topsis Method	595
Kirti Sharawat and Sanjay Kumar Dubey	

Analysis and Comparative Exploration of Elastic Search, MongoDB and Hadoop Big Data Processing.....	605
Praveen Kumar, Parveen Kumar, Nabeel Zaidi and Vijay Singh Rathore	
Methods to Choose the ‘Best-Fit’ Patch in Patch-Based Texture Synthesis Algorithm	617
Arti Tiwari, Kamanasish Bhattacharjee, Sushil Kumar and Millie Pant	
Block Matching Algorithm Based on Hybridization of Harmony Search and Differential Evolution for Motion Estimation in Video Compression	625
Kamanasish Bhattacharjee, Arti Tiwari and Sushil Kumar	
A Rigorous Investigation on Big Data Analytics.....	637
Kajal Rani and Raj Kumar Sagar	
Proposed Algorithm for Identification of Vulnerabilities and Associated Misuse Cases Using CVSS, CVE Standards During Security Requirements Elicitation Phase.....	651
C. Banerjee, Arpita Banerjee, Ajeet Singh Poonia and S.K. Sharma	
Vulnerability Identification and Misuse Case Classification Framework	659
Ajeet Singh Poonia, C. Banerjee, Arpita Banerjee and S.K. Sharma	
Revisiting Requirement Analysis Techniques and Challenges	667
Shreeta Sharma and S.K. Pandey	
Test Data Generation Using Optimization Algorithm: An Empirical Evaluation	679
Mukesh Mann, Pradeep Tomar and Om Prakash Sangwan	
Telugu Speech Recognition Using Combined MFCC, MODGDF Feature Extraction Techniques and MLP, TLRN Classifiers.....	687
Archek Praveen Kumar, Ratnadeep Roy, Sanyog Rawat, Ashwani Kumar Yadav, Amit Chaurasia and Raj Kumar Gupta	
Speech Recognition with Combined MFCC, MODGDF and ZCPA Features Extraction Techniques Using NTN and MNTN Conventional Classifiers for Telugu Language.....	697
Archek Praveen Kumar, Ratnadeep Roy, Sanyog Rawat, Rekha Chaturvedi, Abhay Sharma and Cheruku Sandesh Kumar	
Classification Model for Prediction of Heart Disease	707
Ritu Chauhan, Rajesh Jangade and Ruchita Rekapally	
Determination and Segmentation of Brain Tumor Using Threshold Segmentation with Morphological Operations	715
Natthan Singh and Shivani Goyal	

Contents	xix
A Brief Overview of Firefly Algorithm	727
Bilal and Millie Pant	
Analysis of Indian and Indian Politicians News in the New York Times	739
Irshad Ahmad Ansari and Suryakant	
Comparative Analysis of Clustering Techniques for Customer Behaviour	753
Shalini and Deepika Singh	
Real-time Sentiment Analysis of Big Data Applications Using Twitter Data with Hadoop Framework	765
Divya Sehgal and Ambuj Kumar Agarwal	
Addressing Security Concerns for Infrastructure of Cloud Computing	773
Shweta Gaur Sharma and Lakshmi Ahuja	
Author Index	781

About the Editors

Dr. Millie Pant is an associate professor in the Department of Paper Technology, Indian Institute of Technology, Roorkee (IIT Roorkee) in India. A well-known figure in the field of swarm intelligence and evolutionary algorithms, she has published several research papers in respected national and international journals.

Dr. Kanad Ray is a professor of Physics at the Department of Physics at the Amity School of Applied Sciences, Amity University Rajasthan (AUR), Jaipur. In an academic career spanning over 19 years, he has published and presented research papers in several national and international journals and conferences in India and abroad. He has authored a book on the Electromagnetic Field Theory. Dr. Ray's current research areas of interest include cognition, communication, electromagnetic field theory, antenna and wave propagation, microwave, computational biology, and applied physics.

