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Département de mathématiques
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Asymptotics, ambiguities and resurgence

Inês Aniceto

Abstract. The appearance of resurgent functions in the context of the pertur-
bative study of observables in physics is now well established. Whether these
arise from the related study of non-linear systems or the saddle-point perturbative
analysis, one is left with an asymptotic series and the need of a non-perturbative
completion, or transseries, which includes different non-perturbative phenomena.
The complete understanding of resummation procedures and the resurgence of the
non-perturbative phenomena can then lead to a systematic approach to obtain exact
results such as strong-weak coupling interpolation, cancellation of ambiguities in
the so-called Stokes directions, and more generally the study of analytic properties
of the respective transseries solutions. These notes will give a general overview of
how to set-up resurgence in simple examples, and how to proceed towards exact
analytic results.
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2 Inês Aniceto

1 Introduction and summary

Computing physical observables of a given quantum theory, can often
only be performed via perturbation theory in either the weakly or strongly
coupled regimes. Such perturbative expansions are however often diver-
gent, with zero radius of convergence, and are defined only as asymptotic
series

〈O (g)〉 	
∑
k≥0

Okg
−k . (1.1)

whose coefficients are factorially divergent at large order1

Ok ∼ � (k + β)

Ak+β
, k � 1. (1.2)

It is well known that this divergence is connected to the existence of
non-perturbative phenomena, unaccounted for in the perturbative anal-
ysis. Resurgence is a mathematical theory which allows us to effectively
study this connection, and its consequences. Moreover, it allows us to
construct a full non-perturbative solution from perturbative data. First in-
troduced by Écalle in [1–3], modern day resurgence theory has developed
in the last three decades into an elegant mathematical tool with a diverse
set of applications [4–9]. 2

Resurgent properties have been observed in a wide range of prob-
lems in mathematical physics. They appear for example in solutions
of differential and finite difference equations (see e.g. the well stud-
ied cases of Painlevé I, II and Riccati non-linear differential equations
[20–25]). In the contexts of quantum mechanics [26, 27] and quantum
field theories [28], non-perturbative phenomena such as instantons [29]
and renormalons [30], have long been known to exist beyond pertur-
bation theory. In fact in quantum mechanical problems, it is the ex-
istence of asymptotic multi-instanton sectors which allow for a resur-
gent and unambiguous transseries solution to describe energy eigenval-
ues [31–33]. Since then, the asymptotic behaviour of perturbation the-
ory and the resurgence behind it, was found in many different examples
in physical systems, from quantum mechanics [19, 34–45], to large N
gauge theories [23,24,46–63], quantum field theories [40,44,59,64–76],
and string theory [13, 22–24,48–51,77–87].
The aim of this paper is to present a simple, hands-on approach, on the

use of resurgence in the study of asymptotic expansions with associated

1 A, β are numbers encoding the position and type of singularities of the related Borel transform.

2 For recent reviews on resurgence, transseries and summability, see [8, 10–19].
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non-perturbative phenomena. We will introduce some key ideas behind
resurgence theory in Section 2. Concepts such as transseries, Borel re-
summation, Stokes phenomena and alien calculus will be presented with
the help of simple examples, while the respective formal derivations are
referenced for the interested reader.
In Sections 3 and 4 we show the tools of resurgence at work in two sim-

ple examples: the linear ordinary differential equation (ODE) governing
the Airy function [10, 49], and the non-linear ODE behind the so-called
Müller-Israel-Stuart (MIS) theory [88, 89]. Along the way different nu-
merical methods are introduced, including convergence acceleration and
resummation. This analysis closely follows the work of [19], together
with some results of [42]. The milestones achieved for each example are:

1. Given our asymptotic expansion, we find (or make an educated guess
for) the respective transseries solution, with sectors describing both
perturbative and non-perturbative phenomena. The tools presented in
Section 2 are then used to make predictions of the relations between
those different sectors.

2. These predictions can be checked numerically to high precision. In
cases where the non-perturbative data is not known, these predictions,
together with the assumption that the transseries is resurgent, allow us
to construct a full non-perturbative solution from perturbative data.

