

Azad M. Madni · Barry Boehm
Roger G. Ghanem · Daniel Erwin
Marilee J. Wheaton *Editors*

Disciplinary Convergence in Systems Engineering Research

Disciplinary Convergence in Systems Engineering Research

Azad M. Madni • Barry Boehm
Roger G. Ghanem • Daniel Erwin
Marilee J. Wheaton
Editors

Disciplinary Convergence in Systems Engineering Research

Springer

Editors

Azad M. Madni
Professor, Astronautics, Executive
Director, Systems Architecting
and Engineering Program
University of Southern California
Los Angeles, CA, USA

Barry Boehm
Professor, Computer Science,
Director, Center for Systems and Software
Engineering
University of Southern California
Los Angeles, CA, USA

Roger G. Ghanem
Professor, Aerospace
& Mechanical Engineering
University of Southern California
Los Angeles, CA, USA

Daniel Erwin
Professor, Astronautics
University of Southern California
Los Angeles, CA, USA

Marilee J. Wheaton
Systems Engineering Fellow
The Aerospace Corporation
El Segundo, CA, USA

ISBN 978-3-319-62216-3 ISBN 978-3-319-62217-0 (eBook)
<https://doi.org/10.1007/978-3-319-62217-0>

Library of Congress Control Number: 2017955102

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Innovation growth in the twenty-first century is continuing to fuel the way we live, work, learn, and entertain. This era augurs well for societal well-being so long as we make the understanding and management of complexity a top priority. Specifically, the impact of innovation needs to be studied with regard to unintended consequences. The latter is a challenge for complex systems engineering and a fertile ground for conducting systems engineering research.

According to the World Economic Forum, we are in the early stages of the Fourth Industrial Revolution. Coming on the heels of the Third Industrial Revolution, which produced dramatic advances in electronics, computers, communications, and information technology, the Fourth Industrial Revolution is going to be an era of convergence. Increasingly, we are beginning to see the convergence of engineering with behavioral and social sciences, entertainment and cinematic arts, biology, and the physical sciences.

At the same time, systems in the twenty-first century are becoming increasingly hyper-connected and more complex. Recognizing that traditional systems engineering methods, processes, and tools no longer suffice, the research community supported by government, academia, and industry has begun working together to transform systems engineering. Central to this transformation is exploiting innovation and capitalizing on convergence to develop new approaches, methods, and tools. The emphasis is on reaching beyond traditional engineering to address problems that appear intractable when viewed solely through an engineering lens. Today disciplinary convergence is beginning to play a key role in this transformation.

“...The central idea of disciplinary convergence is that of bringing concepts, thinking, and approaches from different disciplines in conjunction with technologies to solve problems that appear intractable when viewed through the lens of a single discipline.” (Madni, A.M. *Transdisciplinary Systems Engineering: Exploiting Convergence in a Hyper-Connected World*,” Springer, 2017)

This vision inspired the central theme of 2017 Conference on Systems Engineering Research (CSER): *Disciplinary Convergence: Implications for Systems Engineering Research*. This volume is a collection of peer-reviewed research papers from university, government, and industry researchers who participated in 2017 CSER. To help the reader conveniently navigate this volume, the papers are organized into ten sections. Each section represents a key research area in systems engineering research today.

It is our hope that this volume will get you interested in systems engineering research that exploits disciplinary convergence and pursues cross-disciplinary approaches to solve complex scientific and societal problems.

Los Angeles, CA, USA

Azad M. Madni
Barry Boehm

Contents

Part I Engineered Resilience and Affordability

1	Engineering Resilience for Complex Systems	3
	Colin Small, Gregory Parnell, Ed Pohl, Simon Goerger, Bobby Cottam, Eric Specking, and Zephany Wade	
2	Early Life Cycle Cost Estimation: Fiscal Stewardship with Engineered Resilient Systems	17
	Travis Moody, Robert Provine, Samantha Todd, Nicholas Tyler, Thomas R. Ryan, and Ricardo Valerdi	
3	Introducing Resilience into Multi-UAV System-of-Systems Network	27
	Edwin Ordoukhanian and Azad M. Madni	
4	Considerations for Engineered Resilience from Examples of Resilient Systems	41
	Rosalind Lewis	
5	High Reliability Imperative for Autonomous Networked Vehicles	57
	Allen Adler and Azad M. Madni	
6	Resilience Concepts for Architecting an Autonomous Military Vehicle System-of-Systems	65
	Kurt Klingensmith and Azad M. Madni	
7	A Robust Portfolio Optimization Approach Using Parametric Piecewise Linear Models of System Dependencies	83
	Navindran Davendralingam, Cesare Guariniello, and Daniel Delaurentis	
8	Interactive Model Trading for Resilient Systems Decisions	97
	Adam M. Ross and Donna H. Rhodes	

9	An Empirical Study of Technical Debt in Open-Source Software Systems	113
	Reem Alfayez, Celia Chen, Pooyan Behnamghader, Kamonphop Srisopha, and Barry Boehm	

Part II System-of-Systems Integration

10	Applying the Cybersecurity Game to a Point-of-Sale System	129
	Andrew J. Turner and Scott Musman	
11	Resilient Cyber-Secure Systems and System of Systems: Implications for the Department of Defense	145
	Wendy Leonard	
12	Architecting Cyber-Secure, Resilient System-of-Systems	157
	Kurt Klingensmith and Azad M. Madni	
13	Inference Enterprise Multimodeling for Insider Threat Detection Systems	175
	Edward Huang, Abbas K. Zaidi, and Kathryn B. Laskey	
14	SoS Explorer: A Tool for System-of-Systems Architecting	187
	David M. Curry and Cihan H. Dagli	
15	A Principles Framework to Inform Defence SoSE Methodologies	197
	Jaci M. Pratt and Stephen C. Cook	
16	System Analysis and Verification: A Comprehensive Approach and Case Study	215
	Haifeng Zhu, Mark Moulin, Brian Murray, Vladimir Fonoferov, and Igor Mezic	
17	A Model Framework for Determining Dynamic Architecture Goals in a Systems-of-Systems	231
	Marc-Andre Chavy-Macdonald, Kazuya Oizumi, and Kazuhiro Aoyama	
18	Understanding How Social Network Analysis Can Provide Insights Into Emergent Networks of Systems	249
	James R. Enos and Roshanak Nilchiani	

