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Preface

Our foremost objective in writing this book was to present a reasonably self-
contained treatment of the classical theory of nilpotent groups so that the reader
may later be able to study further topics and perhaps undertake research on his or
her own. We have also included some recent work by two of the authors.

The theorems and proofs that appear in this work can be found elsewhere in some
shape or form, but they are scattered in the literature. We have tried to include some
of the omitted details in the original sources and to offer additional computations
and explanations whenever we found it appropriate and useful. It is our hope that
the examples, constructions, and computations included herein will contribute to
a general understanding of both the theory of nilpotent groups and some of the
techniques commonly used to study them. With this in mind, we have attempted to
produce a single volume that can either be read from cover to cover or used as a
reference. This was our main motivation several years ago, when the idea of writing
such a book began to materialize.

We expect both working mathematicians and graduate students to benefit from
reading this book. We demand from the reader only a solid advanced undergraduate
or beginning graduate background in algebra. In particular, we assume that the
reader is familiar with groups, rings, fields, modules, and tensor products. We
expect the reader to know about direct and semi-direct products. We also assume
knowledge about free groups and presentations of groups. Some topology is
certainly useful for Chapter 6.

We declare that the choice of topics is based on what we consider to be a coherent
discussion of nilpotent groups and mostly responds to our own mathematical
interests. We emphasize that some of the more recent developments in nilpotent
group theory (especially from the algorithmic, geometric, and model-theoretic
perspectives) have been completely excluded and are well-suited topics for future
volumes. Furthermore, major results such as the solution of the isomorphism
problem for finitely generated nilpotent groups and the Mal’cev correspondence
are only mentioned or discussed briefly.

We adopt certain conventions and notations. We sometimes write “1” for the
trivial group, the group identity, and the unity of a ring. All functions and morphisms
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viii Preface

are written on the left unless otherwise told. For example, we write ¢(x), rather than
x@ or x¥. The n x n identity matrix is always denoted by I,. Whenever we have a
field of characteristic zero, we identity its prime subfield with the rationals. All rings
mentioned in this book are associative.

The book is organized in the following manner. In Chapter 1, we discuss the
commutator calculus. Chapter 2 is meant to serve as an introduction to nilpotent
groups and includes some interesting examples. Chapter 3 deals with the collection
process and basic commutators, leading to normal forms in finitely generated free
groups and free nilpotent groups. In Chapter 4, we show that finitely generated
nilpotent groups are polycyclic, allowing us to obtain another type of normal
form in such groups. Chapter 5 is about the theory of isolators, root extraction,
and localization. Chapter 6 is a discussion of a classical paper by S. A. Jennings
regarding the group ring of finitely generated torsion-free nilpotent groups over
a field of characteristic zero. Finally, Chapter 7 contains a selection of additional
topics.

We take full responsibility for any errors, mathematical or otherwise, appearing
in this work. We have made every effort to accurately cite all pertinent works and
do apologize for any omissions.

Brooklyn, NY, USA Anthony E. Clement
Brooklyn, NY, USA Stephen Majewicz
New York, NY, USA Marcos Zyman

October 2017
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Chapter 1
Commutator Calculus

In this chapter, we introduce the commutator calculus. This is one of the most
important tools for studying nilpotent groups. In Section 1.1, the center of a group
and other notions surrounding the concept of commutativity are defined. Several
results and examples involving central subgroups and central elements are given.
Section 1.2 contains the fundamental identities related to commutators of group
elements. By definition, the commutator of two elements g and / in a group G is the
element [g, h] = g~ 'h~!gh. Clearly, [g, h] = 1 whenever g and 4 commute. This
leads to a natural connection between central elements and trivial commutators. The
commutator identities allow us to develop properties of commutator subgroups. This
is the main focus of Section 1.3.

1.1 The Center of a Group

The commutator calculus is an essential tool which is used for working with
nilpotent groups. In this section, we collect various results on commutators which
will be used throughout the book. This material can be found in various places in
the literature (see [1-6]).

1.1.1 Conjugates and Central Elements

We begin by defining the conjugate of a group element.

