Springer Theses Recognizing Outstanding Ph.D. Research

Kiyoshi Kanazawa

Statistical Mechanics for Athermal Fluctuation

Springer Theses

Recognizing Outstanding Ph.D. Research

Aims and Scope

The series "Springer Theses" brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student's supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today's younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

Kiyoshi Kanazawa

Statistical Mechanics for Athermal Fluctuation

Non-Gaussian Noise in Physics

Doctoral Thesis accepted by Kyoto University, Kyoto, Japan

Author Dr. Kiyoshi Kanazawa Yukawa Institute for Theoretical Physics Kyoto University Kyoto Japan Supervisor Prof. Hisao Hayakawa Yukawa Institute for Theoretical Physics Kyoto University Kyoto Japan

 ISSN 2190-5053
 ISSN 2190-5061 (electronic)

 Springer Theses
 ISBN 978-981-10-6330-5
 ISBN 978-981-10-6332-9 (eBook)

 DOI 10.1007/978-981-10-6332-9
 ISBN 978-981-10-6332-9 (eBook)

Library of Congress Control Number: 2017950269

© Springer Nature Singapore Pte Ltd. 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Supervisor's Foreword

When random variables are added, their sum tends to obey the Gaussian distribution regarding their large number limit. This fact is the result of the central limit theorem in probability theory. Thus, fluctuation around the average value is always characterized by the Gaussian distribution, which forms the basis of equilibrium statistical mechanics. Even in nonequilibrium situations, the fluctuation theorem, which is the result of the Gaussian fluctuations, plays an important role. Therefore, properties associated with the Gaussian fluctuations, which are important in many cases, are well understood. Nevertheless, non-Gaussian fluctuations are ubiquitous in nature. This is counter-intuitive because we may consider that non-Gaussian fluctuations should be irrelevant because of the central limit theorem. To understand such situations. In this book, Kiyoshi Kanazawa answers these questions through analysis of the physics of non-Gaussian noise.

To survive non-Gaussian noise, a system must be free from the central limit theorem. To understand this we need to recall the fundamental theorem of mathematics known as the Lévy–Ito decomposition in which any Lévy process can be decomposed into a Wiener process and compound Poisson processes. This mathematical theorem suggests that both thermal Gaussian fluctuations and athermal non-Gaussian fluctuations, or jump processes, should coexist if the non-Gaussian noise is still relevant in the thermodynamic limit. The detailed mechanism of the appearance of non-Gaussian noise is clearly explained in this book.

However, the mathematical description of non-Gaussian fluctuations has not yet been well developed, even though the description of the Gaussian fluctuation is well established. I believe that this book provides the first systematic mathematical description of non-Gaussian noises in terms of the detailed description of the stochastic calculus of random variables. This book also discusses anomalous transport between athermal environments and energy-pumping through athermal systems.

One characteristic worthy of mention is the self-contained description for Gaussian fluctuations. Indeed, Part I which represents almost half of this book is devoted to a review of the stochastic theory of thermally fluctuating systems including Markovian stochastic calculus, the kinetic theory of dilute gases, the Langevin equation and its microscopic derivation, the stochastic calculus for a single trajectory, and stochastic energetics. This means that this book can be used as a concise textbook for modern nonequilibrium statistical mechanics. Thus, I recommend this book to graduate students who are interested in nonequilibrium statistical mechanics as a modern and self-contained textbook for stochastic analysis of systems agitated by Gaussian noise or non-Gaussian noise.

Kyoto, Japan March 2017 Prof. Hisao Hayakawa

Parts of this thesis have been published in the following journal articles:

K. Kanazawa, T.G. Sano, T. Sagawa, and H. Hayakawa, "Minimal Model of Stochastic Athermal Systems: Origin of Non-Gaussian Noise" Physical Review Letters **114**, 090601–090606 (2015).

K. Kanazawa, T.G. Sano, T. Sagawa, and H. Hayakawa, "Asymptotic derivation of Langevin-like equation with non-Gaussian noise and its analytical solution" Journal of Statistical Physics **160**, 1294–1335 (2015).

K. Kanazawa, T. Sagawa, and H. Hayakawa, "Stochastic Energetics for Non-Gaussian Processes" Physical Review Letters **108**, 210601–210605 (2012).

K. Kanazawa, T. Sagawa, and H. Hayakawa, "Heat conduction induced by non-Gaussian athermal fluctuations" Physical Review E **87**, 052124–052133 (2013).

K. Kanazawa, T. Sagawa, and H. Hayakawa, "Energy pumping in electrical circuits under avalanche noise" Physical Review E **90**, 012115–012122 (2014).

Acknowledgements

First of all, I would like to express my gratitude to Hisao Hayakawa and Takahiro Sagawa. As my supervisor Hisao Hayakawa taught and greatly encouraged me during my PhD course. Takahiro Sagawa also helped my research activities considerably as my special collaborator. We insensitively discussed our research topics together during my PhD time, a process which was a great experience. I also really appreciate their kind instructions and constructive advice.