Part III Tradespace Visualization and Exploration

19	Designing for System Value Sustainment Using Interactive Epoch-Era Analysis: A Case Study from Commercial Offshore Ships	267
	Michael D. Curry, Carl F. Rehn, Adam M. Ross, and Donna H. Rhodes	

20	Simulation-Based Air Mission Evaluation with Bayesian Threat Assessment for Opposing Forces	281
	André N. Costa and Paulo C.G. Costa	
21	Tradespace Exploration: Promise and Limits	297
	Paul D. Collopy	
Part IV Model-Based Systems Engineering and Integration		
22	Model-Based Systems Engineering: Motivation, Current Status, and Needed Advances	311
	Azad M. Madni and Michael Sievers	
23	High-Fidelity Simulation Surrogate Models for Systems Engineering	327
	Alex Van der Velden	
24	Discovering Toxic Policies Using MBSE Constructs	341
	Rahul Krishnan, Shamsnaz Virani, and Renato Gasoto	
25	Model-Based Engineering: Analysis of Alternatives for Optical Satellite Observation	351
	D.A. Shultz, J.M. Colombi, D.R. Jacques, and R.G. Cobb	
26	Model-Based Approach for Engineering Resilient System-of-Systems: Application to Autonomous Vehicle Networks	365
	Azad M. Madni, Michael W. Sievers, James Humann, Edwin Ordoukhanian, Joseph D'Ambrosio, and Padma Sundaram	
27	Validation and Verification of MBSE-Compliant CubeSat Reference Model	381
	David Kaslow and Azad M. Madni	
28	An Architecture Profile for Human–System Integration	395
	Douglas W. Orellana and Azad M. Madni	
29	Formal Methods in Resilient Systems Design: Application to Multi-UAV System-of-Systems Control	407
	Azad M. Madni, Michael W. Sievers, James Humann, Edwin Ordoukhanian, Barry Boehm, and Scott Lucero	
30	Improving Lifecycle Product Data Management (LPDM) Within the US Army Research, Development, and Engineering Command (RDECOM)	419
	Thomas W. Haduch, Robert S. Bruff, and Paul M. Martinell	
31	Verification and Validation of Behavior Models Using Lightweight Formal Methods	431
	Kristin Giammarco and Kathleen Giles	

32 Categorical Foundations for System Engineering	449
Spencer Breiner, Eswaran Subrahmanian, and Albert Jones	
Part V System Architecture and Complexity	
33 A Facilitated Expert-Based Approach to Architecting “Prizeable” Complex Systems	467
Zoe Szajnfarber and Ademir Vrolijk	
34 A Framework for Measuring the “Fit” Between Product and Organizational Architectures	483
Zoe Szajnfarber and Erica Gralla	
35 Developing an Effective Optical Satellite Communications Architecture	501
Frank E. Skirlo, Adrien Sullivan, and Abbas K. Saidi	
36 Preference Modeling for Government-Owned Large-Scale Complex Engineered Systems: A Satellite Case Study	513
Hanumanthrao Kannan, Syed Shihab, Maximilian Zellner, Ehsan Salimi, Ali Abbas, and Christina L. Bloebaum	
37 System Safety Data Network: Architecture and Blueprint	531
Shravan Shett, Mark S. Avnet, and Farzan Sasangohar	
38 Scalability in Self-Organizing Systems: An Experimental Case Study on Foraging Systems	543
James Humann, Yan Jin, and Azad M. Madni	
39 Evaluation of Cross-Project Multitasking in Software Projects	559
Alexey Tregubov, Jo Ann Lane, and Barry Boehm	
40 Cultural Worldviews on an Aerospace Standards Committee: A Preliminary Analysis	573
J. John Park and David A. Broniatowski	
41 The Flexibility of Generic Architectures: Lessons from the Human Nervous System	585
David A. Broniatowski and Joel Moses	
42 Multiobjective Optimization of Geosynchronous Earth Orbit Space Situational Awareness Systems via Parallel Executable Architectures	599
Jordan Stern, Steven Wachtel, John Colombi, David Meyer, and Richard Cobb	
43 System User Pathways to Change	617
Lt Col Amy Cox and Zoe Szajnfarber	

Part VI Systems Science, Systems Thinking and Complexity Management

44 Threshold Metric for Mapping Natural Language Relationships Among Objects 637
Joseph J. Simpson, Mary J. Simpson, and Thomas B. Kercheval

45 On the Nature of Systems Thinking and Systems Science: Similarities, Differences, and Potential Synergies 647
Len Troncale

46 Three General Systems Principles and Their Derivation: Insights from the Philosophy of Science Applied to Systems Concepts 665
David Rousseau

47 Systems Engineering Pathology: Leveraging Science to Characterize Dysfunction 683
Heidi L. Davidz

48 Using the PICARD Theory as a Tool to Improve Systems Thinking Ability 697
James N. Martin

49 Agency and Causal Factors in Social System Behavior: Advancing Human Systems Engineering with General System Theory 713
Susan Farr Gabriele

50 Classifying Emergent Behavior to Reveal Design Patterns 727
Jack B. Reid and Donna H. Rhodes

51 Collective Behaviors: Systemic View of Distinct Forces in a New Framework 741
Arash Vesaghi, Nasrin Khansari, and Mo Mansouri

52 Generational Evolution in Complex Engineered Systems 751
L. Dale Thomas and Katherine Burris

53 Evaluating How System Health Assessment Can Trigger Anticipatory Action for Resilience 765
David Lowe, Philip Oliver, Gerald Midgley, and Mike Yearworth

54 An Analysis of Individual Systems Thinking Elements 777
Susan Ferreira and Divya Behl

Part VII Systems Engineering and Decision Science

55 Using Bayesian Networks to Validate Technology Readiness Assessments of Systems 787
Marc F. Austin, Cheyne Homberger, George A. Polacek, Erin Doolittle, Virginia Ahalt, and Donald M. York

56	Adaptive and Automated Reasoning for Autonomous System Resilience in Uncertain Worlds	799
	Curtis J. Marshalla, Blake Roberts, and Michael Grenn	
57	Model-Centric Decision-Making: Exploring Decision-Maker Trust and Perception of Models	813
	E. Shane German and Donna H. Rhodes	
58	Implementing Value-Driven Design in Modelica for a Racing Solar Boat	829
	Joshua Sutherland, Alejandro Salado, Kazuya Oizumi, and Kazuhiro Aoyama	
59	A Game Theoretical Perspective on Incentivizing Collaboration in System Design	845
	Sean D. Vermillion and Richard J. Malak	

