Electron: Fr(;m
Beginner to Pro

Learn to Build Cross Platform Desktop
Applications using GitHub’s Electron

Chris Griffith
Leif Wells

Apress’

Electron:
From Beginner to Pro

Chris Griffith
Leif Wells

Apress®

Electron: From Beginner to Pro: Learn to Build Cross Platform Desktop Applications
using Github’s Electron

Chris Griffith Leif Wells
San Diego, California, USA Atlanta, Georgia, USA
ISBN-13 (pbk): 978-1-4842-2825-8 ISBN-13 (electronic): 978-1-4842-2826-5

https://doi.org/10.1007/978-1-4842-2826-5
Library of Congress Control Number: 2017959877
Copyright © 2017 by Chris Griffith, Leif Wells

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Lily Madar
Coordinating Editor: Nancy Chen
Copy Editor: Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484228258. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2826-5
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484228258
http://www.apress.com/source-code

Contents

About the AUtROIS.....cccuiisssssmmmssssssnnmsssssssmsssssnssnsssssnnnssssssnsnssssssnnnnssssnnnnsssssnnnnnssssnnnnss Xi
About the Technical REVIEWETucuiseemrmsssssnnnmsssssnnssssssssssssssssssssssssssnnssssssnnnsssssnns xiii
Chapter 1: Welcome to Electroncccccviinnmemmsmmmnnnnnsssssssssssnnsesssssssssssssssssesssssnns 1
What IS EIECITONT ..ottt e e 1
WRAL IS NOTE? ...ttt se e e ae e se s s e s s e e e s e e e e e e s aeseeae s e e e e ae e e ae e sae e eaenaeaesannnres 2
WRat IS CRIOMIUM? ...ttt sa e e s s s e e s e e ae e ae e s ae e s ae e e e nae e es 2
WHO IS USING EIBCLION?........cecerereriererer st ss e e e se e sa s sn s s sn s snssn s sassnssnssnennes 2
What Do | Need 10 KNOW?.........ceoicerercsirirss s se s sn s s s e e snssn s s enas 3
Why Should | ChooSe EIECIION?.........cccvvervririrrer ettt 3
EIECIrON’S AQVANTAGEScoveocreeereeeresenesresessesesseses e sss e se e sesessesss e sssessssessssesssssssessssssssnssssssssssssnssssnsnnes 4
Beyond the SANADOX........cceeerererererereeesiss s se s e s s e p s e pe e e e sn s s 5
OFfliNE FIFSE DESIONcuvvrveeeeirteeeses e e s e a s e s e e s e e e e pn s 5
How Does EIECIrON WOIK?coceieeercrresereres e sse s s sns e ssssnssesss e ssssnssesnssnnnens 5
THE MAIN PrOCESSveueireerreriressse s e se s e e s s se s e e s s e b e e s e e se e s s e e a e e e r e e s nennnae e e e nnn e ns 6
THE RENUET PrOCESS.......cccireeeierrrcrseserse e e ses e s se e sse s s s e s e e s s e s e a e nennsne e snennesennsnnnns 6
Other SOIUTIONS ...cvveeecrir e e e bR e bR e ne bR e e e bR e e e e R e s 7
SUMIMAIY ...ttt sr s sr e s e e e e e e sr e s s e e e e sn e e e b e e e s e snen e s e e e nnennesnnnnnnnnnnnnnans 7
Chapter 2: Installing EI€Ctron.........ccccussemnnmnssssnnnmssssssnssssssssssssssssnsssssssssssssssssnnssssss 9
Before INStallingccocvcervrcinircrir s 9
INSEAIIING NOGE ...t sn e n s nn s nnnnnnnns 9
Installing Node fOr MACOS ..o e e e nn s 1
Installing NOdE 0N WINAOWSccceeeerreiererrnesesessssesesessssssesesssssssssssssssssssssssssssssssssnsssssssssssssessssssssssnes 16
Installing Git 0N MACOScoerirererere e ra e e sa e sa e saenn e nen 20