Dr. Tarun K. Sharma has a Ph.D. in artificial intelligence as well as MCA and MBA degrees and is currently associated with the Amity University Rajasthan (AUR) in Jaipur. His research interests encompass swarm intelligence, nature-inspired algorithms, and their applications in software engineering, inventory systems, and image processing. He has published more than 60 research papers in international journals and conferences. He has over 13 years of teaching experience and has also been involved in organizing international conferences. He is a certified internal auditor and a member of the Machine Intelligence Research (MIR) Labs, WA, USA and Soft Computing Research Society, India.

Dr. Sanyog Rawat is presently associated with the Department of Electronics and Communication Engineering, SEEC, Manipal University Jaipur, Jaipur, India. He holds a B.E. in Electronics and Communication, an M.Tech. in Microwave Engineering and Ph.D. in Planar Antennas. Dr. Rawat has been involved in organizing various workshops on “LabVIEW” and antenna designs and simulations using FEKO. He has taught various subjects, including electrical science, circuits

and system, communication system, microprocessor systems, microwave devices, antenna theory and design, advanced microwave engineering and digital circuits.

Dr. Anirban Bandyopadhyay is a Senior Scientist in the National Institute for Materials Science (NIMS), Tsukuba, Japan. Ph.D. from Indian Association for the Cultivation of Science (IACS), Kolkata 2005, on supramolecular electronics. During 2005–2008, he was selected as Independent Researcher, ICYS Research Fellow in the International Center for Young Scientists (ICYS), NIMS, Japan, he worked on brain-like bio-processor building. In 2007, he started as permanent Scientist in NIMS, working on the cavity resonator model of human brain and brain-like organic jelly. During 2013–2014, he was a visiting professor in Massachusetts Institute of Technology (MIT), USA. He has received many honors such as Hitachi Science and Technology award 2010, Inamori Foundation award 2011–2012, Kurata Foundation Award, Inamori Foundation Fellow (2011–), Sewa Society International member, Japan, etc.

Geometric phase space model of a human brain argues to replace Turing tape with a fractome tape and built a new geometric-musical language which is made to operate that tape. Built prime metric has to replace space–time metric. Designed and built multiple machines and technologies include: (1) angstrom probe for neuron signals, (2) dielectric imaging of neuron firing, (3) single protein and its complex structure's resonant imaging, and (4) fourth circuit element Hinductor. A new frequency fractal model is built to represent biological machines. His group has designed and synthesized several forms of organic brain jelly (programmable matter) that learns, programs, and solves problems by itself for futuristic robots during 2000–2014, also several software simulators that write complex codes by itself.

Designing ANFIS Model to Predict the Reliability of Component-Based System

Rajni Sehgal, Deepti Mehrotra and Manju Bala

Abstract Predicting reliability of any product is always a desire of quality-oriented industry. The fault-free working of products depends on large number of parameters, and designing a machine learning model that can predict the reliability considering these as input parameters will help to plan testing and maintenance of the product. In this paper, ANFIS approach is adopted to train a model that can predict reliability of component-based software system. The parameters considered for designing the model are standard design metrics which are evaluated for quality benchmarking during software development process.

Keywords FIS · ANFIS · Component-based system · Halstead fault

1 Introduction

There is a close dependency between the software reliability and the quality of a software system. Software reliability is defined as “the probability of failure-free operation of a computer program for a specified period occurring in a specified environment.” Development of Software requires new technologies to deal with size and complexity that is increasing day by day [1]. The component-based software development approach has been established as viable solution to the above problem. The biggest advantage of component-based software engineering is that it supports the reuse of components. Reliability of a component-based system

R. Sehgal (✉) · D. Mehrotra
Amity School of Engineering and Technology, Amity University,
Noida, Uttar Pradesh, India
e-mail: rsehgal@amity.edu