Definition 1.1 Let g and & be elements of a group G. The conjugate of g by h,
denoted by g", is the element 2~ ! gh of G.

© Springer International Publishing AG 2017 1
A.E. Clement et al., The Theory of Nilpotent Groups,
DOI 10.1007/978-3-319-66213-8_1



2 1 Commutator Calculus

The conjugate of g~! by /4 is written as g~". Notice that
g = () =h s = () = ()
Furthermore, if k € G, then
(gh)* = k™ "ghk = (k™' gk) (k™" hk) = g"n*
and
(&) = (7' gh)" = k™'~ ghk = ()™ g (k) = ¢

We summarize these in the next lemma.

Lemma 1.1 Suppose that g, h, and k are elements of any group. Then (gh)* =
—1\h -1 k
S ik, (g 1) _ (gh) . and (gh) = g,
The notion of conjugacy extends to subgroups in a natural way.

Definition 1.2 Two subgroups H and K of a group G are called conjugate if
g 'Hg = K for some g € G.

In particular, every normal subgroup of G is conjugate to itself.

Definition 1.3 Let G be a group. An element g € G is called central if it commutes
with every element of G. The set of all central elements of G is called the center of
G and is denoted by Z(G). Thus,

Z(G) ={ge G| gh= hgforall h e G}
={geG|g" =gforallh e G}.

It is easy to verify that Z(G) is a normal abelian subgroup of G, and the conjugate
of a central element g € G by any element of G is just g itself.

If G and H are groups, then the (internal and external) direct product of G and H
will be written as G x H.

Lemma 1.2 If G| and G, are groups, then Z(G1 X G,) = Z(Gy) x Z(G»).

Proof Suppose that (g1, 82) € Z(G1xG,). Then (g1, g2)(x, y) = (x, y)(g1, g2) for
all (x, y) € G; x G,. This implies that (g1x, g,y) = (xg1, ¥g2), and thus g;x = xg;
and goy = yg». Hence, g1 € Z(G,) and g, € Z(G,). Therefore, (g, g») is contained
in Z(G1) x Z(G3). And so, Z(Gy X G3) € Z(G1) x Z(G3). In a similar way, one can
show that Z(G) x Z(G,) C Z(G; x Gy). O

Lemma 1.3 If G| and G, are any two groups, then

Gl X Gz ~ G1 % G2
Z(Gl X Gz) - Z(G[) Z(Gz).




1.1 The Center of a Group 3
Proof The map from G| X G; to (G{/Z(G1)) X (G2/Z(G>)) defined by

(81. 82) = (812(G). £:2(G))
is a surjective homomorphism whose kernel is Z(G; x G,). The result follows from
the First Isomorphism Theorem. O

Let G and H be any two groups. The set of homomorphisms from G to H will
be denoted by Hom(G, H), and the group of automorphisms of G by Aut(G). The
kernel and image of ¢ € Hom(G, H) are abbreviated as ker ¢ and im ¢ = ¢(G)
respectively. If G and H are isomorphic groups, then we write G = H.

Let G be a group and & € G. Using Lemma 1.1, it is easy to show that the map
¢ : G — G defined by ¢,(g) = g"

is contained in Aut(G).

Definition 1.4 The map ¢, is called the conjugation map or inner automorphism
induced by A.

It is easy to see that the set of all inner automorphisms of G forms a group
under composition. This group is denoted by /nn(G). There is a natural connection
between the center of a group and the inner automorphisms of the group.

Theorem 1.1 Let G be a group and h € G. The map
0: G — Aut(G) defined by o(h) = @, where @,(g) = g",

is a homomorphism with ker 0 = Z(G) and im o0 = Inn(G).
Proof The result follows from Lemma 1.1. O
By Theorem 1.1 and the First Isomorphism Theorem, we have:

Corollary 1.1 If G is any group, then G/Z(G) = Inn(G).

1.1.2 Examples Involving the Center

In the next few examples, we give the center of various groups.
Example 1.1 A group G is abelian if and only if Z(G) = G.