3. Finally, from the complete resurgent transseries solution, one can per-
form resummation methods to obtain exact results away from the
asymptotic regime. Resurgence theory plays an essential role in de-
riving these results, such as the cancellation of ambiguities or strong/
weak coupling interpolation.

Such linear and non-linear ODEs are the natural starting points to show
resurgence at work. Resurgent techniques can also be applied to a much
wider range of problems, following the same steps as described above.
We finish in Section 5 with a summary of results and a discussion of
open problems in mathematical physics, where resurgence can play a key
role.

ACKNOWLEDGEMENTS. I would like to thank Romuald Janik and
Michał Spaliński for comments and suggestions during a set of lectures
I presented at Jagiellonian University in Kraków, in January 2016, based
on this work.
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2 General concepts and definitions

As a starting point, take the strong coupling regime of some observable
F (z), with coupling variable z � 1. We will further assume that using
some procedure of perturbation theory (e.g. saddle-point analysis or re-
cursion equation from differential equations) in this regime we obtain an
expansion

F(z) 	
+∞∑
n=0

Fn
zn+1

. (2.1)

which is asymptotic, with zero radius of convergence. Moreover, we
will take the large-order behaviour of the coefficients Fn to be growing
factorially

Fn ∼ n! for n � 1. (2.2)

This is a very common problem appearing in the study of observables of
interacting theories, for example in QFTs, due to the factorial growth of
the number Feynman diagrams at each loop order in perturbation theory
[29]. Furthermore, it is often the case that perturbation theory and the
associated series of the type (2.1), are the only results one can expect from
the study of the observable in question. Given the asymptotic properties
of the series, one may wonder how to make sense of the formal power
series (2.1): this will be the main question we will address at present.
This section follows largely the works [8, 11, 14, 23, 90, 91].
As the preliminary step in our quest, one would like to know how to

associate a value to (2.1) for each value of the coupling z. A well known
process (see e.g. [49]) for asymptotic series is to perform an optimal trun-
cation, which leads to very good approximations. Optimal truncation
is the truncation of the series to the so-called least term: in the regime
z � 1, the terms of (2.1) start by decreasing very rapidly, and only at
some point (the least term) start increasing. In this truncation we want to
keep terms such that

|Fn|
|z|n+1 � |Fn−1|

|z|n , for n � |z| (2.3)

In fact we can keep terms such that |Fn ||Fn−1| � |z| for n ≤ Nop (z), thus

obtaining an optimally truncated series

Fop (z) =
Nop(z)∑
n=0

Fn
zn+1

. (2.4)

Note that the least term Nop (z), will depend on the value of the coupling z
for which the series (2.1) is being evaluated at. In performing the optimal
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truncation, we obtain an extremely accurate approximation of (2.1) and
the error can be seen to be∣∣F (z)− Fop (z)

∣∣ ∼ e−Az, (2.5)

where A is a characteristic number of the problem in question. This is
the first hint of the relation between the asymptotic behaviour of (2.1)
and its non-perturbative origins: the error is non-analytic, e−Az ∼ 0 if
one expands around z ∼ ∞.
One can improve on this error by performing certain resummation pro-

cedures to the divergent tail which was left out from the truncation pro-
cedure. One such framework to address the asymptotic properties and
resummation of the series such as (2.1) is Borel analysis. In this frame-
work we introduce the Borel transform, via the following rule

B
[
1

zα+1

]
(s) ≡ sα

� (α + 1) , (2.6)

where � (α) is the gamma function. Performing this transformation to
every term of the asymptotic series (2.1), we obtain the Borel transform
associated to that series:

B [F] (s) =
+∞∑
k=0

Fk
� (k + 1) s

k . (2.7)

