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Preface

Innovation growth in the twenty-first century is continuing to fuel the way we live,

work, learn, and entertain. This era augurs well for societal well-being so long as we

make the understanding and management of complexity a top priority. Specifically,

the impact of innovation needs to be studied with regard to unintended conse-

quences. The latter is a challenge for complex systems engineering and a fertile

ground for conducting systems engineering research.

According to the World Economic Forum, we are in the early stages of the

Fourth Industrial Revolution. Coming on the heels of the Third Industrial Revolu-

tion, which produced dramatic advances in electronics, computers, communica-

tions, and information technology, the Fourth Industrial Revolution is going to be

an era of convergence. Increasingly, we are beginning to see the convergence of

engineering with behavioral and social sciences, entertainment and cinematic arts,

biology, and the physical sciences.

At the same time, systems in the twenty-first century are becoming increasingly

hyper-connected and more complex. Recognizing that traditional systems engi-

neering methods, processes, and tools no longer suffice, the research community

supported by government, academia, and industry has begun working together to

transform systems engineering. Central to this transformation is exploiting innova-

tion and capitalizing on convergence to develop new approaches, methods, and

tools. The emphasis is on reaching beyond traditional engineering to address

problems that appear intractable when viewed solely through an engineering lens.

Today disciplinary convergence is beginning to play a key role in this

transformation.

“. . ..The central idea of disciplinary convergence is that of bringing concepts, thinking, and
approaches from different disciplines in conjunction with technologies to solve problems

that appear intractable when viewed through the lens of a single discipline.” (Madni,

A.M. Transdisciplinary Systems Engineering: Exploiting Convergence in a Hyper-

Connected World,” Springer, 2017)

v



This vision inspired the central theme of 2017 Conference on Systems Engi-

neering Research (CSER): Disciplinary Convergence: Implications for Systems
Engineering Research. This volume is a collection of peer-reviewed research

papers from university, government, and industry researchers who participated in

2017 CSER. To help the reader conveniently navigate this volume, the papers are

organized into ten sections. Each section represents a key research area in systems

engineering research today.

It is our hope that this volume will get you interested in systems engineering

research that exploits disciplinary convergence and pursues cross-disciplinary

approaches to solve complex scientific and societal problems.

Los Angeles, CA, USA Azad M. Madni

Barry Boehm
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Chapter 1

Engineering Resilience for Complex Systems

Colin Small, Gregory Parnell, Ed Pohl, Simon Goerger, Bobby Cottam,

Eric Specking, and Zephan Wade

Abstract In recent years there has been an increased need for resilience in com-

plex military and civilian systems due to evolving adversarial and environmental

threats. Engineered Resilient Systems (ERS) is a Department of Defense (DoD)

program focusing on the effective and efficient design and development of complex

engineered systems. These complex systems need to be resilient to threats through-

out their life cycle. However, most current engineering resilience literature focuses

on systems with a single function and a single measure. Today’s systems are

becoming more complex, with multiple functions and measures involving critical

trade-offs during early life cycle stages. This paper develops criteria for a frame-

work to incorporate resilience into DoD analysis of alternatives (AoA). Using the

criteria, this paper creates a framework for defining and evaluating complex

engineered systems that consider many missions, scenarios, uncertainties, func-

tions, and measures. Lastly, using the criteria and the framework, the current

literature is shown to have gaps for incorporating resilience into DoD AoAs.

Keywords Resilience • Engineering Resilient Systems • Resilience cycle •

Systems engineering • DoD • Analysis of alternatives

1.1 Introduction

In recent years there has been an increased need for resilience in complex military

and civilian systems due to evolving adversarial and environmental threats. As

systems become increasingly interconnected and technology advances more

quickly, it becomes harder for systems to resist threats. Often systems are used in

unplanned missions or new scenarios with different threats. Therefore, systems
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need to be resilient not only to planned threats and functions, but they also need to

be resilient to uncertain threats and changing functionality. In the military and

defense industries, current analysis of alternatives (AoA) using requirements anal-

ysis does not always plan for future threats, missions, or scenarios. However,

systems cannot simply be designed for one mission; instead they need to withstand

threats and have multiple functionalities. Therefore, complex systems should be

engineered to be resilient to uncertain and evolving threats, missions, and scenarios.