Example 1.2 Let S, be the symmetric group on the set S = {1, 2, ..., n}, and let
“e” denote the identity element of S,,. Clearly, S| has trivial center because S; = {e}.
Furthermore, Z(S;) = S, since S is abelian.

We show that Z(S,) = {e} for n > 2. Suppose, on the contrary, that Z(S,)
is nontrivial. Let o € Z(S,) be a nonidentity element. There exist distinct elements
a, b € Ssuchthat o (a) = b. Choose an element ¢ € S different from ¢ and b, and let
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7 be the transposition (b c¢). A direct calculation shows that (g ot)(a) # (to0)(a),
contradicting the assumption that o is in the center of Z(S,).

Example 1.3 Let A, be the alternating group on the set S = {1, 2, ..., n}. This is
the subgroup of S, consisting of all even permutations. Note that A} = A, = {e},
and Aj; is cyclic since it has order 3. Thus, Z(A,) = A, forn = 1,2, and 3 according
to Example 1.1.

The center of A4 is trivial. The proof is similar to the one used in Example 1.2.
Assume that Z(A,) is nontrivial, and let o be a nonidentity element of Z(A,,). There
exist distinct elements a, b € S such that o(a) = b. Choose two elements ¢ and d
in S different from a and b, and let T = (b ¢ d). It is easy to see that (¢ o 7)(a) #
(t 0 0)(a), contradicting the assumption that the center is nontrivial.

Using the same argument as above, one can show that A, has trivial center
whenever n > 5. We provide an alternative proof which uses the fact that A,
is a simple group whenever n > 5. Since this is the case, either Z(A,) = {e}
or Z(A,) = A,. If it were true that Z(A,) = A,, then A, would be abelian by
Example 1.1. However, a quick calculation shows that

(1 23)3 45 #£@ 4 51 2 3).

Thus, A, is non-abelian and Z(4,) # A,. We conclude that Z(A,) = {e} forn > 5.

Example 1.4 Let D, be the dihedral group of order 2n, the group of isometries of
the plane which preserve a regular n-gon. If y is a reflection across a line through a
vertex and x is the counterclockwise rotation by 27 /n radians, then the elements of
D, are

—1 2 n—1
Lox, x5 oo, X7y, xy, X7y, o, Xy,

and the equalities
X'=1y"=1, andxy = yx !

hold in D,,.
Both D; and D, are abelian, so Z(Dy) = D; and Z(D,) = D,. We determine
Z(D,)) when n > 3. Since xy = yx~!, we have

Xy=yx™" (reZ. (1.1)

We claim that no element of the form x'y for any + € {0, 1, ..., n — 1}
is central. Assume, on the contrary, that x'y € Z(D,) for some such ¢. Then x'y
commutes with x. Hence, x~! (x'y) x = x'y, and thus x'~'yx = x'y. Applying (1.1)
to both sides of this equality yields yx'~'x = yx™'. After canceling the y’s, we get

x>~" = x™'. This means that x> = 1, a contradiction. Therefore, x'y ¢ Z(D,) for any
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t€{0, 1, ..., n— 1}. Consequently, an element of Z(D,) must take the form x' for
somet € {0, 1, ..., n—1}. Clearly, x° = 1 € Z(D,).
Suppose x' € Z(D,) for some ¢t € {1, ..., n— 1}. By (1.1), we have
yx' =xy = yx7".

Hence, x = x*; that is, x> = 1. Since x has order n, it must be that n divides 2.
Hence, there exists k € N such that 2t = nk. If k > 2, then 2¢ > 2n. This cannot
happen since 1 < ¢ < n — 1. This means that k = 1, and thus 2r = n. Now, if n
is odd, then no such ¢ exists. We conclude that Z(D,,) is trivial when n is odd. If n
is even, then t = % and consequently, X2 ez (D). Therefore, Z(D,,) is the cyclic
group of order 2 generated by x*/? when n is even.