D. Mehrotra
e-mail: dmehrotra@amity.edu

M. Bala
I.P College for Women, University of Delhi, New Delhi, India
e-mail: manjugpm@gmail.com

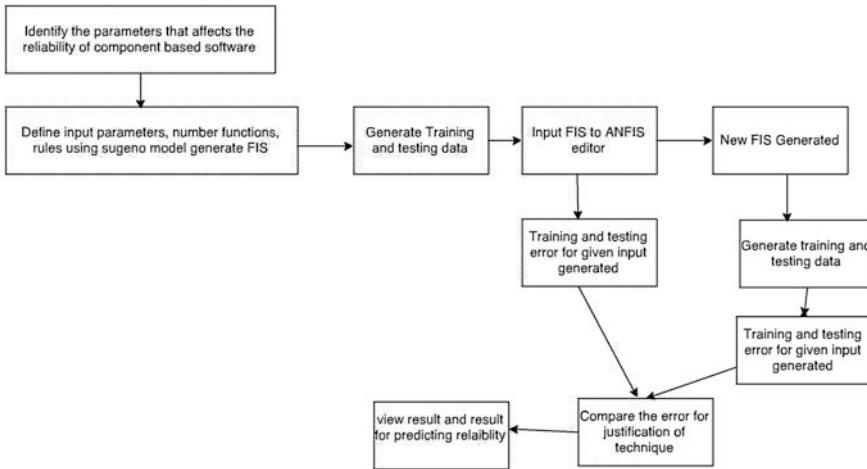
increases if the reliable component is reused. These emerged techniques can predict the reliability of component-based applications. The reliability of a system can be predicted either at the system level or component level. System-level reliability prediction is for the application as a whole, and component-based reliability prediction is by the reliability of the individual components and their interconnection mechanisms.

Many researchers have used traditional approaches like software testing to estimate the reliability. During the software test phase, only test data is used to model the software's interactions with the outside world neglecting the structure of software constructed from components as well as the reliability of individual components and is therefore unsuitable for modeling CBSS applications. In recent literature, soft computing techniques deal with uncertainty making it ideal for predicting CBSS reliability. Neural networks and fuzzy logic are the two primary soft computing techniques. This paper outlines an adaptive neuro-fuzzy inference system (ANFIS) model for the prediction of the reliability of CBSS. However, this is a relatively slow and prolonged process. The ANFIS model uses the combination of fuzzy logic and learning capabilities of neural networks to solve the problem making it more advantageous than an FIS model. The ANFIS yields an improvement over an FIS. This paper is divided into five sections. Existing literature is reviewed in Sect. 2. Section 3 describes the framework of proposed ANFIS approach, parameters taken in this study number of faults, cyclomatic complexity, coupling, and cohesion. In Sect. 4, experiment conducted is discussed, followed by result and conclusion in Sect. 5.

2 Related Work

Predicting the reliability of any system is a critical task. Researchers consider different approaches for predicting the reliability. In this study, the focus is on prediction of reliability based on design metric and use of soft computing techniques for the prediction. Many authors conclude that design metrics can be suitably used for predicting the reliability of software [1]. Sehgal and Mehrotra [2] predict the faults before testing phase using the Halstead metric to improve the reliability of software. Tripathi [3] purposed a model for early reliability prediction based on reliability block diagram and found that the coupling is a parameter which affects the reliability of the system. Shatnawi and Li [4] found that software metrics such as CBO, RFC, WMC, DIT, and NOC metrics are efficient to find out the classes predisposed to error. Shin and Willams [5] perform the statistical analysis on different complexity metrics to find the impact of software complexity on security. Graylin [6] presents the high correlation between lines of code and cyclomatic complexity. Subramanyam and Krishan [7] utilize CK metrics suit to find out the fault in an early phase of software development in an object-oriented system. Lee et al. [8] identify that coupling and cohesion as two parameters for component identification for reusability. In a good component, the coupling should

be weak, and cohesion should be high. Briand et al. [9] state that cohesion is a parameter to measure the quality of software system and is a degree which tells how firmly two elements belong to each other. Kumar et al. [10] suggest a new measure for the cohesion of class and called it the conceptual cohesion of classes (CCC). It is used to evaluate the strength of class relation to each other conceptually and capturing conceptual aspects of cohesion of classes. This new method measures the quality of the system. System having high cohesion implies high quality. Binkley and Schach [11] state that coupling is suitable quality measure. Yadav and Khan [12] state that higher cohesion decreases the complexity of the software making the system less fault-prone and more reliable. Chowdhury [13] considers complexity, coupling, and cohesion metrics to locate the code vulnerabilities.


