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Supervisor’s Foreword

When random variables are added, their sum tends to obey the Gaussian distri-
bution regarding their large number limit. This fact is the result of the central limit
theorem in probability theory. Thus, fluctuation around the average value is always
characterized by the Gaussian distribution, which forms the basis of equilibrium
statistical mechanics. Even in nonequilibrium situations, the fluctuation theorem,
which is the result of the Gaussian fluctuations, plays an important role. Therefore,
properties associated with the Gaussian fluctuations, which are important in many
cases, are well understood. Nevertheless, non-Gaussian fluctuations are ubiquitous
in nature. This is counter-intuitive because we may consider that non-Gaussian
fluctuations should be irrelevant because of the central limit theorem. To understand
such situations we need to know the origin and properties of the non-Gaussian
fluctuations. In this book, Kiyoshi Kanazawa answers these questions through
analysis of the physics of non-Gaussian noise.

To survive non-Gaussian noise, a system must be free from the central limit
theorem. To understand this we need to recall the fundamental theorem of math-
ematics known as the Lévy–Ito decomposition in which any Lévy process can be
decomposed into a Wiener process and compound Poisson processes. This math-
ematical theorem suggests that both thermal Gaussian fluctuations and athermal
non-Gaussian fluctuations, or jump processes, should coexist if the non-Gaussian
noise is still relevant in the thermodynamic limit. The detailed mechanism of the
appearance of non-Gaussian noise is clearly explained in this book.

However, the mathematical description of non-Gaussian fluctuations has not yet
been well developed, even though the description of the Gaussian fluctuation is well
established. I believe that this book provides the first systematic mathematical
description of non-Gaussian noises in terms of the detailed description of the
stochastic calculus of random variables. This book also discusses anomalous
transport between athermal environments and energy-pumping through athermal
systems.

One characteristic worthy of mention is the self-contained description for
Gaussian fluctuations. Indeed, Part I which represents almost half of this book is
devoted to a review of the stochastic theory of thermally fluctuating systems

v



including Markovian stochastic calculus, the kinetic theory of dilute gases, the
Langevin equation and its microscopic derivation, the stochastic calculus for a
single trajectory, and stochastic energetics. This means that this book can be used as
a concise textbook for modern nonequilibrium statistical mechanics. Thus, I rec-
ommend this book to graduate students who are interested in nonequilibrium sta-
tistical mechanics as a modern and self-contained textbook for stochastic analysis of
systems agitated by Gaussian noise or non-Gaussian noise.

Kyoto, Japan
March 2017

Prof. Hisao Hayakawa
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Chapter 1
Introduction to Physics of Fluctuation

1.1 Background: Physics of Thermal Fluctuation

Recent experimental development has enabled us to investigate fluctuating small
systems in detail (e.g., biological [1–4], colloidal [5–7], and electrical systems [8–
10]). For example, trajectories of microscopic quantities can be experimentally ob-
served in addition to the ensemble averages ofmacroscopic quantities as illustrated in
Fig. 1.1a. The techniques of single molecule manipulation furthermore have enabled
us to control small systems (see Fig. 1.1b for a schematic of the optical trap [12]).
Correspondingly, theoretical frameworks for small fluctuating systems are topics of
wide interest from the viewpoint of statistical mechanics and thermodynamics to
answer several natural and important questions: How do we make stochastic models
of fluctuations? What is the thermodynamic quantities for small systems, such as
work and heat? What is the theoretical bound for the energy efficiency of small heat
engines? These questions are important even in understanding practical issues, such
as efficiencies of molecular motors in biology [13].

One of theoretical approaches to these questions is applications of stochastic
processes. From the viewpoint of statistical mechanics, modeling fluctuations from
microscopic dynamics has been an interesting issue [14–18]. For example, the
Langevin equation is derived for thermal fluctuating systems and is analyzed in
the formulation of stochastic processes. This methodology is useful even for mod-
eling nonequilibrium fluctuations [19–23]. From the viewpoint of thermodynamics,
stochastic energetics (or stochastic thermodynamics) [24–29] has recently attracted
wide interest among researchers of statistical physics. Stochastic energetics is a
thermodynamic formulation based on the Gaussian stochastic processes, whereby
thermodynamic quantities, such as work and heat, are introduced on the level of
a single trajectory. Indeed, the recent studies on the nonequilibrium equalities [8–
10, 29–41], such as the fluctuation theorem and the Jarzynski equality, are often
investigated using stochastic energetics, and this formulation is intensively gen-
eralized toward information processing [42–49] and steady state thermodynamics
[28, 37, 50].