Example 1.5 Let 77 be the group of 3 x 3 upper unitriangular matrices over Z with
the group operation being matrix multiplication. Thus,

L az a3
H = 01 ans
00 1

aiJ»eZ

This group is called the Heisenberg group. The identity element in J is clearly the
3 x 3 identity matrix and will be denoted by 1. It is easy to show that

10c¢
Z() = 010
001

cEZ

1.1.3 Central Subgroups and the Centralizer

Definition 1.5 A subgroup H of a group G is called central if H < Z(G).
Related to the center of a group is the centralizer of a subset of a group.

Definition 1.6 The centralizer of a nonempty subset X of a group G is
Co(X)={geG|g 'xg=xforallx € X}.

It is easy to verify that Cg(X) is a subgroup of G. If X = {x}, then we write
Cg(x) for the centralizer of x. Clearly,

Ce(G) = [ Colx) = Z(G).

x€G
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Notice that Cg(x) is just the stabilizer of x under the action of G on itself by
conjugation. The orbit of x under this action, called the conjugacy class of x, is the
set {g7'xg | g € G}. When G is finite, we get the class equation of G :

Gl = Z(G)| + ) _[G : Co(x], (1.2)
k

where one x; is chosen from each conjugacy class containing at least two elements.
Here, |G| stands for the order of G and [G : H] is the index of a subgroup H in G.
These notations are standard and will be used throughout the book. We will also
write |g| for the order of an element g € G.

1.1.4 The Center of a p-Group

Definition 1.7 Let p be any prime. A group G is called a p-group if every element
of G has order a power of p.

Finite p-groups are the building blocks of finite groups. The next fact regarding
their central structure is important in the study of finite groups.

Theorem 1.2 If G is a nontrivial finite p-group for some prime p, then Z(G) # 1.

Proof Suppose that |G| = n. Consider the class equation (1.2) of G. If x; € G is
not central for some 1 < k < n, then Cg(x) is a proper subgroup of G. Hence,
[G : Cs(x1)] is a positive power of p. Consequently, each summand in the sum

Z[G : Co ()]

k

is divisible by p. Since p divides |G| by hypothesis, p also divides |Z(G)|. Therefore,
Z(G) contains nontrivial elements. O

Remark 1.1 Tt is important to emphasize that G must be finite in Theorem 1.2. An
infinite p-group does not necessarily have nontrivial center. This notion is discussed
in Remark 2.8.

1.2 The Commutator of Group Elements

One can determine whether or not two group elements commute by calculating their
commutator.

Definition 1.8 Let g and & be elements of a group G. The commutator of g and h,
written as [g, 4], is

[g. =g 'h~'gh=g"'g".
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Clearly, g and h commute if and only if [g, ] = 1. Thus, the center of G can
also be characterized as

Z(G)={g€G|[g h = 1forall h € G}.

Definition 1.9 Let S = {gi, g2. ..., gn} be a set of elements of a group G.
A simple commutator, or left-normed commutator, of weight n > 1 is defined
recursively as follows:

1. The simple commutators of weight 1 are the elements of S, written as g; = [g;].
2. The simple commutators of weightn > 1 are [g1, ..., &) = [lg1, ---» &—1]> &l

We collect some commutator identities which are of utmost importance.

Lemma 1.4 Let x, y, and z be elements of a group G.

(i) xy = yx[x, y].

(ii) ¥ = x[x, y].
(i) [x. y] = [y, 27"

(iv) [x, yJF =[x, ¥].

) [xy, 2] = [x, 2Py, 2] = [x, Zlx, 2z, ylby, 2]
i) [x, yzl = [x, 2lx, yIF = [x, 2lx, y][x, ¥, 2]

i) [ ] = (e ™)

(viii) [xil, y] = ([x, y]x_l)_l.

Proof

() xy = yX(xfly”xy) = yxfx, y].

(i) ¥ =y 'xy = X(x_ly_lxy) = x[x, y].

(iii) [x, y] =x7'yay = ( _1x—1yx)‘1 = [y, "

(iv) We have

[x, y = z_'(x_'y_'xy>z

e
e ) ()

= ¥, ¥,
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(v) Observe that

[ry, 2] = () "'z vz

1

=y x—lz—lxyz

-t
=y '[x, 2Dy, 2]

=[x, 2Dy, 2]

=[x, Z][x, z, ¥][y, 2] by (i).