Many researchers applied soft computing techniques to various domains such as hydraulic engineering, electrical engineering, flood forecasting [14–17]. ANFIS has gained importance in software engineering field. Nagpal et al. [18] identify relevant parameters of an educational Web site for evaluating the usability of the site using ANFIS. Kaur et al. [19] predict the software maintenance efforts and compare various soft computing techniques. Ardin and Sandhu [20] considered NASA data set and applied ANFIS to discover the severity of faults. Reliability is an important aspect of any software system. Tyagi and Sharma [21] used ANFIS to estimate the reliability by taking four parameters namely component dependency, operational profile, application complexity, and reusability of the component.

3 Framework for Proposed Model

In this paper, an automated reliability prediction model for component-based software system (CBSS) is proposed using ANFIS, which was proposed in 1992 by Jang [22]. Optimization of parameters of a given FIS can be done by ANFIS by mapping the relation between input and output data through a learning algorithm. In an ANFIS network, nodes and directional links and learning rules are associated. In this study, four important parameters of reliability of component-based software are considered, namely number of faults, cyclomatic complexity, cohesion, and coupling (Fig. 1).

3.1 Number of Faults

A fault is an incorrect step, human mistake in typing, in correct syntax, which causes a software program to work in an intended manner. When a fault executes, it leads to decrease in reliability of the software system. So reliability is inversely proportional to the number of faults. Halstead metric [23] is used to predict the fault before the system undergoes testing phase by evaluating number of operator and operand in a software program.

Fig. 1 Framework for proposed model

3.2 Cyclomatic Complexity

McCabe cyclomatic complexity was developed by Thomas J. McCabe in 1976 to measure the complexity of a program by measuring the number of its decision point. It is a technique which works on the software code by measuring the number of linearly independent path in control graph. Control graph is made up of nodes and edges, whereas nodes represent the group of statements and edges represent the flow of that statement. Complexity of the program is closely related to the reliability of software system. A program number with high decision point will have higher complexity and will have higher probability of occurrence of error in the system.

3.3 Cohesion

Cohesion is a metric which is directly related to the reliability, i.e., higher the cohesion, higher the value of reliability. It measures the strength of the function within a module. Modules with high cohesion are not complex, and they are easy to maintain and can be reusable.

3.4 Coupling

Reliability of a software system is strongly dependent on coupling. Coupling is a metric which measures the interdependency of one module on to another module. If

two modules are strongly coupled, then error in one module is propagated to another model thereby decreasing the reliability of software system. Modules which are strongly coupled are more complex, tough to maintain, and difficult to reuse.

4 Experimental Setup

In this paper, ANFIS approach is proposed for the prediction of reliability which depends on the four factors, namely number of faults, cyclomatic complexity, cohesion, and coupling. Intermediate value between conventional evaluations like true/false, yes/no, high/low can be defined with fuzzy logic which is a multi-valued logic [24]. Knowledge base is formed with the number of fuzzy rules (IF-THEN) in a fuzzy reasoning system. Decisions are made by decision-making unit based on this rule. An ANFIS approach combines the benefits of artificial neural network (ANN) and fuzzy logic. The model proposed in this paper is additive in nature.

