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Foreword

Scientific challenges come and go; only a few of them remain for a long time. Multivalency 
is one of those research topics that has been prominent for many years, as this intrigu-
ing phenomenon is of profound importance in many biological processes as well as very 
difficult to understand and mimic. Personally, I became intrigued by the challenge of 
multivalency when our group entered the field of dendrimers in 1990. The controlled 
number of end groups – 4, 8, 16, 32, and 64 amines of the polypropylene imines – opened 
many opportunities for us to explore the controlled use of multiple interactions. 
However, our ideas were more simple than our experiments in making full use of the 
potential of multivalency; many of them remained in the realm of dreaming. The broad 
potential of multivalency as well as its complex mode of action was beautifully illus-
trated by George Whitesides and coworkers [1] in the seminal Angewandte Chemie 
review paper in 1998. Their review initiated a world‐wide search for synthetic mimics 
of these highly effective natural systems, a search that turned out to be long lasting.

Nature uses both similar interactions (homovalency) and different interactions 
(heterovalency) to control selectivity and specificity, even leading to ultra‐sensitivity. 
Beautiful examples are found in substrate–cell interactions and immunology. Ever since 
this elegant mechanism and its importance in biological systems has been recognized, 
chemists have been intrigued to fully understand the enhancement factors obtained in 
binding multiple weak interactions through multivalency. Artificial systems are 
designed, synthesized, and studied, while a number of applications are proposed. 
Multivalent medication can have lower toxicity while simultaneously having higher 
medical efficacy.

Although the knowledge on the modus operandi of these systems has increased 
significantly in time and the systems synthesized have become more active, the full 
potential of the proposed applications remains. Hence, a number of challenging ques-
tions need to be answered before the potential of this intriguing concept can be explored. 
How to design the ideal structure to arrive at the theoretical maximum avidity and how 
to obtain scaling with valency are just a few of these intriguing questions. Theoretical 
and experimental studies of multivalent systems have revealed several design parame-
ters that are critical in obtaining effective multivalent constructs. Next to the binding 
affinity, linker flexibility plays an important role, as rigid linkers require extremely pre-
cise ligand positioning to obtain high binding affinities and selectivity, while flexible 
linkers offer more freedom in molecular design at the cost of lower affinity and selectivity. 
Furthermore, additional competing equilibria can be used to enhance binding 
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selectivity or to steer an assembly towards a preferred state. However, the complexity of 
all these effects and their interference makes the field one of the most challenging areas 
in the molecular sciences.

Therefore, it is great to see that four outstanding scientists have edited a book on the 
intriguing topic of multivalent interactions. It is a book full of excellent chapters written 
by the most active experts in the field, covering all aspects of multivalent interactions 
with special emphasis on theory, synthesis, surfaces, chemical biology, and supramo-
lecular chemistry. I am convinced that this book will be a great asset for all active in this 
intriguing field of science.

Eindhoven, May 2017 � E.W. Meijer

Reference

	1	 Mammen, M., Choi, S.‐K., Whitesides, G. M. Polyvalent interactions in biological 
systems: Implications for design and use of multivalent ligands and inhibitors. Angew. 
Chem. Int. Ed. 1998, 37, 2754–2794.
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Multivalent interactions play a role in molecular and biomolecular systems in which 
molecules interact by multiple noncovalent bonds. Studying and describing these inter-
actions in a quantitative manner constitute therefore an important way to obtain insight 
into the functional behavior of the biological and chemical systems in which they are 
involved. Over the past decades, the research of multivalent interactions has greatly 
expanded. This growth fits in the overall trends observed in the natural sciences which 
encompass the merging and overlapping of disciplines, like the biology and chemistry 
involved here. It also aligns with the emphasis on the study of complex systems, and the 
development of systems biology and systems chemistry, for example. Therefore, we 
have observed the need for a book that brings together fundamental aspects of multiva-
lent interactions and relevant current examples of biological as well as chemical multi-
valent systems.