Part VIII Systems Engineering and Smart Manufacturing

60	Toward a Diagnostic and Prognostic Method for Knowledge-Driven Decision-Making in Smart Manufacturing Technologies	859
	Thomas Hedberg, Allison Barnard Feeney, and Jaime Camelio	
61	Patterns for Modeling Operational Control of Discrete Event Logistics Systems (DELS)	875
	Timothy Sprock	
62	Toward Automated Generation of Multimodal Assembly Instructions for Human Operators	885
	Krishnanand N. Kaipa, Carlos W. Morato, Jiashun Liu, and Satyandra K. Gupta	

Part IX Systems Engineering Applications

63	A Game Theory Perspective on Requirement-Based Engineering Design	901
	Soodabeh Yazdani, Yen-Ting Lin, Wenbo Cai, and Edward Huang	
64	Structural Rules for Sound Business Process Implemented by UML Activity Diagram	911
	Mohanad A. Ajina, Bahram Yousefi, and Abbas K. Zaidi	
65	A Value-Driven Approach to Capture Unintended Consequences Impacting Mission Success	931
	David Kis, Christopher Wenger, and Christina L. Bloebaum	

66	Survey of Four Uncertainty Quantifications Methods in Systems Engineering	945
	Ehsan Salimi, Andrea H. Cadenbach, and Ali E. Abbas	
67	Using Systems Engineering to Create a Survivable Communications System that will Operate in the Presence of “Black Sky” Hazards	959
	Neil Siegel	
68	Interdependency Effects on the Electricity Grid Following a “Black Sky” Hazard	973
	Jonathon E. Monken	
69	Black Sky Hazards: Systems Engineering as a Unique Tool to Prevent National Catastrophe	987
	Avi Schnurr	
70	Agile Fit Check Framework for Government Acquisition Programs	1005
	Supannika K. Mobasser	
71	The Agile Systems Framework: Enterprise Content Management Case	1021
	James Lockett, Michael Swan, and Kenan Unal	
72	Quantifying the Ilities: A Literature Review of Robustness, Interoperability, and Agility	1035
	Andrew J. Turner, William Monahan, and Matt Cotter	
73	A Systems Integration Framework for Interdisciplinary Black Sky Operations	1051
	Ellie Graeden and Joel Thomas	

Part X Systems Engineering Education

74	An Architecture Analysis of a Cyber Secondary School as a System of Systems	1069
	Cheryl Emerson and Tommer Ender	
75	Systems Engineering: Making People Talk!	1081
	Cecilia Haskins and Kristin S. Ruud	
76	Development of a Project-Oriented and Transnational Master Course for Training the Engineering Competencies	1095
	Cecilia Haskins, Tim Stock, Bartholomiej Gładysz, and Marcello Urgo	
77	The Role of Decision Analysis in Industrial and Systems Engineering Education	1107
	Ali E. Abbas and Maximilian Zellner	

78	Strengthening Systems Engineering Leadership Curricula Using Competency-Based Assessment	1121
	Katherine Duliba and Wilson N. Felder	
79	Integrating Systems Engineering Students in Capstones: A Multispectrum Characterization of Interdisciplinary Capstones	1135
	Cory A. Cooper, Jeremy J. Homan, and Brian E. Tidball	
80	SEEA: Accelerated Learning and Learning Assessment for Systems Engineering Education	1151
	Peizhu Zhang, Jon Wade, Richard Turner, Douglas Bodner, and Dale Thomas	
81	Future Systems Engineering Research Directions	1165
	Jon Wade, Rick Adcock, Tom McDermot, and Larry Strawser	
Index		1181

Part I

Engineered Resilience and Affordability

Chapter 1

Engineering Resilience for Complex Systems

Colin Small, Gregory Parnell, Ed Pohl, Simon Goerger, Bobby Cottam, Eric Specking, and Zephane Wade

Abstract In recent years there has been an increased need for resilience in complex military and civilian systems due to evolving adversarial and environmental threats. Engineered Resilient Systems (ERS) is a Department of Defense (DoD) program focusing on the effective and efficient design and development of complex engineered systems. These complex systems need to be resilient to threats throughout their life cycle. However, most current engineering resilience literature focuses on systems with a single function and a single measure. Today's systems are becoming more complex, with multiple functions and measures involving critical trade-offs during early life cycle stages. This paper develops criteria for a framework to incorporate resilience into DoD analysis of alternatives (AoA). Using the criteria, this paper creates a framework for defining and evaluating complex engineered systems that consider many missions, scenarios, uncertainties, functions, and measures. Lastly, using the criteria and the framework, the current literature is shown to have gaps for incorporating resilience into DoD AoAs.

Keywords Resilience • Engineering Resilient Systems • Resilience cycle • Systems engineering • DoD • Analysis of alternatives

1.1 Introduction

In recent years there has been an increased need for resilience in complex military and civilian systems due to evolving adversarial and environmental threats. As systems become increasingly interconnected and technology advances more quickly, it becomes harder for systems to resist threats. Often systems are used in unplanned missions or new scenarios with different threats. Therefore, systems

C. Small (✉) • G. Parnell • E. Pohl • B. Cottam • E. Specking • Z. Wade
University of Arkansas, Fayetteville, AR, USA
e-mail: cxs050@uark.edu; gparnell@uark.edu; epohl@uark.edu; bjcottam@uark.edu;
especki@uark.edu; zwwade@uark.edu

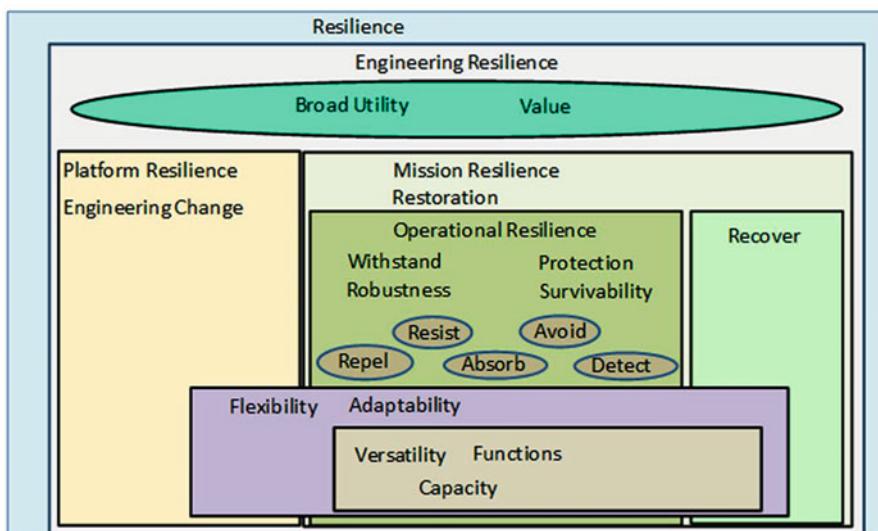
S. Goerger
U.S. Army Engineer Research Development Center (ERDC), Vicksburg, MS, USA
e-mail: Simon.R.Goerger@erdc.dren.mil