As a response to the need for resilient systems, the Department of Defense

(DoD) has created the Engineering Resilient Systems (ERS) program. ERS focuses

on the effective and efficient design and development of complex resilient

engineered systems throughout their life cycle. This research focuses on defining

engineering resilience to enable key stakeholders such as planners, concept devel-

opers, system designers, system engineers, program managers, and system acqui-

sition leaders to assess options to improve system resilience in the early life cycle

stages. By considering resilience, the DoD strives to improve its AoA as shown in

Fig. 1.1 [1]. Specifically, it seeks to improve its buying power by specifically

addressing resilience early in the design cycle. In addition, it wants to add efficiency

to the AoA process by using tradespace and analytics tools that use high-

performance computing to explore the design space, efficiently sift through mil-

lions of designs, and quantify resilience and help analyze alternatives. Lastly, it

wants to improve the design process by using Computational Research and Engi-

neering Acquisition Tools and Environments (CREATE) that allow for virtual

prototyping, design verification, and operational testing.

In order to engineer resilient systems, system designers and managers must

contemplate design options considering various scenarios, missions, functions

and their performance measures, threats including environmental conditions, adver-

sary actions, detectable performance degradation, uncertain survivability, and mea-

surable recovery over time. Resilient design options include means for flexible

adaptability, which provide the ability to reconfigure and/or replace components

Fig. 1.1 ERS summary [1]

4 C. Small et al.



during the system lifetime. The criteria to evaluate the design options must include

the impact on performance, cost, and schedule. A tradespace analysis is critical to

ensure senior decision-makers are able to determine the affordability of systems

and their design options allowing for improved resilience.

With the aim of developing an appropriate framework for Engineering Resilient

Systems, this paper first examines the existing academic literature. Using this

literature along with stakeholder input, a set of criteria for Engineering Resilient

Systems was created. To meet these criteria, a framework for incorporating resil-

ience into AoAs was created. This framework will be used in future research to

develop different methods of quantifying resilience. Lastly the literature was

evaluated once again for gaps using the criteria and the framework.

1.2 Engineering Resilience Concepts and Definition

Recently our research team wrote a literature survey involving 47 papers [2]. In the

research, the team found varying terms and definitions of resilience. In order to

understand the literature and create a definition of resilience encompassing the

varying uses and definitions of resilience, the team created the Venn diagram shown

in Fig. 1.2. This Venn diagram shows the common themes and terms of resilience

used in the literature search grouped into similar areas.

While designing this Venn diagram, our research led us to view resilience from

two perspectives: platform and mission resilience. Platform resilience involves

engineering changes and other features allowing a system platform to be flexible

Fig. 1.2 Resilience Venn diagram [2]
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and adapt to new missions, scenarios, and threats. Mission resilience is the ability of

a system to withstand and survive threats and disruptions and to recover from them

quickly to achieve the mission. The majority of the literature was focused on

mission resilience. Using this knowledge gained from the literature survey, the

team created a broad definition of resilience:

A resilient engineered system is able to successfully complete its planned mission(s) in the

face of environmental and adversarial threats, and has capabilities allowing it to flexibly

adapt to future missions with evolving threats.

Using this definition, the authors view resilience as the cycle shown in Fig. 1.3.

In designing a resilient system, the process begins with a threat assessment. After

this, systems are designed to face these threats. Once systems are operational and

performing missions, the systems face evolving threats. Immediately they need to

withstand the threats to accomplish the mission. If the system survives, it needs to

recover from any damage or performance loss. After recovering, systems either

return to face another threat or adapt to new threats by using platform resilience

options incorporated in the original design decisions. If more significant changes

are needed, the system may need to be modified. In this case, systems go through

another redesign or modification process. After any redesigns, the systems face

threats once more and cycle through the process until the systems are retired.