iii

iv

CONTENTS

Installing Node 0N WINAOWScoeiiiiiirinininnese e ssssse e ssessessssassssssssassssssssasssssasssssssssssssnsnns 22
InStalling Git 0N WINAOWSccceererirererieerserersesessesessesessessesesssssssessssessssessssessssssessssessssessenessessssssassens 28
INSTAIlING EIGCIION.......ceeeeeeeeee e e e n s 38
B30T] 1 P2 40
Chapter 3: The Electron Quick Startcoccremmmmmmnnnmmnssssssssnnnmmmmsssssssssnssemmns 41
Getting the QUICK Start COde........c.ccovererrirerneresrse e ere e 4
Updating the Project to Make It YOUISccceeeeererenesesee e ses s s e e 42
The Main ProCeSS Filecccioriiiieinineincris s 44
The Quick Start’s Renderer ProCess..........ccoverreneresnesesssesesssesesssesessssesessssssssssssens 48
B30T] P2 PP 51
Chapter 4: BrowserWindow BasSiCSuuuuummssssssssssmmsssns 53
Getting StArtedccceieeecrerr e ————————— 53
Disabling Chrome DEVTOO0IScceuruererereeerresesresessesessessssessesessessssessssessssessesessessssessssessssessessssessssesasaens 53
Update Code to Use the ready-to-show Event ..., 56
BrowserWindow Options ArguMENT.........cccceeerererers s sss s s s ssssesssssees 57
Basic Window Properties (width, height, minWidth, minHeight, maxWidth, maxHeight)...................... 59
The center, X and Y PrOPEIIEScccocevreeerererreeseserire s ses s nsnsns 59
The resizable and movable Propertiescuurreresesesessnsssesesssssesesssssesessssssssessssssssssesssssssssssens 60
THE T8 PrOPEITY ... b e a e e p e e s 61
Other WInAOW TYPES ..c.veveereereereereereersesse e saessessesaesaessssssssssassassassasssssassasssssssssssasssssssssssens 66
Frameless WINAOWS..........cocvrurueiniriieeesessee s 66
TranSParent WINUOWSccevriiirirrin s ses s s s s s sasssssas s s s sas s s sassssstsssssasssssssssssasssssassssnsnnns 70
1T TR 72
Chapter 5: Adding Custom MenuScccmrrmssnnnsmsssssnnsessssssssessssssssssssssnnssssssnnnnss 73
Getting StArtedcoeeeceeee e ———————————— 73
1T TV =T] 0] LT 75
Mac0S’s Application MeNU...........coecrrecrerr e 76
Defining Keyboard Shortcuts and Menu Item Roles.........ccoeeeeeeececececececeecee e 76
Creating Submenus and Checkmarkscccoeverrrnrennnsss s s ses e 80

CONTENTS

Completing the mac0S’s Application Menucccceeeevererenensre e e 83

mac0S’s Window Menu MOdifiCatIONSccccerreeerirnecrr e s 84
CoNtEXTUAI MENUS........ccerercererce e 90
31T 92
Chapter 6: Understanding the IPC Module.........ccccusssemmmnssssnnssmsssssssssssssssssssssssnnns 93
GEtting StArtedcoce e ———————————— 93
SynNchronous IPC MeSSAQING......ccouerrerrrsersssmressssersessssessssesssssssesssssssssssssssssssssssssssssssssens 94
Asynchronous IPC MESSAJINGceerereerereersersereessessessssssssessssssssssssssssssssssassassassssssssanns 98
Managing EVent LISLENEIS.........ccocvcercrierressesses s sn e e sn e s s snssnssnssnnnns 101
SUMMEAY ...ttt e e as e a s s re e e e r e e s e a e e s ne e s nnnennnnns 102
Chapter 7: Working with the Dialog Module..........cccusnmmmmmmmmmmnmssssssssssnssssessnnes 103
GEtting StArTedccoceeeierrrrer e s 103
The File OPen Di@logccvververrerrerrerrersersessessesses s e ses e ssss e s s s s s sessssssssssssssnssassnssassanans 103

Additional Open Dialog Properties........cocveeverrererererererereresersssessesessesessessssessssessessssessssessssesssssssenseses 106

RS T=] T 10 3 108

The BrowSerWindow PArameter..........cocvererererereresssesssssesssssesesesssesesesenes 110

A Brief LoOK at NOUE'S FS MOUUIEcocoeeererererererereseneenes 112

WOIKING DIFECIOMIES ... enes 115
The File Save Dialog........ccccveerrerreriirirsirses s se s sn s e s 116
The MeSSAQe DIAl0g.......cceerrrererserrenrsesessesesesse s ses e sse s sesss s ssssessesssssssessssssssnsnsens 119

CUSTOM ICONS ...t a e e s e e b e e e e b e se e e s e ae e e s e se e e ensennneas 125

Handling the RESPONSE. ...ttt e sa e a e 127
(0 T [0 S 127
SUMMANY ...ttt se s e s s s s s s r s n s sr e s s sn s r s nn s s s nnesnennennenn e e e nnennennannnnnennennnnnan 128
Chapter 8: WebContents, Screens, and Locales........uummmmmmmmmmmmmmmssssssssssssssssnes 129
GEtting STArEdcoeceececee e e nrennen 129
Discovering Electron’s WebCONtents...........coceveernneresnsesssssssssssessssssessssessessssessssesnes 130
A Little Setup Before We BegiN.........coceverereerereereessersessesssnses 134
WebContents EVENLS.........cccoicriircincrse e 137