I am also very grateful to my collaborators, Tomohiko G. Sano, Frédéric van Wijland, Paolo Visco, and Étienne Fodor. Tomohiko G. Sano contributed to our research in particular from the view point of granular physics, kinetic theory, and molecular dynamic simulations. He also gave me lots of constructive comments regarding my theoretical research. Frédéric van Wijland, Paolo Visco, and Étienne Fodor collaborated with me on a biophysics topic during my stay in Paris. I really enjoyed exciting discussions with them and their kind hospitality during my stay.

Throughout my PhD course, I have benefited from discussions with a lot of people. Kensaku Chida and Hideki Takayasu gave me helpful advice on electrical athermal noise from experimental viewpoints. Ryosuke Yoshii and Satoshi Takada also commented on calculation techniques in terms of special functions. Naoko Nakagawa, Shin-ichi Sasa, and Hal Tasaki posed me several important questions, which were directly connected to my research. I also often discussed my work with Yuya Nakao, Misako Takayasu, Tatsuro Yuge, Shun Ogawa, Sosuke Ito, Takahiro Nemoto, Kyogo Kawaguchi, Yohei Nakayama, Hiroyasu Tajima, Jun'ichi Ozaki, Masato Itami, and Daiki Haga. I would like to express my gratitude to all of them.

Finally, I am very grateful to all of my family. Katsuhiko Kanazawa and Miyako Kanazawa, my parents, have supported me both financially and mentally throughout my entire career. Yukiko Kanazawa, my wife, supported me throughout my PhD with heartwarming encouragement. She gave a birth to our daughter, Nanase Kanazawa, on the 7 January 2017, representing the greatest time in my life. They are my greatest motivators.

Contents

1	Introduction to Physics of Fluctuation				
	1.1	Background: Physics of Thermal Fluctuation	1		
	1.2	Toward Physics of Athermal Fluctuation	2		
	1.3	Organization of This Thesis	3		
	Refer	rences.	6		
Par	tIR S	Review on Stochastic Theory for Fluctuating Thermal ystems			
2	Mark	kovian Stochastic Processes	11		
	2.1	Master Equations	11		
	2.2	Ordinary Differential Equation Without Jumps	12		
	2.3	Ordinary Differential Equation with Jumps.	13		
	2.4	Poisson Noise	15		
		2.4.1 Symmetric Poisson Noise	17		
		2.4.2 Discrete Compound Poisson Noise	18		
		2.4.3 Continuous Compound Poisson Noise	19		
	2.5	Gaussian Noise	20		
	2.6	White Noise	21		
	2.7	General Master Equation	22		
	2.8	Kramers–Moyal Expansion	23		
	2.9	Cumulant Generating Function for the White Noise	24		
	2.10	Cumulant Generating Functional.	25		
	Refer	rences	26		
3	Kine	tic Theory for Dilute Gas	27		
	3.1	Pseudo-Liouville Equation for a Simple Collision	27		
	3.2	Pseudo-Liouville Equation for Many-Body Hardcore			
		Systems	29		
		3.2.1 Setup	29		
		±			

		3.2.2	Hardcore Potential and Collision Rule	30
		3.2.3	Pseudo-Liouville Equation	32
	3.3	BBGK	Y Hierarchy and Boltzmann Equation	34
		3.3.1	BBGKY Hierarchy	34
		3.3.2	Boltzmann Equation	36
		3.3.3	Boltzmann Lorentz Equation	37
	3.4	Examp	ble: Rayleigh Particle.	37
	3.5	Furthe	r Remarks	39
	Refe	rences		39
4	Lang	gevin Eq	uation and Its Microscopic Derivation	41
	4.1	Lange	vin Equation	41
		4.1.1	Fokker–Planck Equation	42
		4.1.2	Path Integral Representation	43
		4.1.3	Detailed Fluctuation Theorem	44
	4.2	Micros	scopic Derivation.	44
		4.2.1	Idea of the System Size Expansion	45
		4.2.2	Mathematical and Explicit Assumptions	46
		4.2.3	Rayleigh Particle	49
	4.3	What 1	Is not Revealed in van Kampen's Formulation?	50
		4.3.1	Nonequilibrium Rayleigh Particle	51
		4.3.2	Granular Motor	52
		4.3.3	Where Does the Microscopic Irreversibility Go?	53
		4.3.4	Toward the Minimal Model of Athermal	
			Fluctuating Systems	53
	Refe	rences	·····	54
5	Stoc	hastic C	alculus for the Single-Trajectory Analysis	55
-	5.1	Introdu	iction to Multiplicative Noises	55
	5.2	The It	ô-Type Stochastic Differential Equation	56
	53	The D	ifferential Rule for the Poisson Processes	57
	54	Gaussi	an Stochastic Calculus	58
	5.1	541	Special Characters of the Gaussian Noise	20
		5.111	(Itô Rule)	58
		542	Itô Formula	59
		543	Ordinary Differential Rule and the Stratonovich	57
		5.115	Integral	60
		544	Fokker_Planck Equation	62
		545	Relation to the Stochastic Liouville Equation	63
	55	Strator	novich-Type Stochastic Differential Equation	63
	5.5	5 5 1	Definition	64
		552	Differential Rule	64
		553	Fokker_Planck Equation	65
		5.5.5 5 5 A	Relation to the Stochastic Liouville Equation	65
		5.5.4	Relation to the Stochastic Liouville Equation	- 05