This series is now convergent around the origin in C, with some non-
zero radius of convergence. Note that the rule (2.6) is not well defined
for cases where the power of z−1 is non-positive (i.e. α ≤ −1). In an
asymptotic series for z � 1 these terms are of finite number and must be
excluded from the procedure of Borel analysis. They do not change the
asymptotic properties of the series and can be easily re-inserted once the
resummation procedure has been performed. The rule (2.6) which leads
to the now convergent series (2.7) can be seen more naturally as applying
an inverse Laplace transform to each of the terms in (2.1). Due to the
divergent nature of the series (2.1), this procedure can only be seen as the
inverse Laplace transform of F(z) at a formal level. Nevertheless, given
the convergent properties of (2.7) one can study the analytic properties of
this second series and sum it around the origin in C.
The Borel transform B [F] (s) will naturally have singularities (defin-

ing its radius of convergence). To study the analytic properties of (2.7)
one needs to locate these singularities in the complex s-plane (which we
shall also call the Borel plane). Within the radius of convergence, the
series (2.7) will define an analytic function, which can sometimes be
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guessed, but more often will be approximated numerically (as we shall
see later). In directions arg s = θ where there are no singularities, one
may analytically continue this function along the ray eiθR+ and define an
inverse Borel transform - or Borel resummation of F (z) along θ - by a
Laplace transform

SθF (z) =
∫ eiθ∞

0
ds B [F] (s) e−z s . (2.8)

The function SθF (z) has the same asymptotic expansion as F (z), and
for each z will give a better approximation to the value of the asymp-
totic series (2.1) than the optimal truncation method (even if the function
B [F](s) is only known as a numerical approximation).
But what happens when B[F](s) has singularities (poles and/or branch

cuts) along a direction θ? How can we assign a value for F (z) in this
case? The Laplace transform (2.8) will be ill defined as we have singu-
larities exactly on the direction of the integration contour. We then need
to choose a contour which avoids the singularities. The most natural
contours one can choose give rise to the so-called lateral Borel resumma-
tions:

Sθ±F (z) ≡ Sθ±εF (z) , for ε ∼ 0+. (2.9)

Different integration contours give rise to functions with the same asymp-
totic behaviour but which differ by non-analytic exponentially suppressed
terms. Thus choosing different contours gives rise to a non-perturbative
ambiguity and it is said that F (z) is non-Borel summable along these
singular directions θ .
As a simple example, assume that the first singularity of B [F] (s)

along a certain direction θ is at s = A, and it is a simple pole

B [F] (s)|s	A ∼ 1

s − A
. (2.10)

The difference between the two lateral Borel resummations is

Sθ+F (z)− Sθ−F (z) ∝
∮
s=A

ds
e−z s

s − A
= e−Az. (2.11)

Once again the non-analytic term e−Az appears from the analysis of the
asymptotic behaviour of (2.1), and the characteristic value A shows up as
the leading singularity of the Borel transform (2.7).
The existence of different singular directions arg s = θi on the Borel

plane associated to the original series (2.1) leads to a family of secto-
rial analytic functions {SθF (z)} all with the same asymptotic behaviour,



7 Asymptotics, ambiguities and resurgence

and which differ by non-analytic terms. In order to understand how to
“connect” each of these sectors, one needs to understand the behaviour
of the Borel transform around each singularity for all singular directions
θi , so we can learn how to jump across the direction θi and reach a dif-
ferent sector. The singular directions θi are called Stokes lines. Learning
about the behaviour of the Borel transform along Stokes lines will lead
to the construction of an unambiguous result for the resummed function,
even along these singular directions: a procedure that known as ambigu-
ity cancellation. To perform a thorough and systematic analysis of what
happens at Stokes lines we now turn to resurgence, and the realm of sim-
ple resurgent functions.

2.1 Transseries, resurgence and discontinuities

The fact that the resummations in the different sectors {SθF} differ by
non-perturbative terms hints to the fact that the full solution associated
with the observable F(z) should be some non-perturbative completion
of the asymptotic series (2.1), into what is called a transseries. Indeed,
in the calculation of energies in quantum mechanics, the transseries is
an essential step in the cancellation of ambiguities: the non-perturbative
terms are given by instanton sectors, and A is the instanton action related
to the probability of tunneling between (possibly complex) saddles of the
potential (see e.g. [26, 27, 32–36,40, 43, 92]).
A transseries is a formal series expansion both in the original variable

z � 1 and also in the non-analytic terms. We will work with the so-
called log-free height-one transseries, where the expansion is on trans-
monomials zαeS(z) with α ∈ R and S(z) is some particular convergent
series (more intricate examples where S(z) is in itself a transseries, with
compositions of exponentials and logarithms, can be also studied, see
e.g. [12]). In its simplest form, the transseries has the form