vi

CONTENTS

The “did-start-10ading” EVENtccocerireenierenre e ssesennens 139
The capturePage Method ... 144
The printTOPDF Method.........cccvcicrcrcrr i 149
Getting Information about SCrEENSceeeiiereriiierne e s 152
FINAING LOCAIESoeereeciree st se e sne s sne s sn e s sn e s s sn e s nne e nne e 156
1111 112 SRS 157
Chapter 9: The Dock Icon on mac0Sccusemmmmmssnnnmmmssssnmmsssssesssssssessssnnn 159
GEtting STArEdcceeeececee e n e nrennen 159
The Application’s DOCK ICONccccvcerierierierrerser s 160
Making the Dock IcONn BOUNCE...........coceeereenirce e ne s 163
Changing the DOCK ICON ..o sn e sn e sn e snesnennnnns 164
DOCK I1CON BAUGES........ceeereeerirceereesse e ssse s s sne e sne s s sn e s sne s s sne s s nne s e nsnenns 165
SUMMEAIY ...ttt s a e b e s e e r e e s e n e e e ae e s nernanns 167
Chapter 10: Shell......cccccermiimmmmmmsnsssnnrrer s ——————————— 169
Getting Startedcccciierrrer e ———————— 169
Making the System Alert SOUNd..........c.cocrcrcrcrcr e 170
Showing Files in the Operating System ... 171
Opening Files with the Operating SyStem.........ccocvirrrrrrnirnr s 172
Opening HTML Files with the Operating SyStem.........ccccecerererrrese s 173
E3 1111 1P 7SS 174
Chapter 11: Online/Offline Detectionuuceemmmmmmmnsmssssssssssnnnnmsssssssssssssssssesssnns 175
(6T 0[] - T (- o SRS 175
Using the Renderer Process to Detect Online Statusccceevvvceeninccnccnescsecennenns 176
Pros and Cons of the Renderer-0nly SoIUtioNcccoceeeeereneness s 182
The Main Process-0nly SOIULIONccccvcerverrrrersenrerer e s 183
Pros and Cons of a Main Process-0nly Approachccccvervevsessessessessessnsssssnssensenns 187
The Combined APProach ... s 187
E3 1111 P2 7 188

CONTENTS

Chapter 12: Advanced BrowserWintowcccccessreesssssssssssssssssssssssssssssssssssssssns 189
Loading an ApPlICALION........cccceeeeeee e sr e e sn e sn e sr e e nnenn e nn e nnennens 189
SPIASH WINAOW.......ceceeeeiecee s sn s n s sn s sn s sn s sn s sn s sn s nn s sn e sn e sn e nn e nn e 189
Installing the QUICK Start............cccvierrirsr 190
Setting Up a SpIash WiNAOWcccveiersscesirsie s ses s s s e ssssns s snssnsssssnnnnas 190
Creating the Splash Window File..........cccocveeiirennerniressessse e 191
Showing the Version in Our Splash WindOW...........cccvvrrrrrressnnesses s s sessensens 193
Loading the Main WINAOWccceeeeereresessessesse e ssessesssssssssssssssssssssssssssssssssssssssnsans 196
Setting Up the Main WiNAOWccvceeeimiennninesnsesesssesessesssssssesssssssessssessssssssssssssnens 197
31111 P2 7SS 198
Chapter 13: Debugging Your Electron Application...........ccccinsseemnnnssssnnnsssssannns 199
Chromium’s DEV TOOISccuecrerueererreeressesesessesesessesesesss e sssseses s ssssesssesssssssssssssssssnes 199
Debugging the Main ProCESSccecvrerrersersessesses s s s s sessessesssssssssssnssnssnssnsssssssnsnns 201

Debugging the Main Process in VS COTE.........cccouruierererurrieririree e 201

Debugging the Main Process in N0Ae-iNSPECLOL..........ccccverrierirerenre e 204
Chrome DevTooIS EXIENSIONScccccvrerernmrenismsesisesesse s s sn s ssssesssssnsenns 206
DBVIION ... —————————— 207

3T (1T =G 1o 3 208

oL TS T 209

o 0] T o] 210

1 211

ACCESSIDIIILY....c.eeveerreereerererereree e rse s rae s s e res e sae e s aesesaesesaesasserae e s ae e raesesaesansesaesesae e saenenaenaeseraenenaenenaen 212
R3] 001 0] o TSROSO 212
1111 112 SRS 212
Chapter 14: Testing with Spectroncccccuvrmnnnnnsnnmnnmssnnms————————— 213
Getting STArtedcoeeeeee e ————————— 213
DA [0 Lo T (=] S 215
Using Spectron’s browserWindow APl ... 218

vii

CONTENTS

Testing the Size of the browserWindowc.ccoeeiernnerenniers s 222
Testing Interactions in the Renderer ProCess.........ccuvvververversersensessensesses s sessessessessenaes 223
Make the Example INteractive..........ccoceeeeeeeresecc e sse e e sns e snssnenns 224
SUMMEAY ...t r s a s a s ae e r e e s e n e e s ne e s e nnnnnnnas 229
Chapter 15: Building Your Application........cccccmmmmmrssssssssssssnmsssssssssssssssssssssssssnas 231
Installing EIECtron BUIIErccoeeiiierniircsirereereses s sns s e s 231
Adjusting your BUild Dir€CIOMIESueueeeererreeririree s sessns 231
Updating the package.jSON fileceecerrieiinerrresesree e 232
Building for WindOWS 0N MACOS ..o e ssnens 233
Building for LINUX 0N MACOSccoeiieeeririeeseresiee s sesss e se s e sss s sssssassssssnnns 233
Configuration OPLIONS........ccecerererere s sa e saesa s sa e sa e sassa e sa e saenens 233
Testing Our First BUild..........cooveercrcrcrser s 235
Configuring the APP ICON ... s 238
Configuring the MACOS DGcccourueererirreeneresree s se e nes s nens 238
Configuring the Windows INSTAIIET ... 239
E3 1111 1P 7 244
Chapter 16: Auto Updating Your Applicationcccinmssmmmmmssssnnnmnsssssnnsssssssnns 245
Auto Updating macOS ... sas e sa s sa s sa s sn e 245
Auto Update SErver OPLIONScccecverererereree s reseras e rsesessesessesessesassesassesassessesassesassessenessenssaes 248
Testing Our AUTO UPUALEccveeereeierererererereeersesessesesserassersssessesessesessesassessssessssassesassessssesasessensnaes 250
SigNing YOUr APPIICALIONveeeeerererererteeree e se s e res e rse e ssesesaesesserasaesaesesaesessesesaesassesassesasnessensnsenansens 250
Building the Application - MACOS...........cceceveiererere e ra e s s ae e ae e sae e saesas e saenees 251
Generating an UPAALE........cccveeverererererereresseses e seesesseses e sa e e ssesessesessesasaesassesaesesassessesassesassesasnenes 251
Auto Updating Windows AppliCations..........cceeeeeereneessesesesse e ses s sssssssnssnssnssnssnnnns 252
Signing Your Windows AppliCaLION..........cccoiecicne e 254
Customizing the SQUIrrel INSTAIET ... s 255
Generating Our FIrSt BUIILccoccoiiiecrce s sn e 258