Contents

	5.6	5.5.5Relation to the Wong-Zakai TheoryMarcus-Type Stochastic Differential Equation5.6.1Definition	66 67 67
		5.6.2 Relation to the Wong-Zakai Theory	68
		5.6.3 Differential Rule	69
		5.6.4 Unsolved Problems in Conventional Approaches	69
	Refer	ences	70
6	Stock	astic Energetics for Langevin Dynamics	73
	6.1	Thermodynamics from Many-Particle to Single-Particle	
		Systems	73
	6.2	Langevin Equation for Various Thermal Systems	74
		6.2.1 Colloidal Systems	74
		6.2.2 Electrical Systems	75
	6.3	First Law of Thermodynamics	76
		6.3.1 Underdamped Langevin Equation	76
		6.3.2 Helmholtz Free Energy	78
		6.3.3 Overdamped Langevin Equation	79
	6.4	Second Law of Thermodynamics	80
		6.4.1 Detailed Fluctuation Theorem	80
		6.4.2 Crooks Theorem	82
		6.4.3 Various Nonequilibrium Equalities	83
	Dafa		
	Refer	ences	84
D	Keler		84
Par	t II	Statistical Mechanics for Fluctuating Athermal Systems	84
Par 7	t II S Micr	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin	84
Par 7	t II S Micr Equa	ences Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion	84 89
Par 7	t II S Micr Equa 7.1	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction	84 89 89
Par 7	t II S Micro Equa 7.1 7.2	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin	84 89 89
Par 7	Micro Equa 7.1 7.2	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties	84 89 89 90
Par 7	t II S Micr Equa 7.1 7.2	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution.	84 89 89 90 91
Par 7	t II S Micro Equa 7.1 7.2	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance	84 89 89 90 91 91
Par 7	t II S Micro Equa 7.1 7.2 7.3	Statistical Mechanics for Fluctuating Athermal Systems Oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation.	 84 89 89 90 91 91 92
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3	Statistical Mechanics for Fluctuating Athermal Systems Oscopic Derivation of Linear Non-Gaussian Langevin Ition. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation	84 89 89 90 91 91 92
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation.	 84 89 89 90 91 91 92 92
Par 7	Keler t II S Micr Equa 7.1 7.2 7.3	Statistical Mechanics for Fluctuating Athermal Systems Oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation. 7.3.2 Inverse Formula.	 84 89 89 90 91 91 92 94
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3 7.3	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation 7.3.2 Inverse Formula 7.3.3 Nonlinear Temperature	 84 89 89 90 91 91 92 94 95
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation 7.3.2 Inverse Formula. 7.3.3 Nonlinear Temperature 7.3.4 Violation of the CLT.	 84 89 89 90 91 91 92 92 94 95 95
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3 7.4	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation. 7.3.2 Inverse Formula. 7.3.3 Nonlinear Temperature 7.3.4 Violation of the CLT. Example: Granular Motor Under Viscous Friction	 84 89 89 90 91 91 92 92 94 95 95 96
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3 7.3	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. of the Non-Gaussian Langevin Equation 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation 7.3.2 Inverse Formula. 7.3.3 Nonlinear Temperature 7.3.4 Violation of the CLT. Example: Granular Motor Under Viscous Friction 7.4.1	 84 89 89 90 91 91 92 94 95 96 96
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3 7.4	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation 7.3.2 Inverse Formula. 7.3.3 Nonlinear Temperature 7.3.4 Violation of the CLT. Example: Granular Motor Under Viscous Friction 7.4.1 Setup. 7.4.2 Reduction to the Non-Gaussian Langevin	 84 89 89 90 91 91 92 94 95 95 96 96
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3 7.4	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation 7.3.2 Inverse Formula. 7.3.3 Nonlinear Temperature 7.3.4 Violation of the CLT. Example: Granular Motor Under Viscous Friction 7.4.1 Setup. 7.4.2 Reduction to the Non-Gaussian Langevin	 84 89 89 90 91 91 92 94 95 95 96 96 97
Par 7	Keler t II S Micro Equa 7.1 7.2 7.3 7.4	Statistical Mechanics for Fluctuating Athermal Systems oscopic Derivation of Linear Non-Gaussian Langevin tion. Introduction Linear Non-Gaussian Langevin Equation and Its Mathematical Properties 7.2.1 Master Equation and Its Exact Solution. 7.2.2 Lack of the Detailed Balance Microscopic Derivation. 7.3.1 Asymptotic Derivation of the Non-Gaussian Langevin Equation 7.3.2 Inverse Formula. 7.3.3 Nonlinear Temperature 7.3.4 Violation of the CLT. 7.4.1 Setup. 7.4.2 Reduction to the Non-Gaussian Langevin Equation 7.4.3 Inverse Formula for the Granular Velocity	 84 89 89 90 91 91 92 94 95 96 96 97