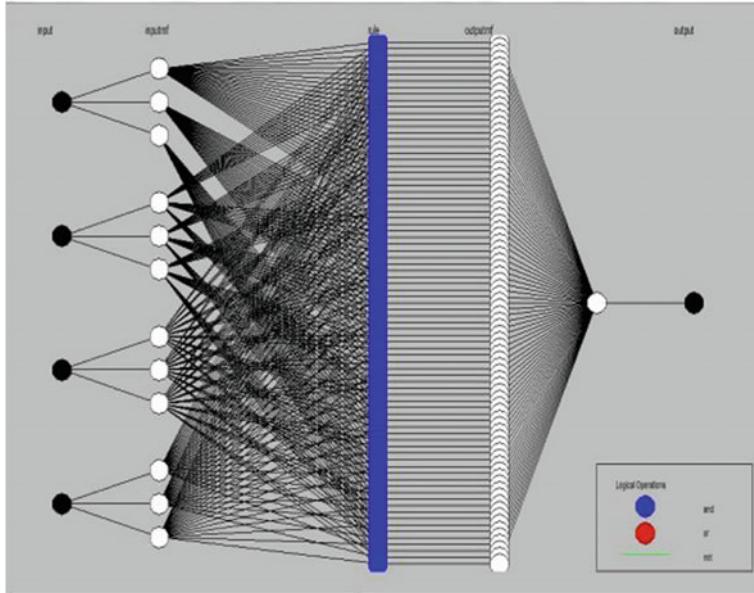
To create the ANFIS model, fuzzy toolbox of MATLAB is considered. Following are the steps for implementing the ANFIS approach for predicting the reliability:

- (i) Crisp values of parameters are provided as input.
- (ii) For each parameter, membership functions (low, medium, high) are determined.
- (iii) Rules are fired based on the input parameter and membership function.
- (iv) Training and testing data for ANFIS editor are evaluated based on fuzzy rules.
- (v) Error is evaluated using training and testing data in ANFIS editor.
- (vi) To evaluate the network error, a new, trained FIS is created, and same procedure is applied again.

In this study, each input variable has three fuzzy linguistic set (low, medium, high). Fuzzification processes are done by using the triangular membership function (TMF). Values of the input parameter number of faults (NF), cyclomatic complexity (CC), coupling (CP), cohesion (CH) are normalized between [0, 3] for the fuzzification. Defuzzified values give the crisp values between the range [0, 1]. The ANFIS system provides 81 rules and is given in Fig. 2.

Rule set based on above-mentioned parameter for first-order Sugeno fuzzy model is as follows:

Number of faults = NF


Cyclomatic complexity = CC

Cohesion = CH

Coupling = CP

Rule 1

If NF is A_i and CC is B_i and CH is C_i and CP is D_i , then

Fig. 2 Proposed architecture

$$F = p_i \text{NF} + q_i \text{CC} + r_i \text{CH} + n_i \text{CP} + m_i \quad (1)$$

Fuzzy sets are represented by A_i , B_i , C_i , and D_i , respectively, and during the training process, parameters determined are p_i , q_i , r_i , n_i , and m_i .

5 Results and Conclusion

Data generated is used to train and test the ANFIS. A total of 80% of the data is used for training and rest 20% for testing the network. A total of 81 rules were formed on the basis of the available data. The rules divide the input factors into three variables: low, medium, and high. The training data set was loaded to evaluate the proposed model. ANFIS was trained using the data set. The model is validated using the testing data set, and testing error is plotted as shown in Figs. 3 and 4.

Reliability values obtained by FIS and ANFIS for different input sets are compared after creating the ANFIS model. There is a significant difference in output obtained by FIS and ANFIS which is calculated by root mean square value (RMSE). Error obtained in results using FIS is 10.4%, while it is 1.4% using ANFIS, which shows that the ANFIS gives the better results than FIS as shown in Figs. 3 and 4. FIS is trained using the ANFIS on the basis of training data rules that are formed to produce the output of the trained model.