viii

CONTENTS

GENErating an UPAALE........cccoveereiereiere st sae s sas s s e sae e s sessesasne s sesa e e sae e saenasaesaesesasnenes 259
ARErNAtIVe SOIULIONScceeiicri 260
1111 112 SRS 261
Chapter 17: Additional RESOUICESccuseerrrssssnnnssssssnsnssssssnnssssssssssssssssnnssssssnnnnss 263
Additional EIECron APIS ... 263
AESKEOPCAPIUIEL ...ttt e e e e et b et ae e ae e nae s 263

(o2 Y1 2T 010 1 ORI 263
CHENTREQUEST ...ttt e s s e e bbb e ae e b e e e 263

1 264
DOWNIOAAIEIM.......c.ciiiiiiice e 264

o L= (0 T 0 264
COMMUNITY RESOUICEScveevereereerreree e rserssssessessssssssesaessesasssssasssessssssssssassasssssssssssssnsens 264
1111 112 SRS 265
INA@X.ciieiiienrinsnin s s s ——————————————————_ 267

ix

About the Authors

Chris Griffith is a User Experience Lead at a home automation and
security company and is also an instructor at the University of California,
San Diego Extension, teaching mobile application development. He is also
an Adobe Community Professional specializing in PhoneGap/Cordova
and Experience Design. Chris is regularly invited to speak at conferences
such as Fluent, Adobe MAX, and ngConf. He has developed several mobile
applications, a variety of code-hinters, and ConfiGAP for PhoneGap Build.
In addition, he has served as a technical reviewer for several publications
and written for uxmag.com. In his spare time, Chris spends time with his
family, sea kayaking, hiking, and drinking craft beer with friends. You can
follow him on Twitter @chrisgriffith or at chrisgriffith.wordpress.com.

Leif Wells is a Web and Mobile Application Developer working as a
contractor from his home in Atlanta, Georgia. He currently enjoys working
with Electron, the Ionic and Angular stack, and has recently become
obsessed with automated testing.

His experiences working as a team member on large Enterprise-level
projects as well as a single developer on small products have matured him
into a seasoned professional. Leif has organized and supported technical
communities both online and in Atlanta, and often speaks at conferences
and user groups.

Leif enjoys good movies, great sushi, and hanging out with his
canine companion, Miss Bonnie. He has been known to blog irregularly at
https://leifwells.github.io/ and can be found on Twitter as
@leifwells.

xi

https://leifwells.github.io/

About the Technical Reviewer

Lily Madar is a Creative Technologist from London, UK, who, for the last
decade, has worked with various web technologies and frameworks for a
range of digital creative and media agencies. Some of her work includes
interactive displays powered by web technologies and can be seen in the
British Museum or the Serpentine Gallery (both in London).

Outside of work, she is an active hackathon participant with recent
wins at TADHack and GeoHack.
She also writes tutorials exploring the latest web and digital trends and runs
hardware workshops for beginners.

When not coding, she is experimenting with Arduino circuits, crochet,
and other crafts, making her a full-stack developer in hardware, software,
and yarn-ware!

xiii

CHAPTER 1

Welcome to Electron

GitHub Electron (or simply Electron) allows you to build desktop applications using just HTML, CSS, and
JavaScript. Sounds like a pretty ambitious statement to make. But it is indeed true, just as Apache Cordova
(also known as PhoneGap) enables you to create mobile applications also with just HTML, CSS, JS, and so
does Electron for the desktop.

Originally released in July 2013 by Cheng Zhao, an engineer at Github, it was part of their effort to
produce a new code editor, Atom. Initially, the project was known as the Atom Shell but was soon rebranded
simply as Electron. Although other solutions existed, this project quickly gained traction within the
development community. In fact, Adobe AIR, released back in 2008, originally supported building desktop
applications with HTML, CSS, and JavaScript, in addition to ActionScript. So the desire to leverage web
technologies beyond the browser is certainly not a new one.