		7.4.4	Numerical Validation	100
	7.5	Conclu	Iding Remarks	101
	Refer	ences		102
8	Anal	vtical So	olution to Nonlinear Non-Gaussian Langevin	
Ū	Equa	tion		103
	8.1	Introdu	action	103
	8.2	Micros	scopic Derivation of Nonlinear	
		Non-G	aussian Langevin Equation	104
		8.2.1	Setup.	104
		8.2.2	Derivation of Non-Gaussian Langevin Equations	
			Under Nonlinear Frictions	106
		8.2.3	Weak Friction Cases: Reduction to the Gaussian	100
		0.2.10	Langevin Equation	109
		824	Asymptotic Connection from the Non-Gaussian	107
		0.2.1	to the Gaussian Theory	111
	8.3	Asymr	pototic Solution for Nonlinear Non-Gaussian	
	0.0	Langey	vin Equation	112
		8.3.1	Setup	113
		8.3.2	Asymptotic Solution for Strong Friction	113
		8.3.3	First-Order Approximation: The Independent-Kick	110
		01010	Model	115
		8.3.4	Toy Model 1: Coulombic Friction	117
		8.3.5	Toy Model 2: The Cubic Friction	119
		8.3.6	Higher Order Corrections: Multiple-Kicks	122
	8.4	Examp	ble: Granular Motor Under Dry Friction	126
		8.4.1	Setup	126
		8.4.2	Reduction to the Non-Gaussian Langevin Equation	128
		8.4.3	First-Order Asymptotic Solution	129
	8.5	Conclu	Iding Remarks.	131
	Refer	ences.		131
•	<u> </u>	(* T		100
9	Stock	astic El	nergetics for Non-Gaussian Stochastic Dynamics	133
	9.1	Introdu		133
	9.2	Basic C	Concepts and Notations	134
	9.3		De la tra fac Sucretta S E autime	135
		9.3.1	Products for Smooth <i>o</i> -Functions	135
		9.3.2	Ito Type SDE for Smooth State-Dependent	107
		0.2.2	Poisson Noise	13/
		9.3.3	Reformulation of Ito Type SDE for Non-smooth	120
		0.2.4		139
		9.3.4	Stratonovich and * Integrals for the Ito Type SDE	139
		9.3.5	Ordinary Chain Rule for General Markov	1.40
			Processes	140

		9.3.6 Remark on the Gaussian Limit: Relation	
		to the Stratonovich Integral	141
		9.3.7 Remark on the Marcus SDE	142
	9.4	Stochastic Thermodynamics for Non-Gaussian	
		State-Dependent Noises	145
		9.4.1 Review of First Law of Thermodynamics	
		for the Gaussian Langevin Equation	146
		9.4.2 First Law of Thermodynamics for State-Dependent	
		Non-Gaussian Noise	146
		9.4.3 Example 1: The BGK-type Kinetic Model	
		and Its Complementarity Relation	148
		9.4.4 Example 2: Non-Gaussian Langevin Equation.	150
	9.5	Concluding Remarks.	152
	Refer	ences.	153
	_		
10	Energ	gy Transport Between Athermal Systems	155
	10.1	Introduction	155
	10.2	Model	156
	10.3	Main Results.	157
		10.3.1 Generalized Fourier Law	157
		10.3.2 Generalized Heat Fluctuation Theorem	159
		10.3.3 Generalized Zeroth Law of Thermodynamics	160
		10.3.4 Example: Athermal Energy Transport Between	
		Granular Motors	161
	10.4	Derivations of the Main Results	163
		10.4.1 Generalized Fourier Law	163
		10.4.2 Generalized Heat Fluctuation Theorem	165
	10.5	Concluding Remarks	169
	Refer	ences	169
11	Ener	gy Pumping from Athermal Systems	171
	11.1	Introduction	171
	11.2	Model	172
	11.3	Main Results.	174
		11.3.1 Work Along Ouasi-static Processes	174
		11.3.2 Power Along Slow Operational Processes	176
	11.4	Derivations of the Main Results	178
		11.4.1 Work Along Quasi-static Processes	179
		11.4.2 Power Along Slow Operational Processes	180
	11.5	Concluding Remarks.	182
	Refer	ences.	182
12	Conc	lusion	185
	Refer	ences	187