Fig. 1.1 ERS summary [1]

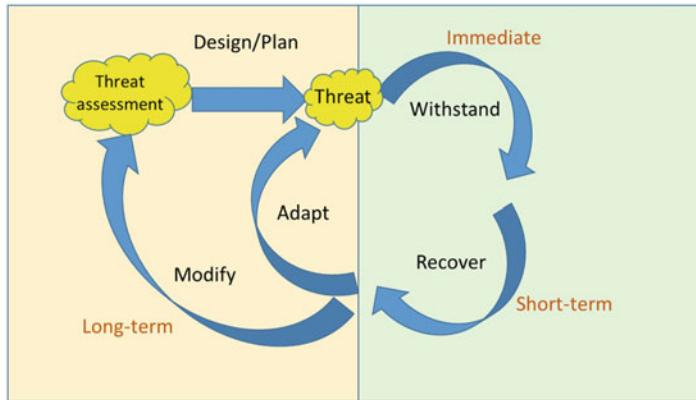
need to be resilient not only to planned threats and functions, but they also need to be resilient to uncertain threats and changing functionality. In the military and defense industries, current analysis of alternatives (AoA) using requirements analysis does not always plan for future threats, missions, or scenarios. However, systems cannot simply be designed for one mission; instead they need to withstand threats and have multiple functionalities. Therefore, complex systems should be engineered to be resilient to uncertain and evolving threats, missions, and scenarios.

As a response to the need for resilient systems, the Department of Defense (DoD) has created the Engineering Resilient Systems (ERS) program. ERS focuses on the effective and efficient design and development of complex resilient engineered systems throughout their life cycle. This research focuses on defining engineering resilience to enable key stakeholders such as planners, concept developers, system designers, system engineers, program managers, and system acquisition leaders to assess options to improve system resilience in the early life cycle stages. By considering resilience, the DoD strives to improve its AoA as shown in Fig. 1.1 [1]. Specifically, it seeks to improve its buying power by specifically addressing resilience early in the design cycle. In addition, it wants to add efficiency to the AoA process by using tradespace and analytics tools that use high-performance computing to explore the design space, efficiently sift through millions of designs, and quantify resilience and help analyze alternatives. Lastly, it wants to improve the design process by using Computational Research and Engineering Acquisition Tools and Environments (CREATE) that allow for virtual prototyping, design verification, and operational testing.

In order to engineer resilient systems, system designers and managers must contemplate design options considering various scenarios, missions, functions and their performance measures, threats including environmental conditions, adversary actions, detectable performance degradation, uncertain survivability, and measurable recovery over time. Resilient design options include means for flexible adaptability, which provide the ability to reconfigure and/or replace components


during the system lifetime. The criteria to evaluate the design options must include the impact on performance, cost, and schedule. A tradespace analysis is critical to ensure senior decision-makers are able to determine the affordability of systems and their design options allowing for improved resilience.

With the aim of developing an appropriate framework for Engineering Resilient Systems, this paper first examines the existing academic literature. Using this literature along with stakeholder input, a set of criteria for Engineering Resilient Systems was created. To meet these criteria, a framework for incorporating resilience into AoAs was created. This framework will be used in future research to develop different methods of quantifying resilience. Lastly the literature was evaluated once again for gaps using the criteria and the framework.


1.2 Engineering Resilience Concepts and Definition

Recently our research team wrote a literature survey involving 47 papers [2]. In the research, the team found varying terms and definitions of resilience. In order to understand the literature and create a definition of resilience encompassing the varying uses and definitions of resilience, the team created the Venn diagram shown in Fig. 1.2. This Venn diagram shows the common themes and terms of resilience used in the literature search grouped into similar areas.

While designing this Venn diagram, our research led us to view resilience from two perspectives: platform and mission resilience. Platform resilience involves engineering changes and other features allowing a system platform to be flexible

Fig. 1.2 Resilience Venn diagram [2]

Fig. 1.3 Resilience cycle [2]

and adapt to new missions, scenarios, and threats. Mission resilience is the ability of a system to withstand and survive threats and disruptions and to recover from them quickly to achieve the mission. The majority of the literature was focused on mission resilience. Using this knowledge gained from the literature survey, the team created a broad definition of resilience:

A resilient engineered system is able to successfully complete its planned mission(s) in the face of environmental and adversarial threats, and has capabilities allowing it to flexibly adapt to future missions with evolving threats.

Using this definition, the authors view resilience as the cycle shown in Fig. 1.3. In designing a resilient system, the process begins with a threat assessment. After this, systems are designed to face these threats. Once systems are operational and performing missions, the systems face evolving threats. Immediately they need to withstand the threats to accomplish the mission. If the system survives, it needs to recover from any damage or performance loss. After recovering, systems either return to face another threat or adapt to new threats by using platform resilience options incorporated in the original design decisions. If more significant changes are needed, the system may need to be modified. In this case, systems go through another redesign or modification process. After any redesigns, the systems face threats once more and cycle through the process until the systems are retired.

1.3 Criteria for Incorporating Resilience into Analysis of Alternatives

Using the results of the literature search, the team identified criteria a framework for incorporating resilience into AoAs. The eleven criteria are as follows: (1) use standard terms encompassing many engineering domains, (2) focus on early system

definition, (3) consider multiple scenarios, (4) consider multiple threats, (5) consider short-term and long-term resilience, (6) expand the design space, (7) consider many system functions and performance measures, (8) incorporate the “Illities,” (9) be independent of the modeling and simulation techniques, (10) allow for uncertainty analysis, and (11) support affordability analysis.

The framework should use common mission analysis terms from many engineering domains. A framework only using terms specific to one engineering domain cannot be easily applied elsewhere. Consequently, if it cannot be applied to other domains, it cannot be widely used or effective in general system design.

Engineering resilience must be considered early in the system life cycle. To be effective in creating resilient systems, the evaluation of engineering resilience must include the early system definition, including the “pre-Milestone A” decisions.