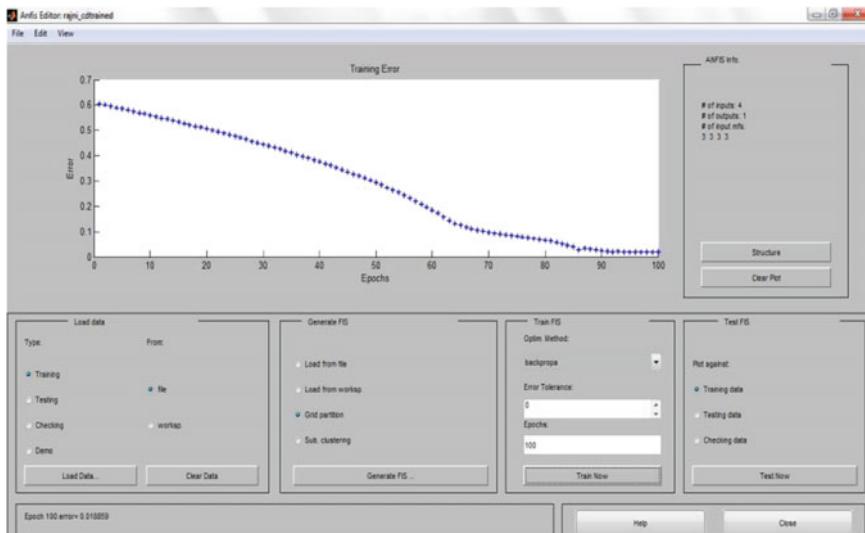


Fig. 3 Mapping original Sugeno FIS to ANFIS training error (1.2%)

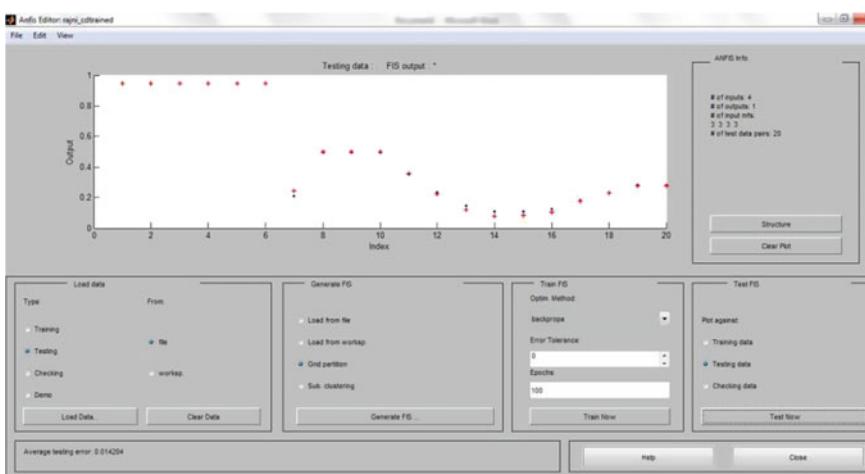


Fig. 4 Mapping original Sugeno FIS to ANFIS testing error (1.4%)

The reliability of component-based system depends on the constitute components and their interaction with each other. In this paper, the only reliability of individual component is predicted before testing phase. Halstead metric for fault prediction, McCabe complexity metrics for predicting complexity of design, coupling and cohesion metrics are used as input for ANFIS model is designed. These metrics can be measured during design and coding stage of software development.

This approach will help to identify which components are reliable and which components need more rigorous testing to achieve the desired level of reliability. To achieve this, firstly FIS model was designed which make more robust by applying artificial neural network principle. The error was reduced by 1.4% using ANFIS.