Appendix A: Technical Notes	189
Curriculum Vitae	221

Chapter 1 Introduction to Physics of Fluctuation

1.1 Background: Physics of Thermal Fluctuation

Recent experimental development has enabled us to investigate fluctuating small systems in detail (e.g., biological [1–4], colloidal [5–7], and electrical systems [8–10]). For example, trajectories of microscopic quantities can be experimentally observed in addition to the ensemble averages of macroscopic quantities as illustrated in Fig. 1.1a. The techniques of single molecule manipulation furthermore have enabled us to control small systems (see Fig. 1.1b for a schematic of the optical trap [12]). Correspondingly, theoretical frameworks for small fluctuating systems are topics of wide interest from the viewpoint of statistical mechanics and thermodynamics to answer several natural and important questions: *How do we make stochastic models of fluctuations? What is the thermodynamic quantities for small systems, such as work and heat? What is the theoretical bound for the energy efficiency of small heat engines?* These questions are important even in understanding practical issues, such as efficiencies of molecular motors in biology [13].

One of theoretical approaches to these questions is applications of stochastic processes. From the viewpoint of statistical mechanics, modeling fluctuations from microscopic dynamics has been an interesting issue [14–18]. For example, the Langevin equation is derived for thermal fluctuating systems and is analyzed in the formulation of stochastic processes. This methodology is useful even for modeling nonequilibrium fluctuations [19–23]. From the viewpoint of thermodynamics, stochastic energetics (or stochastic thermodynamics) [24–29] has recently attracted wide interest among researchers of statistical physics. Stochastic energetics is a thermodynamic formulation based on the Gaussian stochastic processes, whereby thermodynamic quantities, such as work and heat, are introduced on the level of a single trajectory. Indeed, the recent studies on the nonequilibrium equalities [8–10, 29–41], such as the fluctuation theorem and the Jarzynski equality, are often investigated using stochastic energetics, and this formulation is intensively generalized toward information processing [42–49] and steady state thermodynamics [28, 37, 50].

[©] Springer Nature Singapore Pte Ltd. 2017

K. Kanazawa, Statistical Mechanics for Athermal Fluctuation, Springer Theses, DOI 10.1007/978-981-10-6332-9_1

Fig. 1.1 a Schematic of the singular trajectory of fluctuating systems associated with thermal baths. The bead moves randomly because of the thermal fluctuation. Trajectories are experimentally observed, for example, using the total internal microscopy [11]. **b** Schematic of the optical tweezers, which are applicable to manipulate the bead arbitrarily. The bead is trapped by the laser potential and is moving around the focus point of the laser

1.2 Toward Physics of Athermal Fluctuation

While thermal fluctuations has been intensively studied in statistical mechanics and thermodynamics, athermal fluctuations have not been systematically investigated yet because they are essentially in nonequilibrium steady states. Athermal fluctuations are experimentally interesting topics in biological [51, 52], electrical [53–56], and granular [57–61] systems, which are preserved in nonequilibrium steady states by external energy injection. They are experimentally reported to be characterized by their non-Gaussianity [51–61], and are theoretically studied on the basis of non-Gaussian models [62–70]. We then naturally encounter the following questions:

- (Q1) **Statistical mechanics for athermal fluctuation**: *What is the minimal model of athermal stochastic systems? How do we systematically derive such a model from microscopic dynamics?*
- (Q2) **Thermodynamics for athermal fluctuation**: *How do we formulate a thermodynamic framework for athermal stochastic systems? What are the unique characters of athermal fluctuation different from the conventional thermodynamic phenomena?*

In this thesis, the answers to these questions are presented in both approaches of statistical mechanics and thermodynamics. To answer the question Q1, a statistical mechanical approach is developed by introducing a minimal stochastic model for athermal fluctuation [69, 70]: A Langevin-like equation with non-Gaussian noise is derived from microscopic dynamics for a wide class of athermal systems. We focused on the system size expansion, which was a microscopic foundation of the conventional Langevin equation, and have generalized its formulation toward the athermal stochastic systems. We have finally clarified the mechanism behind the emergence of the non-Gaussianity in athermal fluctuations. As an analytically solvable model, a granular rotor under viscous friction is investigated to numerically examine the validity of our formulation.

Analytical properties of general non-Gaussian Langevin equations are also studied systematically in this thesis even in the presence of with nonlinear friction terms [70]. By considering an asymptotic expansion for a large frictional coefficient, a full-order asymptotic formula is presented for the steady distribution function. The first-order

truncation of our formula leads to the independent-kick model, which was phenomenologically introduced in Ref. [58]. We further show that the high-order correction terms directly correspond to multiple-kicks during relaxation by introducing a diagrammatic representation. As a demonstration of our formulation, a granular rotor under the Coulomb friction is addressed theoretically and numerically.