1.3 Criteria for Incorporating Resilience into Analysis
of Alternatives

Using the results of the literature search, the team identified criteria a framework for

incorporating resilience into AoAs. The eleven criteria are as follows: (1) use

standard terms encompassing many engineering domains, (2) focus on early system

Fig. 1.3 Resilience cycle [2]

6 C. Small et al.



definition, (3) consider multiple scenarios, (4) consider multiple threats, (5) consider

short-term and long-term resilience, (6) expand the design space, (7) consider many

system functions and performance measures, (8) incorporate the “Illities,” (9) be

independent of the modeling and simulation techniques, (10) allow for uncertainty

analysis, and (11) support affordability analysis.

The framework should use common mission analysis terms from many engi-

neering domains. A framework only using terms specific to one engineering domain

cannot be easily applied elsewhere. Consequently, if it cannot be applied to other

domains, it cannot be widely used or effective in general system design.

Engineering resilience must be considered early in the system life cycle. To be

effective in creating resilient systems, the evaluation of engineering resilience must

include the early system definition, including the “pre-Milestone A” decisions.

DoD systems are used in different missions and scenarios to perform multiple

functions. Therefore, an effective framework needs to consider multiple missions

and scenarios.

Numerous papers on engineering resilience focus on only one threat. Realistic

DoD systems will face multiple uncertain threats throughout their life cycle.

Therefore, any framework developed should allow for multiple threats rather than

a single threat.

Time is a critical factor in engineering resilience. Systems face threats through-

out their life cycle, and the threats may evolve or change dramatically. In addition,

resilient systems not only respond and recover from threats in the short term, but

they need to be able to take advantage of designed adaptability to be affordably

modified to face new threats in the long term. Since resilience involves the system

response to dynamic threats, a framework needs explicitly time, short-term resil-

ience, and long-term resilience (Fig. 1.3).

The best practice is to avoid AoAs with a few point-based solutions. Point-based

solutions do not provide sufficient insights about the design space. A goal of the

ERS systems engineering process is to transform traditional point-based, require-

ments-driven design into set-based and data/analysis-driven design [3].

The majority of papers in the literature focus on one function and one perfor-

mance measure. However, complex DoD systems perform several functions and

have multiple performance measures.

The evaluation of resilience requires consideration of many “illities.” These are

terms such as availability, reliability, survivability, producibility, supportability,

and others. These “illities” are a key consideration in the cost and value of systems.

Hence, they need to be considered in a resilience framework.

Mission analyses and AoA use modeling and simulation techniques tailored to

the system and the availability of data. Since modeling is the best way to estimate

cost and value in early life cycle stages, the framework must be independent of the

modeling and simulation techniques used in AoA.

Uncertainty is a reality in engineering resilience decisions. Many DoD systems

have service lives lasting for decades. During this time, missions, scenarios, and

threats change as new technology and adversaries arise. In addition, every situation

1 Engineering Resilience for Complex Systems 7



is different and can have different outcomes leading to uncertain performance and

cost. Therefore, the framework should explicitly consider uncertainty.

Affordability is an important consideration in system development. “Big A”

affordability evaluates and assesses the value versus the costs at major milestones.

“Little a” affordability refers to the continual evaluation of the value versus cost on

all program decisions. Since the DoD and all decisions makers are concerned with

cost and value, the framework must support affordability analysis.

In summary, these criteria together will allow for incorporating resilience into

analysis of alternatives. However, as a list, these criteria mix both best practices and

ERS requirements. To resolve this, Fig. 1.4 includes the criteria, the flow of time,

and as a result the dependencies. In addition, it identifies the new steps to analysis of

alternatives that ERS adds in red lettering. In addition, they do not show the

sequence and dependencies involved in the criteria. The sequence and dependen-

cies are shown in Fig. 1.5.

Analysis needs to begin with identifying missions, scenarios, and value gaps.