F (z, σ ) =
+∞∑
�=0

σ�F (�) (z) ∈ C
[[
z−1, σe−Az

]]
, (2.12)

where F (0)(z) is just the perturbative series (2.1) and

F (�)(z) = e−�Az��(z), � ≥ 1, (2.13)

with ��(z) generally an asymptotic series as well

�� (z) = zβ�
+∞∑
k=0

F (�)
k

zk
. (2.14)
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In most cases of interest, the leading behaviour of the asymptotic series,
given by zβ� is of the form β� = −� β, and we shall assume this form
from now on, unless otherwise stated. The transseries (2.12) is a one-
parameter transseries: it appears when one has non-perturbative sectors
such as instantons, which are exponentially suppressed with the same
associated action A, and where � is the instanton number. Note that from
calculations such as (2.11) we know that the sectorial functions will differ
by exponentially small terms e−Az , but a more careful analysis of these
differences would show that (in the case of simple resurgent functions,
as defined below) for each suppressed contribution there is an asymptotic
expansion associated with it. The parameter σ in (2.12) is the transseries
parameter, which for each particular wedge of the complex plane, selects
distinct non-perturbative completions to the original series (2.1).
There are extensions of the above transseries (2.12) to include more

parameters σi . In fact, if a given observable has different non-analytic
contributions e−Ai z , for Ai �= A (and typically also different from the
multi-instanton contributions already included in the one-parameter case
Ai �= �A), one should expect a new transseries parameter for each non-
analytic term appearing.
An asymptotic expansion F (z) (such as F(z) in (2.1) or any of the

��(z)) is said to be a simple resurgent function if its Borel transform
only has simple poles or logarithmic branch cuts as singularities. Taking
ω as a singularity, the Borel transform around this singularity will be of
the form3

B [F] (s)|s=ω ∼ aω
2π i (s − ω)

+� (s − ω)
log (s − ω)

2π i
+ ζhol (s − ω) ,

(2.16)

where aω ∈ C and �, ζhol are analytic around the origin. Moreover �(s)
will be related to a function G1 (z) by the inverse Borel transform

�(s) = B [G1] (s). (2.17)

3 Many times the Borel transform is not exactly of the shape (2.16), but instead it has square
root branch cuts. Nevertheless we will still be in the realm of simple resurgent functions if the
B
[
zγ F

]
(z) has the behaviour (2.16) where γ is commonly the “degree” of the branch cut. Typi-

cally this is related to a factorial growth of the coefficients Fk in (2.1) which differs from the factorial
growth “removed” by the Borel transform. For example, assume in (2.1) that Fn ∼ �(n + 1 − γ )

for some γ when n � 1. Then B [F] (s) in (2.7) has coefficients which grow as
Fk

� (k + 1) ∼ � (k + 1− γ )

�(k + 1) �= 1 if γ �= 0, k � 1. (2.15)

On the other hand B
[
zγ F

]
(s) =∑k≥γ Fksk−γ /�(k + 1 − γ ) will have the expected behaviour

(2.16). For a detailed analysis on this see [19].



9 Asymptotics, ambiguities and resurgence

Normally the function G1 (z) is also known as a series and requires a
resummation procedure as well. A transseries (2.12) will have resurgent
properties if the coefficients of different sectors in (2.13) F (�)

k and F (�′)
r

will be related for � close to �′. This can be seen directly at the level
of the Borel transforms by noticing that the type of relation (2.16) will
relate �� to ��′ in the same way that F and G1 are related by (2.16)
and (2.17). In other words, if we take F = �� for some particular �,
and analyse its behaviour on some particular singularity, we will see that
the function G1 in (2.17) will be ��′ for � close to �′. In fact, the value
of �′ will directly depend on the singularity we are analysing. These
relations can be checked via the so-called large-order relations, which
will be exemplified later on.
To highlight how the behaviour (2.16) is related to the non-perturbative

jump (2.11), assume that the Borel transform (2.7) has only one singular-
ity s = ω1 of the type (2.16), in some direction θ of the complex Borel
plane (see Figure 2.1). The difference between lateral Borel resumma-
tions will be given by the integration over the Hankel contour Cω around
the branch cut starting at ω1, as defined on the right of Figure 2.1:

(Sθ+ − Sθ−) F(z)=
∫
Cω

ds B [F] (s) e−s z

= −aω1e−ω1 z + e−ω1 z
∫
C0

ds

2π i
�(s) log(s) e−s z.

(2.18)

The last integration over C0 (Hankel contour now centred at the origin)
will return the discontinuity across the log cut (−2π i) multiplied by the
Laplace transform of the function � (s). Given that we have the identifi-
cation (2.17), this last part is nothing more than the resummation of the
function G1 (z). We can write4

(Sθ+ − Sθ−) F(z) = − (aω1 + Sθ−G1(z)
)
e−ω1 z + · · · . (2.19)

In the · · · we have included the possibility that the Borel transform of
G1 (z) would also have a singularity along the same direction θ . If G1 (z)
is an analytic function, there are no more contributions and Sθ−G1(z) =
SθG1(z). But if B [G1] (s) has a singularity along the direction θ, say at

4 If G1 (z) is in itself asymptotic with singularities along direction θ , we need to choose a lateral
resummation for G1 (z), which will be directly linked to the choice of the discontinuity for the log
branch cut chosen.
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Figure 2.1. On the left: lateral Borel resummation contours around singularity
s = ω. On the right: Hankel contour around the branch cut starting at s = ω.

s = ω2

B [G1] (s)|s=ω2 ∼
aω2

2π i (s − ω2)

+ B [G2] (s − ω2)
log (s − ω2)

2π i
+ holomorphic,

(2.20)

then one can expect that this singularity will also contribute to the overall
difference between lateral Borel resummations of F (z), and the position
of this singularity will naturally be at s = ω1 + ω2 (thus its contribution
will be exponentially suppressed by e−(ω1+ω2)z in (2.1)). This contribution
can in fact be visible if we analyse the Borel transform B [F] (s) at s =
ω1 + ω2 ≡ ω, and it will be of the same form as B [G1] (s)|s=ω2 up to an
overall constant

B [F] (s)|s=ω≡ω1+ω2 ∼
C2 aω2

2π i (s − ω)

+ C2 B [G2] (s − ω)
log (s − ω)

2π i
+ holomorphic.

(2.21)

To reach this new singularity, coming from B [G1] (s), there are in gen-
eral different ways to analytically continue the paths of resummation to
avoid the previous singularities (in this case only one), passing these sin-
gularities from above or from below. These different paths of analytic
continuation to reach each singular point are encoded in the jump of
F (z) across the Stokes line, through a weighed average of such paths
(see [14,90]).
The difference between lateral Borel resummations along a Stokes line

defines the discontinuity of F (z) across that line:

(Sθ+ − Sθ−) F(z) ≡ −Sθ− ◦ DiscθF(z). (2.22)
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For the example shown above (where each asymptotic expansion F (z)
and Gi (z) will only have one independent singularity each in the Stokes
direction θ), this discontinuity will be given by the sum of the contribu-
tions of all the differences between lateral Borel resummations:

DiscθF (z)=
(
aω1 + G1 (z)

)
e−ω1 z + C2

(
aω2 + G2 (z)

)
e−(ω1+ω2) z + · · ·

=
∑

ωn∈Singθ
Cn
(
aωn + Gn (z)

)
e−
∑n

j=1 ω j z. (2.23)

In the above result, Singθ = {ωi } is the collection of singularities ap-
pearing in all asymptotic expansions in the direction θ . The constants Cn

reflect the weighed average of paths that encode the contribution of the
singularities of other Borel transforms B [Gn] (s) to the discontinuity of
the original asymptotic series F (z), where

B [Gi ] (s)|s=ωi+1∼
aωi+1

2π i (s − ωi+1)

+ B [Gi+1] (s − ωi+1)
log (s − ωi+1)

2π i
+ holomorphic.