To answer the question Q2, we next study a thermodynamic formulation for athermal stochastic systems. We first present a generalization of stochastic energetics for general non-Gaussian processes [65]. Stochastic energetics has been formulated as a mathematical theory of stochastic processes, where technical problems exist in terms of the stochastic product (stochastic integral) for definition of thermodynamic quantities. To introduce thermodynamic quantities, the Stratonovich product is known to be appropriate for Gaussian stochastic processes by applying the ordinary stochastic chain rule. We then discuss what kind of product is appropriate for definition of thermodynamic quantities for general non-Gaussian stochastic processes. Concretely, three kinds of products are defined for smoothed stochastic processes (the Itô, Stratonovich, and * products), and the ordinary stochastic chain rule is derived for an arbitrary stochastic process by using a mixed product, where multiple products coexist. This stochastic chain rule is applied to the reformulation of stochastic energetics for general non-Gaussian stochastic dynamics.

On the basis of the above thermodynamics formulation, distinctive phenomena in athermal systems are studied [66, 67] from the viewpoint of energetics. We first study energy transport between two athermal baths, and derive fundamental laws on the statistics of heat current: the generalized Fourier law and the generalized fluctuation relation. Remarkably, the direction of heat current depends on the properties of the heat conducting wire, showing the explicit absence of the zeroth law for athermal systems. We further show that the zeroth law recovers if we fix the kind of the conducting device by introducing an indicator to characterize the direction of heat current. As a demonstration, we study energy transport between two granular motors.

Finally, the energy pumping is studied from athermal fluctuations [67]. We focus on an electrical circuit with avalanche diodes as an experimentally realizable example, and theoretically study extracted work from athermal fluctuation. A positive amount of work is shown extractable from the athermal fluctuation in cyclic manipulations, even for finite-speed protocols.

1.3 Organization of This Thesis

This thesis consists of two parts: review on statistical mechanics and thermodynamics for thermal fluctuation (Chaps. 2–6, Part I) and its theoretical extension for athermal fluctuation (Chaps. 7–12, Part II). The contents in each part are described below (see Fig. 1.2 for chapter connection):

Fig. 1.2 Schematic of the chapter connection in this thesis

Part I

Background of the study in this thesis is reviewed from the viewpoint of statistical mechanics and thermodynamics for thermal fluctuation in Part I. From Chap. 2 to Chap. 4, statistical mechanics of thermal fluctuation is formulated on the basis of the stochastic processes and molecular kinetic theory. In Chaps. 5 and 6, stochastic energetics for the Langevin equation is reviewed utilizing the stochastic calculus. The details of each chapter are presented below:

- **Chapter 2**: a brief introduction is provided to the Markovian stochastic processes. In particular, the correspondence between stochastic differential equations (SDEs) and master equations are shown for various examples.
- Chapter 3: molecular kinetic theory is formulated from microscopic dynamics for many-body systems of hard spheres. The pseudo-Liouville equation is derived first and the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is derived from the pseudo-Liouville equation. The Boltzmann equation is then deduced by assuming molecular chaos from a systematic calculation. Using this method, a stochastic model of one-dimensional Brownian motion (e.g., the Rayleigh particle) is derived from microscopic dynamics.
- **Chapter** 4: the Langevin equation is reviewed in terms of thermodynamics and microscopic derivation. We first review the Langevin equation and its consistence with equilibrium thermodynamics. The Langevin equation is then derived from microscopic dynamics by the system size expansion. As the demonstrations, several problems are solved: the Rayleigh particle, a nonequilibrium Rayleigh particle, and a granular motor. We finally remark unsolved problems in the original system size expansion, which is solved in Chaps. 7 and 8.
- Chapter 5: the mathematical theory of stochastic calculus is reviewed for general Markov processes. Trajectories for Markov processes are generally singular, and selection of multiplication between stochastic variables is an important issue. We review the Itô integral and the Itô-type SDE, and the corresponding differential rules. In the special case of the Gaussian noise, the Itô rule is valid to simplify the differential rule (the Itô formula). Various stochastic integrals are also studied in terms of the ordinary chain rule and the Wong-Zakai theory.
- **Chapter 6**: stochastic energetics is reviewed for the Langevin equation. Realistic setups where the Langevin equation is valid are first explained, and thermodynamic quantities (i.e., work and heat) are introduced on the level of a single trajectory. The nonequilibrium identities and the second law of thermodynamics are finally derived for the Langevin dynamics.