© Springer Nature Singapore Pte Ltd. 2017
K. Kanazawa, Statistical Mechanics for Athermal Fluctuation,
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Water bead

bead

Laser trap

(a) (b)

Fig. 1.1 a Schematic of the singular trajectory of fluctuating systems associated with thermal
baths. The beadmoves randomly because of the thermal fluctuation. Trajectories are experimentally
observed, for example, using the total internal microscopy [11]. b Schematic of the optical tweezers,
which are applicable to manipulate the bead arbitrarily. The bead is trapped by the laser potential
and is moving around the focus point of the laser

1.2 Toward Physics of Athermal Fluctuation

While thermal fluctuations has been intensively studied in statistical mechanics and
thermodynamics, athermal fluctuations have not been systematically investigated yet
because they are essentially in nonequilibrium steady states. Athermal fluctuations
are experimentally interesting topics in biological [51, 52], electrical [53–56], and
granular [57–61] systems, which are preserved in nonequilibrium steady states by
external energy injection. They are experimentally reported to be characterized by
their non-Gaussianity [51–61], and are theoretically studied on the basis of non-
Gaussian models [62–70]. We then naturally encounter the following questions:

(Q1) Statistical mechanics for athermal fluctuation: What is the minimal model
of athermal stochastic systems?How dowe systematically derive such amodel
from microscopic dynamics?

(Q2) Thermodynamics for athermal fluctuation: How do we formulate a ther-
modynamic framework for athermal stochastic systems? What are the unique
characters of athermal fluctuation different from the conventional thermody-
namic phenomena?

In this thesis, the answers to these questions are presented in both approaches of
statistical mechanics and thermodynamics. To answer the question Q1, a statistical
mechanical approach is developed by introducing a minimal stochastic model for
athermal fluctuation [69, 70]: A Langevin-like equation with non-Gaussian noise is
derived frommicroscopic dynamics for awide class of athermal systems.We focused
on the system size expansion, which was a microscopic foundation of the conven-
tional Langevin equation, and have generalized its formulation toward the athermal
stochastic systems. We have finally clarified the mechanism behind the emergence
of the non-Gaussianity in athermal fluctuations. As an analytically solvable model,
a granular rotor under viscous friction is investigated to numerically examine the
validity of our formulation.

Analytical properties of general non-GaussianLangevin equations are also studied
systematically in this thesis even in the presence of with nonlinear friction terms [70].
By considering an asymptotic expansion for a large frictional coefficient, a full-order
asymptotic formula is presented for the steady distribution function. The first-order
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truncation of our formula leads to the independent-kick model, which was phenom-
enologically introduced in Ref. [58]. We further show that the high-order correction
terms directly correspond to multiple-kicks during relaxation by introducing a dia-
grammatic representation. As a demonstration of our formulation, a granular rotor
under the Coulomb friction is addressed theoretically and numerically.

To answer the question Q2, we next study a thermodynamic formulation for ather-
mal stochastic systems. We first present a generalization of stochastic energetics for
general non-Gaussian processes [65]. Stochastic energetics has been formulated as a
mathematical theory of stochastic processes, where technical problems exist in terms
of the stochastic product (stochastic integral) for definition of thermodynamic quan-
tities. To introduce thermodynamic quantities, the Stratonovich product is known to
be appropriate for Gaussian stochastic processes by applying the ordinary stochas-
tic chain rule. We then discuss what kind of product is appropriate for definition
of thermodynamic quantities for general non-Gaussian stochastic processes. Con-
cretely, three kinds of products are defined for smoothed stochastic processes (the
Itô, Stratonovich, and ∗ products), and the ordinary stochastic chain rule is derived
for an arbitrary stochastic process by using a mixed product, where multiple prod-
ucts coexist. This stochastic chain rule is applied to the reformulation of stochastic
energetics for general non-Gaussian stochastic dynamics.