DoD systems are used in different missions and scenarios to perform multiple functions. Therefore, an effective framework needs to consider multiple missions and scenarios.

Numerous papers on engineering resilience focus on only one threat. Realistic DoD systems will face multiple uncertain threats throughout their life cycle. Therefore, any framework developed should allow for multiple threats rather than a single threat.

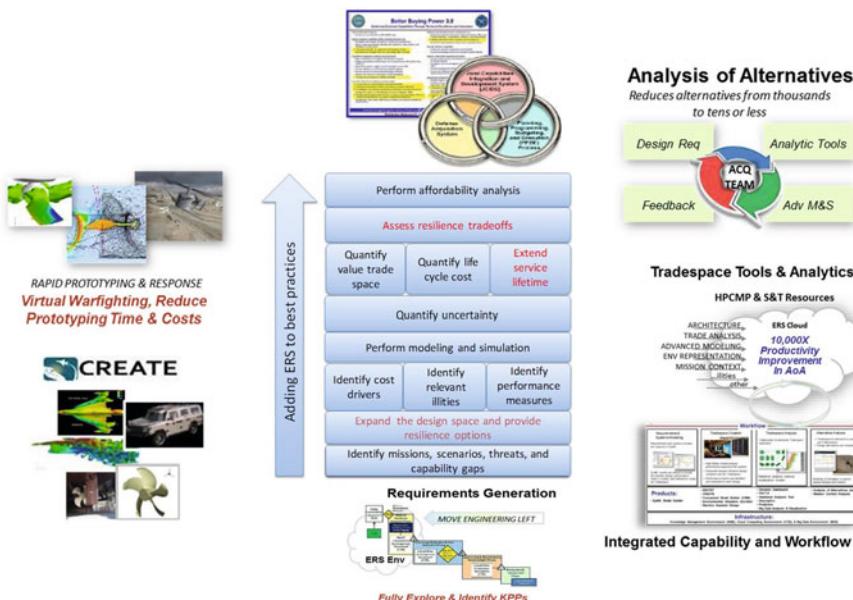
Time is a critical factor in engineering resilience. Systems face threats throughout their life cycle, and the threats may evolve or change dramatically. In addition, resilient systems not only respond and recover from threats in the short term, but they need to be able to take advantage of designed adaptability to be affordably modified to face new threats in the long term. Since resilience involves the system response to dynamic threats, a framework needs explicitly time, short-term resilience, and long-term resilience (Fig. 1.3).

The best practice is to avoid AoAs with a few point-based solutions. Point-based solutions do not provide sufficient insights about the design space. A goal of the ERS systems engineering process is to transform traditional point-based, requirements-driven design into set-based and data/analysis-driven design [3].

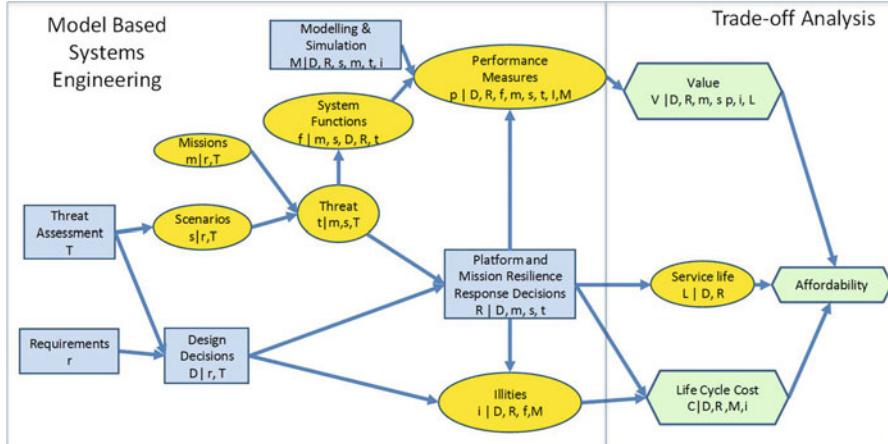
The majority of papers in the literature focus on one function and one performance measure. However, complex DoD systems perform several functions and have multiple performance measures.

The evaluation of resilience requires consideration of many “illities.” These are terms such as availability, reliability, survivability, producibility, supportability, and others. These “illities” are a key consideration in the cost and value of systems. Hence, they need to be considered in a resilience framework.

Mission analyses and AoA use modeling and simulation techniques tailored to the system and the availability of data. Since modeling is the best way to estimate cost and value in early life cycle stages, the framework must be independent of the modeling and simulation techniques used in AoA.


Uncertainty is a reality in engineering resilience decisions. Many DoD systems have service lives lasting for decades. During this time, missions, scenarios, and threats change as new technology and adversaries arise. In addition, every situation

is different and can have different outcomes leading to uncertain performance and cost. Therefore, the framework should explicitly consider uncertainty.


Affordability is an important consideration in system development. “Big A” affordability evaluates and assesses the value versus the costs at major milestones. “Little a” affordability refers to the continual evaluation of the value versus cost on all program decisions. Since the DoD and all decisions makers are concerned with cost and value, the framework must support affordability analysis.

In summary, these criteria together will allow for incorporating resilience into analysis of alternatives. However, as a list, these criteria mix both best practices and ERS requirements. To resolve this, Fig. 1.4 includes the criteria, the flow of time, and as a result the dependencies. In addition, it identifies the new steps to analysis of alternatives that ERS adds in red lettering. In addition, they do not show the sequence and dependencies involved in the criteria. The sequence and dependencies are shown in Fig. 1.5.

Analysis needs to begin with identifying missions, scenarios, and value gaps. Next, ERS adds a step to AoA requiring expanding the design space and providing resilience options. Then cost drivers, performance measures, and relevant illities need to be determined. To quantify the uncertainty in these, engineers need to perform modeling and simulation. Using these, the value tradespace and the costs need to be quantified. In addition, during this stage, another step is added in AoA to extend the service lifetime. Specifically, this will analyze the effects of platform resilience and responds to evolving threats and scenarios. Using the previous analysis, decision-makers can make resilience and affordability trade-offs. In

Fig. 1.4 Incorporating ERS into analysis of alternatives

Fig. 1.5 Framework for incorporating ERS into analysis of alternatives

addition, these criteria incorporate the goals and objectives of ERS. The CREATE and tradespace tools will be used to expand the design space and modeling and simulation to provide detail required to better predict costs and values. Lastly, affordability analysis and resilience trade-offs in the AOA directly support the better buying directives of DoD.