The disciplines of chemistry and biology are strongly represented in this area of sci-
ence because they exert a mutual influence on both the understanding of fundamental 
aspects of multivalency as well as the development of practical research tools and appli-
cations. In biology, multivalent interactions play an eminent role in the immune system, 
but at the same time also describe the interactions between a virus and the host cell 
which the virus tries to infect. Tools from chemistry and nanotechnology are being 
developed that assist in studying such complex biological systems, for example, by syn-
thesizing model cell membranes in which the interactions can be studied in a more 
controllable fashion. Likewise, probe techniques allow quantification of interactions at 
the single molecule level in individual cells. Conversely, the increase in understanding 
of the biomolecular interactions in living systems sparks the generation of new types of 
drugs and inhibitors that can make smart use of the multivalent character to improve 
both selectivity and activity.

A quantitative understanding of multivalent interactions is essential to promote pro-
gress in the field that deals with multivalent systems. Both experimental techniques as 
well as modeling can be used to stimulate this depth of understanding. Therefore, we 
decided that chapters with a strong educational character should be an essential part of 
this book. We present a section (Part I) of four chapters that serve to guide new research-
ers as well as more experienced researchers in their efforts to contribute to this lively 
area. These chapters provide a background in thermodynamics, data modeling and the 
description of multivalent equilibrium systems, numerical modeling of multivalent sys-
tems and superselectivity, and an introduction to multivalent biological systems. These 
chapters build on, and for some aspects briefly review, knowledge that most readers 

Preface
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with a background in chemistry or biology will have encountered in their regular aca-
demic education, but from there quickly integrate this knowledge into the description 
of multivalent systems.

Another explicit aim of the book is to expose the active nature of the research on 
multivalent systems. This is achieved in the two other sections of the book (Parts II and 
III), dealing with chemical and biological examples of multivalency, respectively. In the 
chemistry oriented chapters, timely topics such as the host–guest interactions of cyclo-
dextrins and cucurbiturils are covered, as well as soft matter systems, such as vesicles, 
polymers, and nanoparticles. Not only equilibrium thermodynamics is shown, but also 
systems in which multivalent interactions control catalysis. In the more biological 
section, several biological interactions are put forward, such as protein–protein and 
lectin–glycan interactions. The strong connection between chemistry and biology in 
this area is emphasized by the examples that describe cell targeting by molecules and 
nanoparticles, as well as receptor inhibition by multivalent inhibitors.

We hope that this book will serve a need, for new and experienced researchers alike, 
both for those requiring a deeper understanding as well as those that try to get an 
overview of existing activities in the field. We thank all contributing authors for their 
efforts in summarizing and describing their research and that of others, as their joint 
work makes this book so much more than the individual chapters alone. We also 
express our gratitude to the Wiley staff for smoothing the pathway for the book that 
lies before you.

September 2017	 Jurriaan Huskens, Leonard J. Prins, Rainer Haag,  
and Bart Jan Ravoo
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1

1.1  Introduction

Additivity of individual binding contributions is the very basis of multivalency. In classical 
coordination chemistry such simultaneous actions are described as the chelate effect. 
They offer almost unlimited ways to enhance the affinity [1,2,3,4,5,6], and therefore within 
certain limitations also the selectivity [7] of synthetic and natural complexes. Although 
additivity is often implied in experimental and theoretical approaches it is subject to many 
limitations which will be also discussed in the present chapter.

1.2  Additivity of Single Interactions – Examples

If only one kind of interaction is present in a complex one can expect a simple linear 
correlation between the number n of the individual interaction free energies ΔΔGi and 
the total ΔGt (Equation 1.1), as illustrated in Figure 1.1 for salt bridges [8]. Even though 
the organic ion pair complexes are based on cations and anions of very different size and 
polarizability one observes essentially additive salt bridges; the slope of the correlation 
indicates an average of ΔΔG = (5 ± 1) kJ/mol per salt bridge. The value of (5 ± 1) kJ/mol 
is observed in usual buffer solution, but varies as expected from the Debye–Hückel 
equation with the ionic strength of the solution [9]. Scheme 1.1 shows a corresponding 
value of K ≈ 10 M−1 per salt bridge for typical complexes where the affinity depends as 
expected on the degree of protonation [7].