On the basis of the above thermodynamics formulation, distinctive phenomena in
athermal systems are studied [66, 67] from the viewpoint of energetics.We first study
energy transport between two athermal baths, and derive fundamental laws on the
statistics of heat current: the generalized Fourier law and the generalized fluctuation
relation. Remarkably, the direction of heat current depends on the properties of the
heat conducting wire, showing the explicit absence of the zeroth law for athermal
systems. We further show that the zeroth law recovers if we fix the kind of the
conducting device by introducing an indicator to characterize the direction of heat
current. As a demonstration, we study energy transport between two granular motors.

Finally, the energy pumping is studied from athermal fluctuations [67]. We fo-
cus on an electrical circuit with avalanche diodes as an experimentally realizable
example, and theoretically study extracted work from athermal fluctuation. A pos-
itive amount of work is shown extractable from the athermal fluctuation in cyclic
manipulations, even for finite-speed protocols.

1.3 Organization of This Thesis

This thesis consists of two parts: reviewon statisticalmechanics and thermodynamics
for thermal fluctuation (Chaps. 2–6, Part I) and its theoretical extension for athermal
fluctuation (Chaps. 7–12, Part II). The contents in each part are described below (see
Fig. 1.2 for chapter connection):

http://dx.doi.org/10.1007/978-981-10-6332-9_2
http://dx.doi.org/10.1007/978-981-10-6332-9_6
http://dx.doi.org/10.1007/978-981-10-6332-9_7
http://dx.doi.org/10.1007/978-981-10-6332-9_12
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1. Introduction

12. Conclusion

2. Markovian Stochastic
Processes

3. Kinetic Theory and
its Application to Brownian Motion

5. Stochastic Calculus for
Single-Trajectory Analysis

6. Stochastic Energetics
for Langevin Equation

7. Linear Non-Gaussian Langevin 
Equation and its Microscopic Derivation

8. Nonlinear Non-Gaussian Langevin
Equation and its Analytical Solution

9. Stochastic Energetics for
Non-Gaussian Dynamics

10. Energy Transport between
Athermal Systems

Part I

Part II

Statistical Mechanics Thermodynamics

Statistical Mechanics Thermodynamics

4. Langevin Equation and
its Microscopic Derivation

11. Energy Pumping from
Athermal Systems

Fig. 1.2 Schematic of the chapter connection in this thesis
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Part I

Background of the study in this thesis is reviewed from the viewpoint of statistical
mechanics and thermodynamics for thermal fluctuation in Part I. From Chap.2 to
Chap.4, statistical mechanics of thermal fluctuation is formulated on the basis of
the stochastic processes and molecular kinetic theory. In Chaps. 5 and 6, stochastic
energetics for the Langevin equation is reviewed utilizing the stochastic calculus.
The details of each chapter are presented below:

• Chapter 2: a brief introduction is provided to theMarkovian stochastic processes.
In particular, the correspondence between stochastic differential equations (SDEs)
and master equations are shown for various examples.

• Chapter 3: molecular kinetic theory is formulated frommicroscopic dynamics for
many-body systems of hard spheres. The pseudo-Liouville equation is derived first
and the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is derived
from the pseudo-Liouville equation. The Boltzmann equation is then deduced
by assuming molecular chaos from a systematic calculation. Using this method, a
stochasticmodel of one-dimensional Brownianmotion (e.g., theRayleigh particle)
is derived from microscopic dynamics.

• Chapter 4: the Langevin equation is reviewed in terms of thermodynamics and
microscopic derivation. We first review the Langevin equation and its consistence
with equilibrium thermodynamics. TheLangevin equation is then derived frommi-
croscopic dynamics by the system size expansion. As the demonstrations, several
problems are solved: the Rayleigh particle, a nonequilibrium Rayleigh particle,
and a granular motor. We finally remark unsolved problems in the original system
size expansion, which is solved in Chaps. 7 and 8.

• Chapter 5: the mathematical theory of stochastic calculus is reviewed for general
Markov processes. Trajectories for Markov processes are generally singular, and
selection of multiplication between stochastic variables is an important issue. We
review the Itô integral and the Itô-type SDE, and the corresponding differential
rules. In the special case of the Gaussian noise, the Itô rule is valid to simplify the
differential rule (the Itô formula). Various stochastic integrals are also studied in
terms of the ordinary chain rule and the Wong-Zakai theory.