A similar computation gives (vi). By (vi), we have

1= [x, yy_l] = [x, y_l] [x, y]yi1 . (1.3)

This establishes (vii), and (viii) follows from (v) in a similar way. O

Lemma 1.5 (The Hall-Witt Identities) Ifx, y, and z are elements of a group, then

-1V -1 -1 I
o ] =

and

S O R

Proof By Lemma 1.4 (iii), we have

y
[x, y i z] =y

T N
= (xzx yx) yXy  Zy.

Similarly,

-1 T R
[y, Z ,x] = (yxy zy) 7z
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and

[ o] = () e
z,x ,y| =\zvz xz) xzx yx.

y

It follows that [x, y i, z]
identity in a similar way. O

z P
[y, [ x] [z, x L y] = 1. One can prove the other

1.3 Commutator Subgroups

The notion of the commutator of elements of a group can be generalized to the
commutator of subsets of a group.

Definition 1.10 Let G be a group with subset S = {sy, 52, ...}. The subgroup of
G generated by S, denoted by

gpr(S) = gp(s1, 52, ...),

is the smallest subgroup of G containing S. We call S a set of generators for gp(S).

The subgroup gp(S) of G can be obtained by taking the intersection of all
subgroups of G that contain S. A typical element of gp(S) is of the form

&1 & en
SiySiy " Sy

where 5;; € Sand ¢; € {—1, 1} for 1 <j<n.If g € G, then gp(g) is just the cyclic
subgroup of G generated by g. If S, ..., S, are subsets of G, then the subgroup
gp(S1U---\US,) is written as gp(Sy, ..., Sy).

Definition 1.11 Let X; and X, be nonempty subsets of a group G. The commutator
subgroup of X, and X; is defined as

(X1, Xo] = gp ([x1, x2] [x1 € X1, 2 € X2) .
Thus, [X;, X;] is the subgroup of G generated by all commutators [x;, x,], where x;

varies over X and x, varies over X;. In particular, [G, G] = G’ is the commutator
subgroup or derived subgroup of G.

Remark 1.2 The set of all commutators
NS {[X], )Cz] I)C] EX], X2 €X2}

does not necessarily form a subgroup of G. For instance, [x;, x,]~! may not be in §
for some [x1, x;] € S.
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If X; = X, = G, then the inverse of every element of S is contained in S by
Lemma 1.4 (iii). However, it may be that S is not a subgroup of G because the
product of two or more commutators in S is not necessarily a commutator in S.
Consider, for example, the special linear group SL,(R) whose elements are the
2 x 2 matrices with real entries and determinant 1 (the group operation is matrix
multiplication). Let I; denote the 2 x 2 identity matrix, and set

10 11
A_(—ll) andB—(Ol).

A routine check shows that —I, = (ABA)?,

=60 69 =60 6]

Thus, —1I, is a product of commutators. However, —I, is not the commutator of two
elements of SL(R). To see this, assume, on the contrary, that —I, = [C, D] for
some C, D € SL,(R). Rewriting this gives C'DC = —D, and thus D and —D are
similar matrices. Since the trace of a square matrix equals the trace of any matrix
similar to it, D and —D have equal trace. Consequently, the trace of D equals 0. Since
the determinant of D equals 1, the characteristic polynomial of D is f(1) = A% + 1.

And so, D has eigenvalues +i. This means that D is similar to the matrix ( 01 (1)) .
. . 01
Without loss of generality, we may as well assume that D = 10) Suppose that

C = (a fl) . Since CD = —DC by assumption, a computation shows that d = —a
c

and ¢ = b. Using the fact that C has determinant 1, it follows that —a> — b = 1.
This contradicts the fact that a, b € R.

Definition 1.11 can be generalized. If {X;, X5, ...} is a collection of nonempty
subsets of G, then

X1, ..., Xl = [[X1, vy Xui], Xl

where n > 2. Note that [X], ..., X,] contains all simple commutators of the form
[x1, ..., x,], where x; € X1, ..., x, € X,,. Thus,

X1, ..., Xu] = gp(x1, ..., x:] | x1 €X1, ..., X, € X).