Next, ERS adds a step to AoA requiring expanding the design space and providing

resilience options. Then cost drivers, performance measures, and relevant illities

need to be determined. To quantify the uncertainty in these, engineers need to

perform modeling and simulation. Using these, the value tradespace and the costs

need to be quantified. In addition, during this stage, another step is added in AoA to

extend the service lifetime. Specifically, this will analyze the effects of platform

resilience and responds to evolving threats and scenarios. Using the previous

analysis, decision-makers can make resilience and affordability trade-offs. In

Fig. 1.4 Incorporating ERS into analysis of alternatives
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addition, these criteria incorporate the goals and objectives of ERS. The CREATE

and tradespace tools will be used to expand the design space and modeling and

simulation to provide detail required to better predict costs and values. Lastly,

affordability analysis and resilience trade-offs in the AOA directly support the

better buying directives of DoD.

1.4 Proposed Framework for Incorporating ERS into
Analysis of Alternatives

In order to help make decisions during the early life stages of systems, the authors

created a framework to incorporate the criteria into analysis of alternatives. Visu-

ally this framework is shown as an influence diagram in Fig. 1.5. An influence

diagram is a concise representation of a decision problem or opportunity [4]. They

identify the variables and their relationships but suppress the details. They use four

nodes: decision nodes, uncertainty nodes, constant nodes, and value nodes. A

decision node signifies the decision alternatives or options and is displayed by a

rectangle. An uncertainty node represents the different outcomes of an uncertain

event and is depicted as an oval. A constant node symbolizes a function or number

that will not change and is depicted by a diamond shape. Lastly, an influence

diagram has value nodes denoting the decision-makers’ preferences for outcomes.

Value nodes can have different types of values such as cost, performance measures,

or an affordability based on cost, performance, and service life. A hexagon depicts a

value node. In the diagrams, arrows are used to display influences. There are two

types of influences: a probability relationship and the availability of information.

The time sequence of the events is from left to right.

Fig. 1.5 Framework for incorporating ERS into analysis of alternatives
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In Fig. 1.5 the nodes are:

• Threat assessment, T – a decision that identifies the anticipated threats the

system will face.

• Requirements, r – a set of decisions determining the use of the system and

required minimum performance.

• Design decisions, D – a set of decisions made with knowledge of the require-

ments and threat assessment. These can be point-based design decisions or

set-based decisions. However, only set-based design decisions will meet the

requirements to expand the design space.

• Modeling and simulation, M – the decisions made which methods and tech-

niques used to model and what scenarios and missions to simulate the system in

order to predict measures, illities, and costs.

• Platform and mission resilience response decisions, R – a decision node

representing mission response decisions (short term) and platform response

decisions (long term) informed by threats.

• Scenarios, s – a chance node representing an uncertain scenario, which may or

may not be in the original threat assessment or requirements analysis.

• Missions, m – a chance node representing the missions the system is actually

used on; this may or may not be included in the initial threat assessment or

requirements analysis.

• Threat, t – a chance node representing the uncertain threat that depends on the

mission. There can be different threats to different system functions. In this

diagram, threat is the term used for any adverse event (environmental or

adversary) that could degrade any capability of the system. This may or may

not be in the original T.

• System functions, f – a chance node determining how the system is used; it is

influenced by the missions and scenarios the system is used in.

• Performance measures, p – a chance node depending on the function, the illities,

modeling and simulation, and resilience response decisions.

• Illities, i – a set of chances such as reliability, survivability, availability, and

others affecting the performance and cost of the system.

• Service life, L – a chance node affected by the performance of the system, the

illities, and the resilience response decisions.

• Value, V – a value node depending on the performance for the mission for all

functions and several other variables.

• Life cycle cost, C – a value node depending on the design, the producibility, the

supportability, and the platform and mission response decisions.

• Affordability, A – a value node comparing value versus life cycle cost.

In a defense design process, intelligence analysts first determine what threats

new systems will face in the threat assessment. In addition, requirements for the

system will be analyzed. The threat assessment and requirements analysis inform

the design decisions. After the design decisions, the systems are employed in

uncertain missions and scenarios. Next, even though there is an initial threat

assessment, the threats the system faces are uncertain and based on the scenarios
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and missions the system is sent to perform. When facing these threats, users can

make resilience response decisions based on uncertain threats. These options are

based on what the design decisions allow the system to do and how they allow it to

adapt. These decisions can be short term such as avoiding a threat. They can be a

simple modification of the system like adding a new sensor. Or they can also be

long-term decisions to significantly modify or adapt to the system to face new

threats. For instance, a historical long-term decision was to add weapons to a C-130

to change the functionality of the C-130 from tactical airlift to a gunship.