1.4 Proposed Framework for Incorporating ERS into Analysis of Alternatives

In order to help make decisions during the early life stages of systems, the authors created a framework to incorporate the criteria into analysis of alternatives. Visually this framework is shown as an influence diagram in Fig. 1.5. An influence diagram is a concise representation of a decision problem or opportunity [4]. They identify the variables and their relationships but suppress the details. They use four nodes: decision nodes, uncertainty nodes, constant nodes, and value nodes. A decision node signifies the decision alternatives or options and is displayed by a rectangle. An uncertainty node represents the different outcomes of an uncertain event and is depicted as an oval. A constant node symbolizes a function or number that will not change and is depicted by a diamond shape. Lastly, an influence diagram has value nodes denoting the decision-makers' preferences for outcomes. Value nodes can have different types of values such as cost, performance measures, or an affordability based on cost, performance, and service life. A hexagon depicts a value node. In the diagrams, arrows are used to display influences. There are two types of influences: a probability relationship and the availability of information. The time sequence of the events is from left to right.

In Fig. 1.5 the nodes are:

- Threat assessment, T – a decision that identifies the anticipated threats the system will face.
- Requirements, r – a set of decisions determining the use of the system and required minimum performance.
- Design decisions, D – a set of decisions made with knowledge of the requirements and threat assessment. These can be point-based design decisions or set-based decisions. However, only set-based design decisions will meet the requirements to expand the design space.
- Modeling and simulation, M – the decisions made which methods and techniques used to model and what scenarios and missions to simulate the system in order to predict measures, illities, and costs.
- Platform and mission resilience response decisions, R – a decision node representing mission response decisions (short term) and platform response decisions (long term) informed by threats.
- Scenarios, s – a chance node representing an uncertain scenario, which may or may not be in the original threat assessment or requirements analysis.
- Missions, m – a chance node representing the missions the system is actually used on; this may or may not be included in the initial threat assessment or requirements analysis.
- Threat, t – a chance node representing the uncertain threat that depends on the mission. There can be different threats to different system functions. In this diagram, threat is the term used for any adverse event (environmental or adversary) that could degrade any capability of the system. This may or may not be in the original T.
- System functions, f – a chance node determining how the system is used; it is influenced by the missions and scenarios the system is used in.
- Performance measures, p – a chance node depending on the function, the illities, modeling and simulation, and resilience response decisions.
- Illities, i – a set of chances such as reliability, survivability, availability, and others affecting the performance and cost of the system.
- Service life, L – a chance node affected by the performance of the system, the illities, and the resilience response decisions.
- Value, V – a value node depending on the performance for the mission for all functions and several other variables.
- Life cycle cost, C – a value node depending on the design, the producibility, the supportability, and the platform and mission response decisions.
- Affordability, A – a value node comparing value versus life cycle cost.

In a defense design process, intelligence analysts first determine what threats new systems will face in the threat assessment. In addition, requirements for the system will be analyzed. The threat assessment and requirements analysis inform the design decisions. After the design decisions, the systems are employed in uncertain missions and scenarios. Next, even though there is an initial threat assessment, the threats the system faces are uncertain and based on the scenarios

and missions the system is sent to perform. When facing these threats, users can make resilience response decisions based on uncertain threats. These options are based on what the design decisions allow the system to do and how they allow it to adapt. These decisions can be short term such as avoiding a threat. They can be a simple modification of the system like adding a new sensor. Or they can also be long-term decisions to significantly modify or adapt to the system to face new threats. For instance, a historical long-term decision was to add weapons to a C-130 to change the functionality of the C-130 from tactical airlift to a gunship. Depending on the threats, design decisions, and response decisions, the system can have different functions. From these functions, the illities, or set of characteristics including reliability, availability, producibility, survivability, etc., are determined. Next, the functions, threats, scenarios, missions, illities, design decisions, and the resilience response decisions influence the performance. The performance measures should be estimated using modeling and simulation. But, the choice of specific models and simulations is a decision because analysts need to decide which type of models and simulations to use for each system. From the performance, the value of the system is determined. Using the design decisions, the resilience response decisions, and the illities, the life cycle cost is evaluated. Then the service life is estimated from the response decisions, the design decisions, and the performance. Using the estimated values, costs, and life cycles, decision-makers make affordability decisions early in the life cycle.

Throughout this decision process, the uncertainties should be estimated using model-based systems engineering. Model-based systems engineering is a process of engineering systems using modeling throughout the AoA and decision process. Various types of models should be included. Specifically, the systems will each need at least a physics-based performance model and detailed cost model.

In addition, using the data from the right side of the framework, decision-makers need to perform trade-offs between value and cost. To balance the needs for high-performance systems and with the budget requirements, the decision-makers need data on the life cycle length, the life cycle costs, and the value of the system to allow them to assess the affordability of the system.

This framework for resilience was created to fit the criteria for incorporating resilience into AoAs. Although many of the terms are drawn from the defense industry, the framework as a whole can be applied to many different areas. In particular, the authors are currently applying the problem definition to two systems with application in the defense industry and in the public sector: unmanned aerial vehicles (UAVs) and autonomous vehicles. The analysis will focus on the early-stage decisions. It allows for set-based design. Both short-term and long-term resilience are considered in the platform and mission resilience response decisions. Multiple scenarios, threats, functions, and performance measures can be considered. The illities are incorporated. In addition, leaving the chance node as the broad term “illities” allows for inclusion of any illities a system might be concerned with. This framework accounts for uncertainty. And many different types of modeling and simulation can be used with this framework. Lastly, the framework enables affordability analysis.

1.5 Comparing the Literature to the Framework

Lastly multiple papers in the literature were analyzed using the criteria and the framework. In Fig. 1.6, the green boxes show papers fully meeting each criterion, red illustrates where papers fell short on each criterion, and the yellow displays where papers partially meet, but can be improved on each criterion. Lastly, the papers in the figure are organized from top to bottom based on first how many criteria they met and second how many they partially met.

Out of 13 papers:

- 5 papers consider resilience in general systems.
- 4 papers consider resilience in the early stages.
- 1 paper considered expanding the design space using set-based design.
- 8 papers considered both short- and long-term resilience.
- 1 paper considered multiple scenarios.
- 6 papers considered multiple threats.
- 5 papers considered multiple functions and performance measures.
- 10 papers considered the “illities.”
- 5 papers used uncertainty analysis.
- 7 papers used modeling and simulation techniques.
- 3 papers supported affordability analysis.