However, [Xi, ..., X,] may not equal gp([x1, ..., x,] | x1 € X1, ..., x, € X, if
n > 3. For example (see [6]), consider the cyclic subgroups

Hy =gp((1 2)), Hy=¢gp((2 3)), and H3; = gp((3 4))
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of the symmetric group S,. A routine check confirms that [H;, H,, H3] equals Ay,
while gp([hl, hy, hz] | hy € Hy, hp € Hy, h3 € H3) equals gp( (1 3 4) ) Thus,

[Hi, H>, H3] # gp([h1, ho, h3]| by € Hy, hy € Hy, h3 € H3).

Lemma 1.6 Let G be any group.

(i) IfH < Gand [G, G] < H, then H < G and G/H is abelian. Thus, |G, G] < G
and G/|G, G] is abelian.
(it) If N < G and G/N is abelian, then |G, G] < N.

Thus, the commutator subgroup of a group is the smallest normal subgroup
inducing an abelian quotient. The factor group Ab(G) = G/[G, G] is called the
abelianization of G.

Proof
(i) Letg € Gand h € H. By Lemma 1.4 (ii),

h =g 'hg =hlh, gle H

because H contains [G, G]. Therefore, g~'Hg = H, and thus H is normal in G.
If g1 H and g H are elements of G/H, then

(g1H)(g2H) = g182H = 228181, &1H = g281H = (g2H)(g1H)

by Lemma 1.4 (i). Therefore, G/H is abelian.
(i) If gN, hN € G/N, then (gN)(hN) = (hN)(gN). Hence,

(N)~'(hN)~'(gN)(hN) = N.

We thus have g='h~'gh = [g, h] € N. It follows that [G, G] < N. O

Lemma 1.6 allows one to conveniently calculate the derived subgroup. This is
illustrated in the next few examples.

Example 1.6 Any two elements of an abelian group G commute. Thus, [G, G] = 1.

Example 1.7 We compute the commutator subgroup of the alternating group A, on
theset S = {1, 2, ..., n}. Clearly, [A,, A,] = {e} forn =1, 2, 3 by Example 1.6.

We find the commutator subgroup of A4. It is well known that A4 contains a
unique nontrivial normal subgroup

K={e. (1 223 4. (1 3)2 4. 1A 492 3},

which is an isomorphic copy of the Klein 4-group (see [1]). Since [A4 : K] = 3, the
quotient A4/K is abelian. Therefore, [A4, A4] < K, and thus [A4, A4] = K.
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Lastly, we consider the case when n > 5. In this case, A, is simple. Thus, the
only normal subgroups of A, are {e} and A,,. Since A,, is not abelian, [4,, A,] = A,.

Example 1.8 We find the commutator subgroup of the symmetric group S, on the
set S = {1, 2, ..., n}. By Example 1.6, [S,, S,] = {e} forn =1, 2.

In order to find [S,, S,] for n > 3, we use the fact that A, is a normal subgroup
of index 2 in §,, and thus S, /A, is an abelian group. First, we find [S3, S3]. Since
S3/A3 is abelian, we know that [S3, S3] <0 Aj;. Furthermore, each element of Aj
can be written as a commutator of elements in S3 (this is obvious for the identity
permutation):

(123)=[2 3,03 2]add 3 2)=[2 3), 1 2 3).

Therefore, A3 is contained in [S3, S3], and consequently, [S3, S3] = As.

Next, we show that [S4, S4] = As. Let (a b c¢) be any 3-cycle for some distinct
elements a, b, ¢ € S. This 3-cycle can be written as a commutator of elements in
S4 as

(a b ¢)y=1[(a b), (@ c D).

It follows that Ay < [S4, S4] because Ay is generated by 3-cycles. Since S4/Ay4 is
abelian, [Sy, S4] <X A4. We conclude that [Sy, S4] = Ay.

Finally, consider the case when n > 5. Once again, [S,, S,] < A, because S,/A,
is abelian. Since the only nontrivial normal subgroup of S, is A, it must be that
[Sns Su] = An.