Part II

The main results of this thesis are presented in Part II. In Chaps. 7 and 8, we present a formulation of statistical mechanics for athermal fluctuations. In Chaps. 9 and 11, a thermodynamic formulation for athermal fluctuation is shown by extending stochastic energetics. The details of the chapters are presented below:

- **Chapter** 7: a systematic derivation of a Langevin-like non-Gaussian equation is presented from microscopic dynamics. Mathematical characters of the non-Gaussian Langevin equation are first studied and its asymptotic derivation from master equations is shown by generalizing the system size expansion. Under the condition where the thermal friction is sufficiently large, the non-Gaussian properties are dominant with the central limit theorem violated. As a demonstration, we address a granular motor under viscous friction and derive the non-Gaussian Langevin equation as its reduced stochastic dynamics.
- **Chapter 8**: the formulation in Chap. 7 is generalized for nonlinear systems. We also study the analytical properties of the non-Gaussian Langevin equation. Using a perturbation for large friction, a full-order asymptotic formula is derived for the steady probability distribution function. We show that the first-order approximation of our formula leads to the independent-kick model, and high-order correction terms correspond to multiple-kick during relaxation. A granular motor under Coulombic friction is analyzed as a realistic example.
- **Chapter 9**: stochastic energetics is formulated for general non-Gaussian stochastic dynamics. Markovian stochastic processes are reformulated using the smoothed δ -function, and three types of products are introduced between a stochastic variable and the smoothed δ -function: the Itô, Stratonovich, and * products. By introducing mixed products, where multiple products coexist, the ordinary chain rule is derived for an arbitrary Markovian stochastic dynamics. We finally apply this formulation to stochastic energetics for general non-Gaussian processes.
- Chapter 10: energy transport between athermal reservoirs are studied by applying stochastic energetics for non-Gaussian processes. The statistics of heat current between athermal reservoirs is investigated for a simple stochastic model driven by non-Gaussian fluctuation, and generalizations of the Fourier law and the fluctuation theorem are obtained. We also find a violation of the zeroth law of thermodynamic, whereby the direction of heat current depends on the heat conducting wire. As a demonstration, heat conduction between two granular motors is studied with the aid of the method developed in Chap. 7.
- Chapter 11: energy pumping from athermal fluctuation is studied in the formulation of stochastic energetics. As an experimentally realizable setup, we consider an electrical circuit under avalanche noise, whose dynamics is governed by the non-Gaussian Langevin equation. Extracted work and power from the non-Gaussian athermal noise is studied through a cyclic manipulation, and a positive amount of work is theoretically found to be extracted even for finite-speed protocols regardless of the spatial symmetry of the system.
- Chapter 12: we conclude this thesis with some remarks and future perspectives.

References

- 1. J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco, C. Bustamante, Science 296, 1832 (2002)
- 2. C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58(7), 43 (2005)
- 3. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco, C. Bustamante, Nature 437, 231 (2005)