Depending on the threats, design decisions, and response decisions, the system

can have different functions. From these functions, the illities, or set of character-

istics including reliability, availability, producibility, survivability, etc., are deter-

mined. Next, the functions, threats, scenarios, missions, illities, design decisions,

and the resilience response decisions influence the performance. The performance

measures should be estimated using modeling and simulation. But, the choice of

specific models and simulations is a decision because analysts need to decide which

type of models and simulations to use for each system. From the performance, the

value of the system is determined. Using the design decisions, the resilience

response decisions, and the illities, the life cycle cost is evaluated. Then the service

life is estimated from the response decisions, the design decisions, and the perfor-

mance. Using the estimated values, costs, and life cycles, decision-makers make

affordability decisions early in the life cycle.

Throughout this decision process, the uncertainties should be estimated using

model-based systems engineering. Model-based systems engineering is a process of

engineering systems using modeling throughout the AoA and decision process.

Various types of models should be included. Specifically, the systems will each

need at least a physics-based performance model and detailed cost model.

In addition, using the data from the right side of the framework, decision-makers

need to perform trade-offs between value and cost. To balance the needs for high-

performance systems and with the budget requirements, the decision-makers need

data on the life cycle length, the life cycle costs, and the value of the system to allow

them to assess the affordability of the system.

This framework for resilience was created to fit the criteria for incorporating

resilience into AoAs. Although many of the terms are drawn from the defense

industry, the framework as a whole can be applied to many different areas. In

particular, the authors are currently applying the problem definition to two systems

with application in the defense industry and in the public sector: unmanned aerial

vehicles (UAVs) and autonomous vehicles. The analysis will focus on the early-

stage decisions. It allows for set-based design. Both short-term and long-term

resilience are considered in the platform and mission resilience response decisions.

Multiple scenarios, threats, functions, and performance measures can be consid-

ered. The illities are incorporated. In addition, leaving the chance node as the broad

term “illities” allows for inclusion of any illities a system might be concerned with.

This framework accounts for uncertainty. And many different types of modeling

and simulation can be used with this framework. Lastly, the framework enables

affordability analysis.
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1.5 Comparing the Literature to the Framework

Lastly multiple papers in the literature were analyzed using the criteria and the

framework. In Fig. 1.6, the green boxes show papers fully meeting each criterion,

red illustrates where papers fell short on each criterion, and the yellow displays

where papers partially meet, but can be improved on each criterion. Lastly, the

papers in the figure are organized from top to bottom based on first how many

criteria they met and second how many they partially met.

Out of 13 papers:

• 5 papers consider resilience in general systems.

• 4 papers consider resilience in the early stages.

• 1 paper considered expanding the design space using set-based design.

• 8 papers considered both short- and long-term resilience.

• 1 paper considered multiple scenarios.

• 6 papers considered multiple threats.

• 5 papers considered multiple functions and performance measures.

• 10 papers considered the “illities.”

• 5 papers used uncertainty analysis.

• 7 papers used modeling and simulation techniques.

• 3 papers supported affordability analysis.

Moreover, although meeting many of the criteria, no papers met all of the criteria

required for the framework. Therefore, since many of the criteria are not considered

by a large number of papers and no single paper met all of the criteria, there are gaps

in the literature.

1.6 Future Work

The authors have five activities planned for future work. First, we will continue to

present this work at various conferences. This allows feedback to improve the

definition of engineering resilience, the engineering resilience cycle, and the

framework for incorporating resilience into AoAs. Second, we will continue the

literature search to identify possible solutions to the identified gaps and refine the

framework. Third, we will validate the framework using illustrative engineering

examples including autonomous systems (e.g., UAVs and autonomous vehicles).

Fourth, the framework will be expanded to account for manned and cyber systems.