In this book, we will take you through the entire Electron ecosystem from its initial setup, through its
key features, like creating native menus and windows and more, and how to deploy our app so it can be
distributed to our users. Rather bog you down in understanding some abstract sample applications, we are
going to be focusing on the core code needing to make Electron work. So, you don't need to know the latest
framework to use Electron, but having some basic knowledge with Node.js is useful.

Here is a brief outline of what we are going to be covering:

e Setting up Electron

e Exploring creating the application’s window

e Adding native menus

e Implementing native dialogs

e Learning how to interact with the user’s system

e Creating installable and auto-updating applications

So, if you are ready to start learning about Electron, let's get started.

What Is Electron?

Electron is a blend of two incredibly popular technologies: Node.js (or simply Node) and Chromium. Thus,
any web application you have written can run on Electron. Similarly, any Node application you have written
can run on Electron. But the power of Electron is that you can use both solutions together.

This book is about how to use these two technologies together to create rich and engaging desktop
applications. For example, we have been developing a simple desktop application that will assist developers
generate their manifest.json file for their Progressive Web Apps. For those unfamiliar with Progressive Web
Apps (PWAs), they are web apps that use modern web capabilities to deliver native app-like experiences

© Chris Griffith, Leif Wells 2017 1
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_1

https://doi.org/10.1007/978-1-4842-2826-5_1

CHAPTER 1 © WELCOME TO ELECTRON

within the browser. We could have simply written a Node script that developers could run from the
command line. But instead we leverage Electron to create a more compelling desktop application. It is one
that allows you to auto-generate the app icons simply by dragging the image on the application, and it will
save out the collection for you.

Breaking Electron down into its two components (thankfully the physics naming stopped and we aren’t
referring to these subparts as quarks), they each have specific functions.

The Node component handles things like file system access, compiled module support, and Common]JS
Module support. The Chromium component handles things like rendering HTML and CSS, its own
JavaScript engine, and the full suite of Web APIs.

Electron is a straightforward runtime. It is not a massive framework/library like Angular or React,
but rather a collection of APIs that we can leverage with those or other frameworks. The structure of an
Electron application is also open to personal taste. Usually, the UI framework will have more to say about the
directory structure than Electron’s requirements. However, there are general guidelines that would be wise
to follow when developing.

What Is Node?

Node.js was initially released in 2009 as an open source project, enabling developers to create server-side
applications using JavaScript. What made this project interesting was that it leveraged Google’s newly open
sourced V8 engine to act as its JavaScript runtime. Atop of that runtime, the project added APIs for accessing
the local file system, creating servers, as well as the ability to load modules.

Node has enjoyed a tremendous surge of popularity from across the development community. As such,
there is a huge collection of modules that are available for use within your Electron application.

What Is Chromium?

Chromium is the open source version of Google’s Chrome web browser. Although it shares much of the
same code base and feature set, there are a few differences (albeit minor) and it is released under a different
license. What is included with Electron is technically the Chromium Content Module (CCM). Quite the
mouthful, hence why most simply refer it is as Chromium. But what is the Chromium Content Module? It is
the core code that makes a web browser a web browser. It includes the Blink rendering engine and its own
V8 JavaScript engine. The CCM will handle retrieving and rendering HTML, loading and parsing CSS, and
executing JavaScript as well.

The CCM only focuses on the core needs to render a web page. Additional features, like supporting
Chrome Extensions, or syncing your Chrome bookmarks, are not supported. Just remember that its core
purpose is to render web content.

Who Is Using Electron?

So many open source projects come and go. Is Electron worth investing your time and energy into learn?
Yes. Although, Electron’s original purpose was to act as the shell for GitHub’s Atom editor, companies large
and small found it to be a good solution for their development needs. Since it was backed by a recognizable
company, the risks were a bit lower than trusting your next big thing on an unproven project. If you go to atom.
electron.io you can see a massive collection of applications that have been released with Electron as its core.
Obviously Github is actively supporting it, as it is the foundation of their Atom editor. But who else? The
very popular team messaging application Slack is built atop Electron, enabling them to develop a common
Ul across the operating systems. If Atom is not your code editor of choice, then Microsoft’s Visual Studio
Code might be. This popular editor is also built atop Electron. This is currently our editor of choice at the
moment. The team at Microsoft has leveraged common development languages of HTML, CSS,

CHAPTER 1 © WELCOME TO ELECTRON

and JavaScript to create a very compelling editor tuned for working with TypeScript and more that works
across both macOS and Windows.

A variety of familiar web tools have also been able to transform themselves into the desktop-based
applications. If you are familiar with Yeoman, a web project generator, there is now a version with a user
interface instead of the standard command-line version you are probably familiar with. The team at
Basecamp, a popular project management tool, now supports an out of browser experience. If you have
worked with Zeplin.io to inspect your visual designs, then the desktop version was developed with Electron.
The Postman API inspection tool is another great example of what is possible as an Electron application.

These are just some of the examples of some first-class web applications that have been able to break
free from the browser and create desktop-centric versions of their applications. If you would like to explore
some other applications that have been built with Electron, visit https://electron.atom.io/apps/.

What Do | Need to Know?