	 G n Gt i	 (1.1)

The additivity depicted in Figure 1.1 and Scheme 1.1 for salt bridges is in line with the 
Bjerrum equation, which describes ion pair association as a function of the ion charges 
zA and zB; Figure 1.2 shows for over 200 ion pairs a linear dependence of log K vs. zAzB [3]. 
For inorganic salts one finds similar ΔΔG values of 5–6 kJ/mol per salt bridge and a 
similar dependence on charges [10]. At zero ionic strength the stability decreases in the 

Additivity of Energy Contributions 
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order Ca2+ > Mg2+ > > Li+ > Na+ > K+ and can be described by Equation 1.2 [11]. Additivity 
is observed although ion pairing in water is determined entirely by entropic contribu-
tions[11], unless other contributions dominate [12].

	 log . ( . , . , . A/ where A  for Li   for Na  K z z0 5 0 24 0 30 0 43  for K )	(1.2)

If there is more than one kind of interaction, Equation 1.3 applies. Often however, 
only one of the contributions is the same, like salt bridges in complexes of nucleotides 
with a positively charged host (Scheme  1.2) [13]. Additivity is then observed by the 
constant stability difference of 2 × ΔΔG ≈ 10 kJ/mol between complexes with charged 
nucleotides and neutral nucleosides. The 10 kJ/mol reflects the presence of two salt 
bridges between the phosphate dianion and the host ammonium center, which agrees 
with structural analyses by NMR spectroscopy.

	 G n G m Gt A B	 (1.3)

The complexes shown in Scheme 1.2 exhibit constant single ΔΔGA values only for 
the salt bridges, whereas the second contribution ΔΔGB varies as a function of the 
different nucleobases. Figure 1.3 illustrates a case where both ΔΔGA and ΔΔGB remain 
constant, the latter reflecting cation–π interactions. In principle one could use 
Equation 1.3 to derive both ΔΔGA and ΔΔGB, but more reliable values are obtained if 
for one interaction a ΔΔG value is used which is known from independent analyses, 
such as ΔΔGA = 5 kJ/mol for each salt bridge (see above). Then one observes a rather 
linear correlation with the number of phenyl units which shows a contribution of 
ΔΔGB ≈ 1.5 kJ/mol for the single +N–π interaction [14].
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Figure 1.2  Ion pair association constants at zero ionic strength as a function of charge product, 
calculated for 203 ion pairs. Source: Ref. [8]. Reproduced with permission of John Wiley and Sons.
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The effect of nitro substituents on dispersive interactions is another example of 
additive energy contributions (Figure 1.4) [15,16]. Additivity with respect to substituent 
effects is observed in Hammett‐type linear free energy relationship correlations; 
Figure 1.5 shows an example for hydrogen bonds with C─H bonds as donor and with 
hexamethylphosphoramide as acceptor [17].

1.3  Limitations of Additivity

1.3.1  Free Energy Values ΔG Instead of Enthalpic  
and Entropic Values ΔH, TΔS

The examples shown above as well as most others in the literature rely on free energy 
values ΔG, although consideration of the corresponding ΔH and TΔS parameters could 
shed more light on the underlying binding mechanisms. As pointed out earlier by Jencks, 
the empirical use of ΔG “avoids the difficult or insoluble problem of interpreting observed 
ΔH and TΔS values for aqueous solution” [18]. Furthermore, according to Jencks, there 
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substituents R in meso position (TPyP or TPS) in water, after deduction of 5 kJ/mol for ion pair 
contribution where applicable. ΔΔGX increments in TPyP complexes for nitro substituents as an 
example (deviation for ortho‐dinitro due to steric hindrance); correlation between measured 
complexation energies ΔGexp and ΔGcalc calculated on the basis of experimentally determined 
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TPS. Source: Ref. [15]. Reproduced with permission of John Wiley and Sons.
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is often an additional “connection Gibbs energy, ΔGS” (Equation 1.4) which he ascribed 
largely to changes in translational and rotational entropy. These connection ΔGS can be 
either negative or positive and will be discussed as major liming factors for additivity 
below in the context of cooperativity and allostery.

	 G G G Gt A B S	 (1.4)

The success of using free energy values instead of enthalpic and entropic values is in an 
essential part due to entropy–enthalpy compensation which has empirically been found 
to hold with many complexations, although it is theoretically not well‐founded 
[19,20,21]. Another factor is that in typical supramolecular complexes the loss of 
translatory freedom is already paid by a single association step. The loss of rotational 
freedom upon complex formation has been experimentally [9] found to be smaller than 
theoretically expected (see below).