Example 1.9 We find the derived subgroup of the dihedral group D,. Recall from
Example 1.6 that

n—1

D, ={1, x, x*, ..., X"y, xy, ¥y, ..., Xy,
where
¥=1y" =1, andxy = yx .. (1.4)

It follows from the last equality in (1.4) that

r

Xy=y " andxXy = y)" (reZ). (1.5)

Now, it is clear that [D, D;] = [D,, D,] = 1 by Example 1.6 because D; and D,
are abelian. We claim that [D,,, D,] = gp (x*) forn > 3.

From this point on, suppose n > 3 and let r and s denote integers. Choose x* €
gp (x*) . and observe that this element can be written as a commutator as follows:

2

X2 = xr'y—lyxr — xry—l r

Ty =@l
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where the second equality is a consequence of (1.5). Thus, gp (xz) < [Dy,, D).
To prove that [D,, D,] < gp (xz) , we use (1.4) and (1.5). Suppose that [a, b] €
[D,, D,]. There are four possible cases for a and b.

e Ifa=x"andb=x",then[x", x*] =1€gp (xz) .
e Ifa =x"and b = x*y, then

) 1

——
=x"egp (xz) .

Ly = x 7 (Fy)  ax x XX
[ y y y

1

— x—ry— xry — x—ry—lyx—r

e Suppose a = x"y and b = x°. Then
Wy, #]= [, ¥y € gp ()

by the previous case and Lemma 1.4 (iii).
* Suppose a = x"y and b = x*y. Then

[y, Xy = ()7 (Fy) T X'y = Xy yx'y

— xrx—syyxrx—syy — x2r—2s cgp (XZ) .

It follows that [D,. D,] < gp(x*). And so, [D,, D,] = gp(x?) forn > 3 as
claimed. In fact, [D,, D,] = gp (x*) = gp (x) whenever n > 3 is odd.

Example 1.10 We show that the derived subgroup of the Heisenberg group 7
equals its center. By Example 1.5, the center of 7 is

10c 101
Z() = 010 cely=gp 010 . (1.6)
001 001
Let
1(11612 1b1b2
a=|01a3| and b=|01 b3
001 001

be elements of 7Z°. A simple calculation shows that

10611b3 —b1a3
[a, b =01 0
00 1
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Hence, each commutator of elements of J# is central, and thus [, ] < Z(JF).
In addition, the generator of Z(7) in (1.6) is a commutator of elements of 77 :

101 110 100
010] = 010],1011
001 001 001

It follows that [J7°, ) = Z(57).

1.3.1 Properties of Commutator Subgroups

We collect several properties of commutator subgroups.
Definition 1.12 Let G be any group, and let S be a nonempty subset of G. The
normalizer of S in G, denoted by N;(S), is

N6(S) = {g € G| gS = Sg}.

If H is a subgroup of G, then Ng(H) is the largest subgroup of G in which H is
normal. If K is another subgroup of G, then K normalizes H if K < Ng(H). Clearly,
Ng(H) = Gifandonly if H < G.

Theorem 1.3 Let G be a group and H < G. Then Cg(H) < Ng(H) and the factor
group Ng(H)/Cg(H) is isomorphic to a subgroup of Aut(H).

In particular, we obtain Corollary 1.1 when H = G.

Proof By Theorem 1.1, the map
0:G — Aut(H) defined by o(h) = ¢,, where ¢;(g) = g",

is a homomorphism. Thus, o|ns), the restriction of ¢ to Ng(H), is a homomor-
phism. It is easy to verify that o|y, @) has kernel Cg(H). The result follows from
the First Isomorphism Theorem. O

Proposition 1.1 Let G be any group with subgroups H and K.
(i) [H, K] = [K, H].
(ii) [H, K] < H if and only if K normalizes H. In particular, [H, G| < H if and
onlyifH < G.
(iii) If Hy < G and Ky < G such that Hi < H and K| < K, then [H, K] <
[H, K].

We point out that (i) is valid for any two subsets H and K of G.