Unlike traditional desktop development, the only skills you need to have to develop with Electron are a good
understanding of HTML, CSS, and JavaScript, and a touch of Node. Being comfortable with your command
line wouldn’t hurt either. The fact that we can leverage our existing skills and take them from the browser on
to the desktop is what is exciting about Electron. We will be using Git to seed our starter Electron apps, but
nothing more than that is needed. But working with a version control system is always a recommended skill.

This book is going to take a slightly different approach to covering how Electron works. Since it is
simply a runtime, it is framework agnostic. So rather than working through an application built in the
framework that you don’t know, we are going to just stick with vanilla JavaScript. Now, you should have a
modest understanding of HTML and CSS. As for your JavaScript skills, if you have a general understanding of
modern JavaScript (aka ES6), you will be fine.

Another area that can be helpful to have is some experience with Node. We will be using the module
system throughout this book. But we will provide some foundations on these and any advanced topics that
we might need to cover in this book.

Why Should | Choose Electron?

We can assume by the fact you have bought this book, that either there is a need to build a desktop
application for yourself, a client or your employer, or you are simply curious about it.

If you have done any web application developing, you no doubt understand the challenges of having
to support a wide range of browsers, each with different levels of standards support. Don’t get us wrong,
the browser’s standard support has come a long way in recent years. But, there are still workarounds and
polyfills needed to properly deploy a web application to the world. For those working with enterprise clients,
you may be further handicapped to legacy browsers and operating systems. When you create an Electron
application, you embed a copy of the Chromium engine with the application, so you know exactly what
features your application and support have and how your content will render. For example, if you want to
use Flexbox as part of your layout solution, you safely can do so (Figure 1-1). If using the Service Worker
or Fetch API is something needed for your application, you only need to make sure that the build Electron
supports it.

https://electron.atom.io/apps/

CHAPTER 1 © WELCOME TO ELECTRON

Canluse... Support tables fo: % Chris

€ C {7t @ caniuse.com#feat

i1 Flexible Box Layout Module & -cr Global 82.83% + 14.55% =

unprefixecd

Method of positioning elements in horizontal or vertical stacks.
Support includes the support for the all properties prefixed with
flex as well as display: flex, display: inline-flex, align-
content, align-items, align-self, justify-content and order.

USA

unprefixed

Android * Chrome for

* *
" . :) ;
Firefox Chrome Opera i05 Safari Opera Mini s Aritreid

Motes Known issues(8) Resources(12) Feedback

Most partial support refers to supporting an alder version of the specification or an older syntax.
" Only supports the old flexbox specification and does not support wrapping.

* Partial support is due to large amount of bugs present (see known issues)

Site links Legend

Figure 1-1. The FlexBox support table from caniuse.com

No longer will referencing a feature on caniuse.com be disappointing but rather one of possibilities.

As a general rule, Electron updates its Chromium module about two weeks after it is released to the
public. The Node component typically takes a bit longer to update. As you begin to embark on larger
Electron projects, you will want to also monitor the development process of both of these projects. There
might be an issue that you need to be aware or feature added that can greatly make your life easier. But, don’t
worry - once you can package your application, those runtimes are baked into your application.

Electron’s Advantages

Electron applications are just like any other desktop application as they are installed locally on the user’s
hard drive. They can be launched directly from the Windows taskbar or from the OSX Dock, and there is no
need to launch a browser and navigate to some url to run your application. When you need to open or save a
file, these dialogs are native in appearance and interaction. Your Electron application can support full drag-
and-drop interaction with a local file system, or even associate itself with a file type, so when a user double-
clicks the associated file your app will open.

CHAPTER 1 © WELCOME TO ELECTRON

We also have the ability have custom application menus that conform to each platform’s user interface
guidelines. Contextual menus are available that allow your user to control-click or right-click to display your
custom menu. We will show you how to add this functionality in a later chapter.

If you need to trigger a system-wide notification, we can leverage Chromium’s Notification API to do so.
Electron will go even further that traditional window desktop applications, and create applications that only
live in the menubar or system tray.

Electron provides a solid framework that will allow you to develop first-class desktop applications.

Beyond the Sandbox

If you have ever worked with an external API, then you are probably familiar with the restrictions that you
have to work. We all have fought with Cross Origin Resource Sharing issues, or establishing proxies in order
to allow our web application to work correctly.

Electron operates in a much looser environment with regard to security than your browser. The general
assumption is that the user has actively chosen to install and run this application. As such, a degree of trust
is then assumed between the user and application.

This allows our Electron application much more freedom, but at the same time we have to use this
power with caution.

Offline First Design

With typical web application development, you can usually assume the user is online. Now this is changing
with the increase in Progressive Web Apps, but some level of online capability is there for your web app

to function. Electron applications have to take the opposite approach. You should not assume that you
have an Internet connection. In fact, portions of this chapter were written at 35,000 feet on a plane without
WiFi. But I was still able to write in a completely offline mode. Even if your application is dependent on
communicating with a back end, you can design your application to function in an offline mode, and sync
the data once a connection is reestablished. You will need to take some time to consider how this design
pattern will affect the interaction and development of your Electron application.

How Does Electron Work?