- 4. S. Toyabe, T. Okamoto, T. Watanabe-Nakayama, H. Taketani, S. Kudo, E. Muneyuki, Phys. Rev. Lett. **104**, 198103 (2010)
- D.M. Carberry, J.C. Reid, G.M. Wang, E.M. Sevick, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 92, 140601 (2004)
- E.H. Trepagnier, C. Jarzynski, F. Ritort, G.E. Crooks, C. Bustamante, J. Liphardt, Proc. Natl. Acad. Sci. U.S.A. 101, 15038 (2004)
- 7. V. Blickle, T. Speck, L. Helden, U. Seifert, C. Bechinger, Phys. Rev. Lett. 96, 070603 (2006)
- 8. R. van Zon, S. Ciliberto, E.G.D. Cohen, Phys. Rev. Lett. 92, 130601 (2004)
- 9. N. Garnier, S. Ciliberto, Phys. Rev. E 71, 060101(R) (2005)
- 10. S. Ciliberto, A. Imparato, A. Naert, M. Tanase, Phys. Rev. Lett. 110, 180601 (2013)
- 11. D. Prieve, Adv. Colloid Interface Sci. 82, 93 (1999)
- 12. A. Ashkin, Proc. Nat. Aca. Sci. U.S.A. 94, 4853 (1997)
- R. Phillips, J. Kondev, J. Theriot, *Physical Biology of the Cell* (Garland Science, New York, 2008)
- 14. N.G. van Kampen, Can. J. Phys. 39, 551 (1961)
- 15. N.G. van Kampen, *Stochastic Processes in Physics and Chemistry*, 3rd edn. (North-Holland, Amsterdam, 2007)
- 16. R. Zwanzig, J. Stat. Phys. 9, 215 (1973)
- 17. H. Mori, Prog. Theor. Phys. 34, 399 (1965)
- 18. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001)
- 19. J. Piasecki, C. Gruber, Physica A 265, 463 (1999)
- 20. M. Itami, S.-I. Sasa, Phys. Rev. E 89, 052106 (2014)
- 21. M. Itami, S.-I. Sasa, J. Stat. Phys. 158, 37 (2015)
- 22. C. van den Broeck, R. Kawai, P. Meurs, Phys. Rev. Lett. 93, 090601 (2004)
- 23. C. van den Broeck, P. Meurs, R. Kawai, New J. Phys. 7, 10 (2005)
- 24. K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010)
- 25. U. Seifert, Eur. Phys. J. B 64, 423 (2008)
- 26. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)
- 27. K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997)
- 28. K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)
- 29. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)
- 30. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)
- 31. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)
- 32. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)
- 33. J. Kurchan, J. Phys. A 31, 3719 (1998)
- 34. J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)
- 35. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)
- 36. C. Jarzynski, J. Stat. Phys. 98, 77 (2000)
- 37. T. Hatano, S.-I. Sasa, Phys. Rev. Lett. 86, 3463 (2001)
- 38. R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)
- 39. C. Jarzynski, D.K. Wójcik, Phys. Rev. Lett. 92, 230602 (2004)
- 40. T. Harada, S.-I. Sasa, Phys. Rev. Lett. 95, 130602 (2005)
- 41. J.D. Noh, J.-M. Park, Phys. Rev. Lett. 108, 240603 (2012)
- 42. T. Sagawa, M. Ueda, Phys. Rev. Lett. 100, 080403 (2008)
- 43. T. Sagawa, M. Ueda, Phys. Rev. Lett. 102, 250602 (2009)
- 44. T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602 (2010)
- 45. T. Sagawa, *Thermodynamics of Information Processing in Small Systems* (Springer, Berlin, 2013)
- 46. S. Ito, M. Sano, Phys. Rev. E 84, 021123 (2011)
- 47. T. Sagawa, M. Ueda, Phys. Rev. E 85, 021104 (2012)
- 48. S. Ito, T. Sagawa, Phys. Rev. Lett. 111, 180603 (2013)
- 49. S. Ito, T. Sagawa, Nat. Commun. 6, 7498 (2015)
- 50. Y. Oono, M. Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1997)

- E. Ben-Isaac, Y.K. Park, G. Popescu, F.L.H. Brown, N.S. Gov, Y. Shokef, Phys. Rev. Lett. 106, 238103 (2011)
- 52. N. Gov, Phys. Rev. Lett. 93, 268104 (2004)
- 53. J. Gabelli, B. Reulet, Phys. Rev. B 80, 161203(R) (2009)
- 54. A.M. Zaklikiewicz, Solid-State Electron. 43, 11 (1999)
- 55. Y.M. Blanter, M. Bu, D.P. Theh, U. De Gene, Phys. Rep. 336, 1 (2000)
- 56. J.P. Pekola, Phys. Rev. Lett. 93, 206601 (2004)
- 57. P. Eshuis, K. van der Weele, D. Lohse, D. van der Meer, Phys. Rev. Lett. 104, 248001 (2010)
- 58. J. Talbot, R.D. Wildman, P. Viot, Phys. Rev. Lett. 107, 138001 (2011)
- A. Gnoli, A. Petri, F. Dalton, G. Pontuale, G. Gradenigo, A. Sarracino, A. Puglisi, Phys. Rev. Lett. 110, 120601 (2013)
- 60. A. Gnoli, A. Puglisi, H. Touchette, Europhys. Lett. 102, 14002 (2013)
- 61. A. Gnoli, A. Sarracino, A. Puglisi, A. Petri, Phys. Rev. E 87, 052209 (2013)
- 62. J. Łuczka, T. Czernik, P. Hanggi, Phys. Rev. E 56, 3968 (1997)
- 63. A. Baule, E.G.D. Cohen, Phys. Rev. E 79, 030103(R) (2009)
- 64. W.A.M. Morgado, S.M. Duarte, Queiros. Phys. Rev. E 86, 041108 (2012)
- 65. K. Kanazawa, T. Sagawa, H. Hayakawa, Phys. Rev. Lett. 108, 210601 (2012)
- 66. K. Kanazawa, T. Sagawa, H. Hayakawa, Phys. Rev. E 87, 052124 (2013)
- 67. K. Kanazawa, T. Sagawa, H. Hayakawa, Phys. Rev. E 90, 012115 (2014)
- 68. É. Fodor, K. Kanazawa, H. Hayakawa, P. Visco, F. van Wijland, Phys. Rev. E 90, 042724 (2014)
- 69. K. Kanazawa, T.G. Sano, T. Sagawa, H. Hayakawa, Phys. Rev. Lett. 114, 090601 (2015)
- 70. K. Kanazawa, T.G. Sano, T. Sagawa, H. Hayakawa, J. Stat. Phys. 160, 1294 (2015)

Part I Review on Stochastic Theory for Fluctuating Thermal Systems