Moreover, although meeting many of the criteria, no papers met all of the criteria required for the framework. Therefore, since many of the criteria are not considered by a large number of papers and no single paper met all of the criteria, there are gaps in the literature.

1.6 Future Work

The authors have five activities planned for future work. First, we will continue to present this work at various conferences. This allows feedback to improve the definition of engineering resilience, the engineering resilience cycle, and the framework for incorporating resilience into AoAs. Second, we will continue the literature search to identify possible solutions to the identified gaps and refine the framework. Third, we will validate the framework using illustrative engineering examples including autonomous systems (e.g., UAVs and autonomous vehicles). Fourth, the framework will be expanded to account for manned and cyber systems. Lastly, the team is researching different methods of resilience quantification to use with the framework.

Framework Criteria											
Criteria	Use terms encompassing many engineering domains	Focus on the early system definition	Expands Design Space	Consider short and long term resilience	Considers multiple threats	Considers multiple scenarios	Considers system functions and performance measures	Incorporate the "ilities"	Allow for uncertainty analysis	Be independent of the modeling and simulation techniques	Support affordability analysis
Stelle et al. [5]	Engineering domain	Life cycle stage	Discusses Set Based Design or other design space expansion	Short Term	# of scenarios considered	Threats	Systems functions performance measures	Number of "ilities"	Techniques used	M & S techniques	Value, multiple/ single
Youn et al. [6]	General DDo systems	Concept Stage	Discusses Set Based Design	Yes	Yes	0	Non explicitly discussed- Allows for consideration of multiple internal threats- resilience a subset of reliability	Multiple	Techniques used	M & S techniques	Cost
Ros et al. [7]	Engineered Aerospace Systems	Early Stage	No	Yes	1	Internal threats- resilience	Multiple	Multiple-Utity	Discusses	None	Multiple
Shafeezeh and Burden. [8]	Existing systems	Design Stage	Design Vectors	Yes	No	0	Environmental Disturbances	Single Function	Flexibility, changeability, adaptability, agility, versatility	Techniques used	None
Kahn et al. [9,10]	Infrastructure and Buildings	Early Stage	No	Yes	1	Seismic Disturbances	Multiple	Single-Utity	Discusses	None	Multiple
Henderson and Lawrence [11]	Technology and Enterprise	Existing systems	No	Yes	1	Terrorist Attacks	Multiple	Multiple	Monte Carlo Simulations	Prognostic and Health Management methods	Yes
Jackson and Ferris [12]	Organizational, physical, procedural systems	Resilience principles (e.g. Redundancy, etc)	No specific life cycle stage	Yes	0	Terrorist Attacks, Natural Disasters, Human and design errors.	Multiple	Multiple	Ground Motion Prediction Equations	Prognostic and Health Management methods	Multiple
Ettemy [13]	Communities and Civil Infrastructure	Existing systems	No	Yes	1	Man Made Events: Natural Events	Single: survive	Multiple	Ground Motion Prediction Equations	Physics-Based Models	Multiple
Modin and Jackson [14]	General Systems	Throughout Lifecycle	No	Yes	1 for each system	External: environmental adversary; systemic; internal threats; human errors	Single: resilience- Framework designed to measure resilience	Multiple to measure Resilience	Discusses	None	Multiple
Shoard et al. [15]	General Systems	Existing systems	Resilience principles (e.g. Redundancy, etc)	Yes	0	Failures, Accidents, Attacks, Pathogen, Natural Hazards, Competitor Challenge	Single: resilience- Framework designed to measure resilience	Multiple to measure Resilience	Discusses	None	Multiple
National Academies [16]	Communities and Civil Infrastructure	Existing systems	No	Yes	Multiple	Natural Disasters and Man Made Disasters-i.e. Terror, financial crises, or social unrest	Single: survival/ recover	Multiple to measure Resilience	Discusses	None	Multiple
Frache and Cailler [17]	Civil Infrastructure	Existing systems	Resilience principles (e.g. Redundancy, etc)	Yes	No	1	Earthquakes	Multiple to measure Resilience	Network of random variables	San Francisco Planning and Urban Research Association (SPUR) Method	Single: resilience
Bureau et al. [18]	Physical Communities	Existing systems	Resilience principles (e.g. Redundancy, etc)	Yes	No	1 for each type of system	Single: survival	Multiple to measure Resilience	Discusses	None	Single: resilience. Limited

Fig. 1.6 Literature conceptual framework analysis

1.7 Conclusion

The authors propose a definition of resilience that is independent of the means to achieve resilience. Using this definition alongside the research from the literature search and knowledge from stakeholders, the team identified criteria for incorporating resilience into AoA. These efforts mix AoA best practices and ERS. Figure 1.4 identifies best practices and ERS in addition to showing how the criteria fit into ERS. Using this criterion, the team has created a framework to incorporate ERS into AoA and to quantify resilience (Fig. 1.5). This framework is represented as an influence diagram that can be used by many different modeling techniques. In addition, the framework fulfills the criteria identified. In the future, the framework will be revised and refined through peer reviews. In addition, the framework is currently beginning to be applied to two different autonomous applications. Using the framework, the team will continue its research and develop methods of quantifying resilience to fill the identified research gaps.

References

1. Holland JP (2015) Engineered Resilient Systems: Power of advanced modeling and analytics in support of acquisition. NDIA 16th Science and Engineering Technology Conference, Springfield
2. Cottam B, Parnell G, Pohl E, Specking E, Small C (2016) Quantifying resilience to enable Engineered Resilient Systems: Task 1 Report. CELDI, Fayetteville
3. Parnell, G., Goerger, S., Pohl, E. "Reimagining Tradespace Definition and Exploration, "Proceedings of the American Society for Engineering Management 2017 International Annual Conference, 18-21 Oct 2017, E-H. Ng, B. Nepal, and E. Schott eds
4. Parnell GS, Bresnick TA, Tani SN, Johnson ER (2013) Handbook of Decision Analysis. John Wiley & Sons, Inc., Hoboken
5. Sitterle V, Freeman D, Goerger S, Ender T (2015) Systems engineering resiliency: guiding Tradespace exploration within an engineered resilient systems context. Procedia Comput Sci 44:649–658. Elsevier
6. Youn B, Hu C, Wang P (2011) Resilience-driven system design of complex engineered systems. Am Soc Mech Eng 133(10):101011
7. Ross A, Stein D, Hastings D (2014) Multi-attribute tradespace exploration for survivability. AIAA J 51(5):1735–1752
8. Shafeezadeh A, Burden L (2014) Scenario-based resilience assessment framework for critical infrastructure systems: case study for seismic resilience of seaports. Reliab Eng Syst Saf 132:207–219. Elsevier
9. Kahan JH, Allen AC, George J (2009) An operational framework for resilience. J Homeland Sec Emer Manag 6(1), Article 83.
10. Kahan J, Allen A, George J, Thompson G (2009) Concept development: an operational framework for resilience. Homeland Security Studies and Analysis Institute, Arlington VA
11. Henderson D, Lancaster M (2015) Value modeling for enterprise resilience. INCOSE Int Symp 25(1):1417–1426
12. Jackson S, Ferris T (2013) Resilience principles for engineered systems. Syst Eng 16 (2):152–164. Wiley Online Library