Electron-based applications run in two distinct processes: the main process and the render process

(Figure 1-2). Each of these two processes has a specific responsibility within your application. While Electron
provides a good collection of Node modules for use within your application, many of these modules are only
available within a specific process. Knowing these restrictions will help you design the code structure of your
application. For example, access to the operating system APIs are restricted to just the main process, and
access to the system’s clipboard is available to both the main and render process. Knowing this dual-process
structure is important, as it will define where some aspects of your application’s code need to reside.

CHAPTER 1 © WELCOME TO ELECTRON

\
J

[e]

¢

Electron
Main Process Renderer Process
File system access HTML & CSS Renderer
Compiled Module support Document Object Model
(DOM) Access
CommonJS Modules
Web API

Figure 1-2. The two processes that power an Electron application

The Main Process

Within the main process is where your application will handle various system-level activities, like life-cycle
events (starting up, preparing to quit, actually quitting, switching between the foreground and background,
as just a few examples). This is also the process where application menus are created, as well as any native
dialogs, like file open or file save. Our main process is what is used to bootstrap our application. This is the
JavaScript file that is referenced within our package.json file, but more on that in the later chapters.

The Render Process

The main process also has another responsibility, which is to spawn any render processes. It is these
processes that would display the UI of your application. Each of these render processes will load your
content and execute it within its own thread. We can spawn as many windows as we need for our
application. Now unlike a standard web app, each of these processes has access to all the installed Node
modules, giving you a lot of capabilities.

The render process is isolated from any interaction with any system-level events. Remember, those
interactions must be done within the main process. However, Electron does include an interprocess
communication system to allow for events and data to be passed back and forth between the main and any
renderer process.

One last thing to note, your Electron app actually does not need to have a render process, but it most
likely will. This is a perfect option for taking your Node scripts and making them friendlier to use.

CHAPTER 1 © WELCOME TO ELECTRON

Other Solutions

Electron is not the only solution that will enable you to take your web content and enable it to become a
desktop application. The most common alternative to using Electron is known as NW.js (originally known as
node-webkit). These two projects share some common legacy, remember Cheng Zhao? Well before creating
Electron, he was actively involved with the node-webkit project.

Table 1-1 lists some key differences between the projects.

Table 1-1. Project differences

Electron NW.JS
Chromium Type Current build of Chromium A forked version of Chromium
Node Process design Separate Node processes Shared Node process
Auto-Updating Built-in API Not included
Crash Reporting Built-in API Not included
Windows Support Windows 7 or later Windows XP or later

Some of the key takeaways from this table are the fact that NW.js uses a forked (or copy of the original
code) version of Chromium. This may introduce issues such as standards support or delays in improvements
or fixes within the Chromium module. Some use functions like Auto-Updating and Crash Reporting must be
handled with your own custom solution, rather than leveraging the built-in APIs. The Node process design
is also worth noting. Since Electron uses separate processes, it should be more performant than an NW.js
application that must share the Node process. One of NW.js’ advantages is the fact it supports a much older
version of Windows. If your target audience might include that legacy operating system, then NW.js would
be your only option between the two.

Summary

This chapter has given you a general overview of Electron. We have touched on its two core technologies:
Node and Chromium, as well as introduced its dual-process design. You should have an initial sense of what
an Electron-based application is capable of.

In the coming chapters, we will begin exploring these capabilities in much more detail, as well as some
we did not even mention yet.

CHAPTER 2

Installing Electron

Getting your work environment configured to use Electron is fairly straightforward, but there are a couple
of items required to get you started. If you are an experienced developer, you probably already have Node
and Git installed. If so, feel free to skip to the Install Electron section of this chapter. If not, let’s get started by
installing Node.

Before Installing

These days, people install new programs on their computers and devices every day without thinking about
it. While all of the programs you need to install to work with Electron are safe, any time you wish to install
programs on your computer, you should always ensure that you have completed a backup of your computer.
Better safe than sorry.

Installing Node

Node is the biggest thing to happen to JavaScript this century. Node is a runtime built with JavaScript that
is being used by everyone from hobbyists to Enterprise developers to program anything from Internet of
Things (IoT) devices to servers. JavaScript developers use Node daily to assist in the automation of their daily
work. Electron uses Node to create cross platform desktop applications.

To install Node, you need to head over to http://nodejs.org and download Node using the easily
identifiable download buttons on their site (Figure 2-1).

© Chris Griffith, Leif Wells 2017 9
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_2

https://doi.org/10.1007/978-1-4842-2826-5_2
http://nodejs.org/

CHAPTER 2 * INSTALLING ELECTRON

@ Nedejs x leif@revuniic...

* i@ Secure hips:/inodejs.ong/e

n h d c Join us for Node.js Interactive

i happening in Vancouver, Canada
|I’1tE‘FaLt]U[—3 October 4 - 6, 2017

Mode.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses
an event-driven, non-blocking 1/0 model that makes it lightweight and efficient.
Node.js' package ecosystem, npm, is the largest ecosystem of open source libraries in
the world.