Entropy contributions pose particular problems, not only for the precise experimental 
determination, which in the past often relied on the temperature dependence of 
equilibrium constants (the Van ‘tHoff method) instead of on more reliable calorimetry 
techniques. Also their theoretical interpretation is hampered by several factors, for 
instance because ΔS values depend on the choice of the standard concentration, in con-
trast to ΔH [8]. Configurational entropy, which refers also to solute motions has been 
addressed in several papers [22,23,24]. Data for the loss of translatory degrees of freedom 
in complex formation range from TΔS = 3 to 9 kJ/mol, and depend also on the reaction 
medium [25]. In multivalent associations this TΔS penalty plays, as mentioned above, a 
minor role as it is paid already by a single interaction. For the loss of rotatory degrees of 
freedom in complex formation values from TΔS = 1.5 to 6 kJ/mol were proposed [26], 
which also should depend on the nature of the bond involved in the rotation [27]. 
Measurements of complexes involving an increasing number n of single bonds between 
two binding units furnished values of only ΔΔG = 0.5 to 1.3 kJ/mol per single bond 
(e.g.  from the slope in Figure  1.6) [9,28]. Similar small numbers have been found in 
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and Sons.
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complexes involving peptide‐ ß‐sheets [29], with calcium‐EDTA complexes [30], and for 
example in the coordination of nickel or copper with either trans‐1,2‐diaminocyclohex-
ane or the more flexible ethylene diamine [31]. In line with these rather small numbers it 
has been found that preorganization of a linker in host molecules has no or a small effect 
on supramolecular effective molarities [32,33].

1.3.2  Mismatch as Limitation of Additivity

The most obvious limitation for additivity of non‐covalent interactions and therefore 
also for the lock‐and‐key principle is the necessary geometric fit between host and guest 
[34]. Insufficient fit between receptor and ligand is a major factor, in particular for a 
conformationally more rigid polyvalent entity [1]. The steric requirements for an opti-
mal binding between host and guest depend on the nature of the non‐covalent bonds. 
In particular, electrostatic interactions fall off with only with r−1 between binding sites 
whereas dispersive interactions fall off with r−6. In addition, the latter interactions have 
no or only a small directional dependence, whereas for example the strength of hydrogen 
or halogen bonds depends on the orientation of donor and acceptor. Exceptions are 
molecular containers [35] in which the binding of substrates is in most cases controlled 
by the size of the portals. However, here as in other supramolecular complexes another 
important restriction is the presence of solvent molecules in a ligand‐containing cavity, 
so that the guest molecule can only use a limited number of interactions which are 
possible, again depending on the binding mechanism. Thermal motions as well as vibra-
tional and translatory freedom of movement of host and guest are also responsible for 
the limited fitting; moreover, the surfaces of interacting molecules are characterized by 
corners and dimples. Recent studies with cryptophanes composed of two bowl‐shaped 
cyclotriveratrylene units showed large solvent molecules such as tetrachloroethane 
inside the cavity [36]. It has been found earlier [37] that for example some cryptophanes 
bind, say, chloroform better than methane, although methane fits geometrically as well 
in the cavity. An occupancy factor or packing coefficient (PC) of 0.886 was calculated for 
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the chloroform complex, similar to that in a closely packed crystal. For methane the 
occupancy factor amounts to a PC of only 0.35. These values are in the range with later 
systematic evaluations with many container‐ and capsule‐type hosts [38], which were 
leading to generally observed 55 ± 9% occupancy of the space available.

Even small geometric changes can have a dramatic impact on the stability of 
supramolecular complexes, such as in recently described associations with crown‐
ammonium pseudorotaxanes [39] (Scheme 1.3). Here insertion of just one methylene 
group in the spacer leads to a drop from K = 25 000 M−1 for the optimal spacer (n = 0) to 
K = 1100 M−1 with the longer spacer (n = 1), due to differences in both ΔH (−4.8 kJ/mol) 
and TΔS (2.9 kJ/mol).

Frequently one interaction in a supramolecular complex is significantly larger than 
another one, which then can lead to an induced misfit. Figure 1.7 illustrates schematically 
the consequences for cyclodextrin complexes as an example [40]. Only in ideal situations 
like in Case I (Figure 1.7a) one can expect additivity (as for example with the nucleotide 
complexes in Scheme 1.2). In Case II (Figure 1.7b) the force between D and A is so strong 
that the second interaction is severely diminished, with an ensuing loss of additivity. 
Such situations have been seen for example with complexes of nucleotides and cyclo-
dextrins, which bear a different number n of aminoalkyl substituents at the rim [41,42]. 
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