13. Ettouney M (2014) Resilience management: How it is becoming essential to civil infrastructure recovery. McGraw Hill Financial, New York City
14. Madni A, Jackson S (2009) Towards a conceptual framework for resilience engineering. *IEEE Syst J* 3(2):181–191
15. Sheard S, Mostashari A (2008) A framework for system resilience discussions. *INCOSE International Symposium* (Vol. 18, No. 1, pp. 1243-1257).
16. The National Academies (2013) *Disaster resilience: a national imperative: summary*. The National Academies Press, Washington, DC
17. Franchin P, Cavalieri F (2015) Probabilistic assessment of civil infrastructure resilience to earthquakes. *Comput Aided Civ Inf Eng* 30(7):583–600. Wiley Online Library
18. Bruneau M, Chang S, Eguchi R, Lee G, O'Rourke T, Reinhorn A et al (2003) A framework to quantitatively assess and enhance the seismic resilience of communities. *Earthquake Spectra* 19(4):733–752

Chapter 2

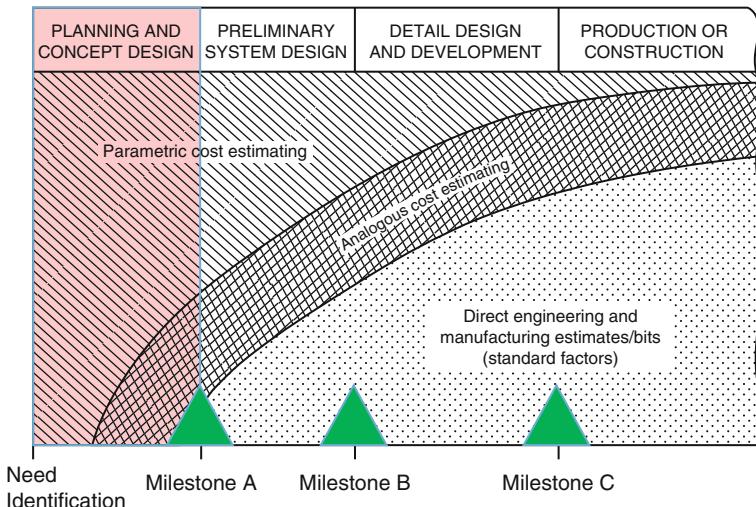
Early Life Cycle Cost Estimation: Fiscal Stewardship with Engineered Resilient Systems

Travis Moody, Robert Provine, Samantha Todd, Nicholas Tyler,
Thomas R. Ryan, and Ricardo Valerdi

Abstract Organizations are constantly seeking to achieve earlier and more accurate cost estimates in order to make better trades space and design decisions, as well as minimize project cost and schedule overrun. These estimates facilitate decisions that are more informed – especially within the United States Department of Defense’s engineered resilient systems (ERS) program. This paper will discuss the current methods used to achieve life cycle estimates, the role of estimation within ERS, and recommend a parametric life cycle cost estimation model that will support decision-making. In addition, this paper will focus solely on early life cycle engineering inputs that translate with Department of Defense’s pre-Milestone A in order to create an early life cycle cost estimation model (ELCE). This model leverages the engineering inputs (design parameters) that are typically available early in the design process in the following five categories: hardware, software, systems engineering, project management, and integration. This paper will also highlight future research goals to determine values for factors of economies of scale, regression analysis with real data, limitations, and potential impacts of application.

Keywords Acquisition • DoD 5000.02 • Engineered resilient systems • Life cycle • Costing • Hardware estimation • Software estimation • Systems engineering estimation • Project management • Project management estimation • Integration • Integration estimation • COSYSMO • COCOMO II • Cost estimation relationships

T. Moody (✉) • R. Provine • S. Todd • N. Tyler • T.R. Ryan
United States Military Academy, West Point, NY, USA
e-mail: travis.moody@usma.edu


R. Valerdi
University of Arizona, Tucson, AZ, USA
e-mail: rvalerdi@arizona.edu

2.1 Introduction

Estimating the life cycle cost of a new system, in a stage early enough to procure funding, is a difficult proposition. The Department of Defense (DoD) is at the forefront of military costing, but the institution as a whole needs to produce estimates that are more effective. For example, when the F-35 Lightning II Program was proposed for funding in October 2001, the total program cost was estimated to be \$224.77 billion dollars for 2866 units. As of August 2013 after 121 months behind schedule, the total program cost had soared to \$332.32 billion dollars. This constitutes an increase of 47% while producing 409 less units and a 72% increase in per unit cost from the original estimates [9]. This is unacceptable and breaches the trust between the citizens of the United States, the government, and the DoD [4, 5].

Engineered resilient systems (ERS) is one such DoD program attempting to help reduce cost-associated problems by attaching life cycle estimates to decision alternatives. ERS is housed within the US Army Engineer Research and Development Center (ERDC) and aims to provide a data-driven approach to building resilient systems through trade space analysis tools [10]. Within the ERS suite of tools, there exists a need for an embedded cost estimation component that is provided as an output to ERS users during the early stages (pre-Milestone A) of a system life cycle, as shown in Fig. 2.1. As design parameters are entered into the ERS tradespace tool, a SysML-like architecture is created, which allows for the generation of life cycle cost estimates. These estimates will then be attached to different design alternatives to aid engineers in the decision-making process.

Established methods for determining the cost of a system are described as top-down, bottom-up, and parametric [1, 15]. This research is concerned

Fig. 2.1 DoD acquisition milestones overlaid on general cost estimating techniques by engineering phase. This depicts the three milestones of the DoD acquisitions process in relation to the systems phases. The red box outlines the boundary of the research in this paper [1, 6]