Lastly, the team is researching different methods of resilience quantification to use

with the framework.
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1.7 Conclusion

The authors propose a definition of resilience that is independent of the means to

achieve resilience. Using this definition alongside the research from the literature

search and knowledge from stakeholders, the team identified criteria for incorpo-

rating resilience into AoA. These efforts mix AoA best practices and ERS. Fig-

ure 1.4 identifies best practices and ERS in addition to showing how the criteria fit

into ERS. Using this criterion, the team has created a framework to incorporate ERS

into AoA and to quantify resilience (Fig. 1.5). This framework is represented as an

influence diagram that can be used by many different modeling techniques. In

addition, the framework fulfills the criteria identified. In the future, the framework

will be revised and refined through peer reviews. In addition, the framework is

currently beginning to be applied to two different autonomous applications. Using

the framework, the team will continue its research and develop methods of quan-

tifying resilience to fill the identified research gaps.
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Chapter 2

Early Life Cycle Cost Estimation: Fiscal
Stewardship with Engineered Resilient Systems

Travis Moody, Robert Provine, Samantha Todd, Nicholas Tyler,

Thomas R. Ryan, and Ricardo Valerdi

Abstract Organizations are constantly seeking to achieve earlier and more accu-

rate cost estimates in order to make better trades space and design decisions, as well

as minimize project cost and schedule overrun. These estimates facilitate decisions

that are more informed – especially within the United States Department of

Defense’s engineered resilient systems (ERS) program. This paper will discuss

the current methods used to achieve life cycle estimates, the role of estimation

within ERS, and recommend a parametric life cycle cost estimation model that will

support decision-making. In addition, this paper will focus solely on early life cycle

engineering inputs that translate with Department of Defense’s pre-Milestone A in

order to create an early life cycle cost estimation model (ELCE). This model

leverages the engineering inputs (design parameters) that are typically available

early in the design process in the following five categories: hardware, software,

systems engineering, project management, and integration. This paper will also

highlight future research goals to determine values for factors of economies of

scale, regression analysis with real data, limitations, and potential impacts of

application.
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2.1 Introduction

Estimating the life cycle cost of a new system, in a stage early enough to procure

funding, is a difficult proposition. The Department of Defense (DoD) is at the

forefront of military costing, but the institution as a whole needs to produce

estimates that are more effective. For example, when the F-35 Lightning II Program

was proposed for funding in October 2001, the total program cost was estimated to

be $224.77 billion dollars for 2866 units. As of August 2013 after 121 months

behind schedule, the total program cost had soared to $332.32 billion dollars. This

constitutes an increase of 47% while producing 409 less units and a 72% increase in

per unit cost from the original estimates [9]. This is unacceptable and breaches the

trust between the citizens of the United States, the government, and the DoD [4, 5].

Engineered resilient systems (ERS) is one such DoD program attempting to help

reduce cost-associated problems by attaching life cycle estimates to decision

alternatives. ERS is housed within the US Army Engineer Research and Develop-

ment Center (ERDC) and aims to provide a data-driven approach to building

resilient systems through trade space analysis tools [10]. Within the ERS suite of

tools, there exists a need for an embedded cost estimation component that is

provided as an output to ERS users during the early stages (pre-Milestone A) of a

system life cycle, as shown in Fig. 2.1. As design parameters are entered into the

ERS tradespace tool, a SysML-like architecture is created, which allows for the

generation of life cycle cost estimates. These estimates will then be attached to

different design alternatives to aid engineers in the decision-making process.

Established methods for determining the cost of a system are described as

top-down, bottom-up, and parametric [1, 15]. This research is concerned

Need
Identification

PLANNING AND
CONCEPT DESIGN

Direct engineering and
manufacturing estimates/bits

(standard factors)

PRELIMINARY
SYSTEM DESIGN

DETAIL DESIGN
AND DEVELOPMENT

PRODUCTION OR
CONSTRUCTION

Milestone A Milestone B Milestone C

Analogous cost estimating
Parametric cost estimating

Fig. 2.1 DoD acquisition milestones overlaid on general cost estimating techniques by engineer-

ing phase. This depicts the three milestones of the DoD acquisitions process in relation to the

systems phases. The red box outlines the boundary of the research in this paper [1, 6]
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