Download for macOS (x64)

v6.10.3 LTS v7.10.0 Current
Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | AP Docs

Figure 2-1. The Node.js Website

As you can see in this screenshot, there are two buttons available: one for the “LTS” version and
another for the “Current” version. “LTS” stands for Long Term Support, meaning that the maintainers of
Node decided that version 6 had reached a point of stability that everyone could rely upon; and no more
development updates, beyond critical bug fixes and security updates, would be added. They did this so that
development on the newer version, the one labeled “Current” could begin in earnest. While the current
version can work for you, we are using the LTS version at the time of writing this book. Regardless of that, you
need to be aware of your choices in this regard.

Please note: We are also citing version numbers in this chapter at the time of our writing this book.

The software you need to install, specifically Node and Electron, are fast-moving projects that are updated
regularly. The version numbers cited here may not match the available version numbers at the time of your
reading.

Currently, Electron version 1.6.6 ships a version of Node, version 7.4.0, which is slightly behind the
currently available version 7.10.0. So what does this mean to you? If there are features of Node 7.4.0 that
you would like to use with your Electron app, you should download and install the current version of Node,
and be aware that there may be features of 7.10.0 that will not be available in your application when you
distribute it.

As mentioned before, for the purposes of this book we will be installing the LTS version of Node.

10

CHAPTER 2 = INSTALLING ELECTRON

Installing Node for macOS

Download the LTS version of Node from the Node Website (http://nodejs.org), locate the downloaded
file, and double-click it. This is a fairly simple installer. Follow the instructions provided and you will install
Node (Figure 2-2).

o® ' Install Node.js =

Welcome to the Node.js Installer

This package will install Node.js v6.11.3 and npm v3.10.10
¢ Introduction into fusrflocal/.

Continue

L

Figure 2-2. First screen of the Node installer

11

http://nodejs.org/

CHAPTER 2 = INSTALLING ELECTRON

Every software that you install these days has to have a Software License Agreement (Figure 2-3).
Read it (or not, we won't tell) and hit “Continue,” and then click the “Agree” button of the overlaying window
that appears.

O & Install Node.js &

Software License Agreement

English
Introduction E

¢ License Node.js is licensed for use as follows:

Copyright Node.js contributors. All rights reserved.

Destination Select

nstallation Type

Permission is hereby granted, free of charge, 10 any person obtaining a
copy

Summary of this software and associated documentation files (the "Software”), to
o deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software
is

furnished to do so, subject to the following conditions:

n o The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

@I THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

nstallation

Print... Save... Go Back Continue

L

Figure 2-3. The Software License Agreement

12

CHAPTER 2 = INSTALLING ELECTRON

Select “Install for all users of this computer,” and then click “Continue” here (Figure 2-4) as we need to
install Node for all users.

® O 'w Install Node.js _Q
Select a Destination
¢ Introduction How do you want to install this software?
o License
« Destination Select - -
. Install for all users of this computer

Installation Type

Installation

Summary

Installing this software requires 51.1 MB of space.
[
n ‘ c You have chosen to install this software for all users of this
@' computer.
Go Back Continue

Figure 2-4. Select where to install Node

13

CHAPTER 2 = INSTALLING ELECTRON

Finally, we are ready to install (Figure 2-5). At this point, when you click “Install” you will be asked for
your system’s admin password.
[5) & Install Node.js @
Standard Install on “Macintosh HD"

N Eochiction This will take 51.1 MB of space on your computer.

o License Click Install to perform a standard installation of this software
— for all users of this computer. All users of this computer will be
' Destination Select able to use this software.

» Installation Type
Installation

Summary

Change Install Location...

Customize Go Back Install

[

Figure 2-5. Selecting your installation type

The installer needs this so that it can install Node into a protected area of your operating system. Once
the password is entered, you are off to the races.

14

CHAPTER 2 = INSTALLING ELECTRON

Figure 2-6 shows the final screen. You've done it! To test this out, let’s open up the terminal application
and test the version using the node -version command. You should see the version number you installed.

(@ & Install Node.js a

The installation was completed successfully.

Node.js was installed at
@ Introduction
Jusr/local/bin/node

» License
» Destination Select npm was installed at
» Installation Type Jusr/local/bin/npm

© Installation
Make sure that /usr/local/bin is in your SPATH.

© Summary

A .
‘@ 3

L

Figure 2-6. Installation is complete

15

CHAPTER 2 © INSTALLING ELECTRON

Installing Node on Windows

The installation process for Node on Windows is very similar to the process for macOS.

From the Node Website (http://nodejs.org), download the LTS version of Node for Windows.
Once the file is downloaded, find the downloaded file and double-click it to get the install process started
(Figure 2-7).

#7 Nodejs Setup - X

Welcome to the Node.js Setup Wizard

n ‘ d e The Setup Wizard will install Node.js on your computer.
(9

N

Figure 2-7. The first screen of the Node for Windows installer

16

http://nodejs.org/

CHAPTER 2 = INSTALLING ELECTRON

When you click the Next button, you will see the Software License Agreement (Figure 2-8).
Click the check box next to the text “I accept the terms in the License Agreement” and click the Next button
to continue.

£ Nodejs Setup — X

End-User License Agreement

Please read the following license agreement carefully n ‘®d c

Illode.js is licensed for use as follows: A
Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject v

[A1 accept the terms in the License Agreement

I

Figure 2-8. The End-User License Agreement for Windows

17