• Chapter 6: stochastic energetics is reviewed for the Langevin equation. Realistic
setupswhere theLangevin equation is valid are first explained, and thermodynamic
quantities (i.e., work and heat) are introduced on the level of a single trajectory.
The nonequilibrium identities and the second law of thermodynamics are finally
derived for the Langevin dynamics.

Part II

The main results of this thesis are presented in Part II. In Chaps. 7 and 8, we present
a formulation of statistical mechanics for athermal fluctuations. In Chaps. 9 and 11,
a thermodynamic formulation for athermal fluctuation is shown by extending sto-
chastic energetics. The details of the chapters are presented below:

http://dx.doi.org/10.1007/978-981-10-6332-9_2
http://dx.doi.org/10.1007/978-981-10-6332-9_4
http://dx.doi.org/10.1007/978-981-10-6332-9_5
http://dx.doi.org/10.1007/978-981-10-6332-9_6
http://dx.doi.org/10.1007/978-981-10-6332-9_2
http://dx.doi.org/10.1007/978-981-10-6332-9_3
http://dx.doi.org/10.1007/978-981-10-6332-9_4
http://dx.doi.org/10.1007/978-981-10-6332-9_7
http://dx.doi.org/10.1007/978-981-10-6332-9_8
http://dx.doi.org/10.1007/978-981-10-6332-9_5
http://dx.doi.org/10.1007/978-981-10-6332-9_6
http://dx.doi.org/10.1007/978-981-10-6332-9_7
http://dx.doi.org/10.1007/978-981-10-6332-9_8
http://dx.doi.org/10.1007/978-981-10-6332-9_9
http://dx.doi.org/10.1007/978-981-10-6332-9_11
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• Chapter 7: a systematic derivation of a Langevin-like non-Gaussian equation
is presented from microscopic dynamics. Mathematical characters of the non-
Gaussian Langevin equation are first studied and its asymptotic derivation from
master equations is shown by generalizing the system size expansion. Under the
condition where the thermal friction is sufficiently large, the non-Gaussian prop-
erties are dominant with the central limit theorem violated. As a demonstration,
we address a granular motor under viscous friction and derive the non-Gaussian
Langevin equation as its reduced stochastic dynamics.

• Chapter 8: the formulation in Chap. 7 is generalized for nonlinear systems. We
also study the analytical properties of the non-Gaussian Langevin equation. Us-
ing a perturbation for large friction, a full-order asymptotic formula is derived
for the steady probability distribution function. We show that the first-order ap-
proximation of our formula leads to the independent-kick model, and high-order
correction terms correspond to multiple-kick during relaxation. A granular motor
under Coulombic friction is analyzed as a realistic example.

• Chapter 9: stochastic energetics is formulated for general non-Gaussian stochastic
dynamics. Markovian stochastic processes are reformulated using the smoothed δ-
function, and three types of products are introduced between a stochastic variable
and the smoothed δ-function: the Itô, Stratonovich, and ∗ products. By introducing
mixed products, wheremultiple products coexist, the ordinary chain rule is derived
for an arbitrary Markovian stochastic dynamics. We finally apply this formulation
to stochastic energetics for general non-Gaussian processes.

• Chapter 10: energy transport between athermal reservoirs are studied by applying
stochastic energetics for non-Gaussian processes. The statistics of heat current
between athermal reservoirs is investigated for a simple stochastic model driven by
non-Gaussianfluctuation, andgeneralizations of theFourier lawand thefluctuation
theorem are obtained.We also find a violation of the zeroth law of thermodynamic,
whereby the direction of heat current depends on the heat conducting wire. As a
demonstration, heat conduction between two granular motors is studied with the
aid of the method developed in Chap. 7.

• Chapter 11: energy pumping from athermal fluctuation is studied in the formula-
tion of stochastic energetics. As an experimentally realizable setup, we consider an
electrical circuit under avalanche noise, whose dynamics is governed by the non-
Gaussian Langevin equation. Extracted work and power from the non-Gaussian
athermal noise is studied through a cyclic manipulation, and a positive amount of
work is theoretically found to be extracted even for finite-speed protocols regard-
less of the spatial symmetry of the system.

• Chapter 12: we conclude this thesis with some remarks and future perspectives.
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