References

1. Mohanta, S., Vinod, G., Mall, R.: A technique for early prediction of software reliability based on design metrics. *Int. J. Syst. Assur. Eng. Manag.* **2**(4), 261–281 (2011)
2. Sehgal, R., Mehrotra, D.: Predicting faults before testing phase using Halstead's metrics. **9** (7), 135–142 (2015)
3. Tripathi, R.: Early stage software reliability and design assessment (2005)
4. Shatnawi, R., Li, W.: The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process. *J. Syst. Softw.* **81**(11), 1868–1882 (2008)
5. Shin, Y., Williams, L.: Is complexity really the enemy of software security. In: Proceedings of the 4th ACM Workshop on Quality of protection, Alexandria, Virginia, USA, vol. 27, pp. 47–50, Oct 2008
6. Graylin, J.: Cyclomatic complexity and lines of code: empirical evidence of a stable linear relationship. *J. Softw. Eng. Appl.* **2**(3), 137–143 (2009)
7. Subramanyam, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-oriented design complexity: implications for software defects. *IEEE Trans. Softw. Eng.* **29**(4), 297–310 (2003)
8. Lee, J.K., Jung, S.J., Kim, S.D., Jang, W.H., Ham, D.H.: Component identification method with coupling and cohesion. In: Proceedings of the Asia-Pacific Software Engineering Conference in International Computer Science Conference on APSEC ICSC, Feb 2016, pp. 79–86 (2001)
9. Briand, L.C., Daly, J.W., Wust, J.: A unified framework for cohesion measurement in object-oriented systems. *Empir. Softw. Eng.* **3**, 65–117 (1998)
10. Kumar, M.S., Achutarao, S.V., Ali, S., Shaik, A.: A class level fault prediction in object oriented systems: cohesion approach. **2**(2), 918–922 (2012)
11. Binkley, A.B., Schach, S.R.: Validation of the coupling dependency metric as a predictor of run-time failures and maintenance measures. In: Proceedings of the International Conference on Software Engineering, pp. 452–455 (1998)
12. Yadav, A., Khan, R.A.: Impact of cohesion on reliability. **3**(1), 7762 (2012)
13. Chowdhury, I.: Can complexity, coupling, and cohesion metrics be used as early indicators of vulnerabilities? 1963–1969 (2010)
14. Schurter, K.C., Roschke, P.N.: Fuzzy modeling of a magnetorheological damper using ANFIS. In: The Ninth IEEE International Conference Fuzzy Systems. FUZZ-IEEE 2000 (Cat. No.00CH37063), vol. 1, No. April, pp. 122–127 (2000)
15. Samandar, A.: A model of adaptive neural-based fuzzy inference system (ANFIS) for prediction of friction coefficient in open channel flow. *Sci Res Essay* **6**(5), 1020–1027 (2011)
16. Geethanjali, M., Raja, S.M.: A combined adaptive network and fuzzy inference system (ANFIS) approach for over current relay system. *Neurocomputing* **71**(4–6), 895–903 (2008)
17. Mukerji, A., Chatterjee, C., Raghuwanshi, N.S.: Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. June (2009)
18. Nagpal, R., Mehrotra, D., Sharma, A., Bhatia, P.: ANFIS method for usability assessment of website of an educational institute. *World Appl. Sci. J.* **23**(11), 1489–1498 (2013)
19. Kaur, D.A., Kaur, K., Malhotra, D.R.: Soft computing approaches for prediction of software maintenance effort. *Int. J. Comput. Appl.* **1**(16), 80–86 (2010)

20. Ardil, E., Sandhu, P.S.: A soft computing approach for modeling of severity of faults in software systems. *Int. J. Phys. Sci.* **5**(2), 74–85 (2010)
21. Tyagi, K., Sharma, A.: An adaptive neuro fuzzy model for estimating the reliability of component-based software systems. *Appl. Comput. Informatics* **10**(1–2), 38–51 (2014)
22. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. *IEEE Trans. Syst. Man Cybern.* **23**(3), 665–685 (1993)
23. Halstead, M.H.: Elements of software science, vol. 7, p. 127. Elsevier, New York (1977)
24. Kamel, T., Hassan, M.: Adaptive neuro fuzzy inference system (ANFIS) for fault classification in the transmission lines. *Online J. Electron. Eng.* **2**(2), 164–169 (2009)