(2.24)

We have assumed that the singular behaviour of the Borel transform of
F(z) at ω ≡ ∑n

j=1 ω j (for n > 1), originated solely from the behaviour
of B[Gn−1] at s = ωn (and equivalently for the Gi (z)). More generally,
the Borel transform of the asymptotic expansion F(z)will have a singular
behaviour at ω ≡∑n

j=1 ω j

B [F] (s)|s=ω≡∑n
j=1 ω j

∼ C0,n aωn
2π i(s−ω)

+ C0,n B [Gn] (s−ω) log(s−ω)2π i
+ holomorphic,

(2.25)

where the C0,n can have contributions from the singularities of all the
sectors Gi (z), as well as a contribution not associated to any of these.
In this case, (2.22) and (2.23) still hold true, but the explicit form of the
coefficients Cn ≡ C0,n will be more involved. For the Borel transforms
of Gi(z) we also expect the behaviour

B [Gi ] (s)|s=ω≡∑n
j=i+1 ω j

∼ Ci,n aωn
2π i (s − ω)

+ Ci,n B [Gn] (s − ω)
log (s − ω)

2π i
+ holomorphic,

(2.26)

and an expression similar to (2.23) can be found for their discontinuity.
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In the interest of systematically determining the general explicit formu-
las for the discontinuity across Stokes directions,5 we now turn to alien
calculus. The discontinuous jump across Stokes lines, given by (2.22),
naturally defines another operator called the Stokes automorphism Sθ

Sθ+ = Sθ− ◦ Sθ = Sθ− ◦ (1− Discθ ) . (2.27)

The Stokes automorphism acts on the set of simple resurgent functions
(which forms a subalgebra of C

[[
z−1
]]
), and will induce a differentiation

operation on the same algebra via exponentiation (see e.g. [90]):6

Sθ = exp
{
�θ

}
. (2.28)

The operator�θ is called a directional differentiation, and can be decom-
posed into components which depend only on each of the singularities
existing in the direction θ . The Stokes automorphism in the direction θ
becomes

Sθ = exp

{ ∑
ωi∈Singθ

e−ωi z�ωi

}
. (2.29)

These alien derivatives �ω are a differentiation (obey Leibnitz rule, as
shown below in a simple example) and have the following properties:7

for a resurgent function F (z)

• if ω is not a singular point in the Borel plane, then �ωF = 0;
• if ω is the only (or the first) singular point in the direction θ of Borel
plane, then (2.16) holds true, and �ω is related to the algebraic struc-
ture of the Borel transform at the singular point (shedding the func-
tional structure)

Sθ (�ωF) = −aω − SθG (2.30)

or equivalently �ωF(z) = −aω − G(z);

5 Each term in (2.23) can be directly determined by the analysis of singularities of Borel transforms
for each sector F(z) and Gi (z). Nevertheless, it is extremely valuable to have an approach which
uses the information that these are simple resurgent functions, with a set of singularities in each
singular direction θ , to systematically construct a general formula for the discontinuity.

6 In an equivalent way, the automorphism T : f (x) → f (x + 1) which defines translations also

induces a differentiation via T = exp
(
d
dx

)
, which can be checked by a Taylor expansion of this

exponential.

7 These properties can be checked by expanding the exponential in (2.29) and taking into consid-
eration the different paths of analytic continuation one can take to reach a given singularity, see
e.g. [14].
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• if we have a collection of singular points ω ∈ {ω1, ω1 + ω2, · · ·
· · · , ∑i ωi , · · · } on the Borel plane, then for ω ≡ ∑n

i=1 ωi the alien
derivative �ω will be given by

�ωF=−
n∑
s=1

1

s

∑
0=m0<m1<···<ms=n

s−1∏
r=0

Cmr ,mr+1
(
aωn+Gn

)
, (2.31)

where the Cm,n are defined in (2.25) and (2.26).

The exponential factors appearing in (2.29) are an essential part of the
construction of the jump across the Stokes line, as they will be respon-
sible for the exponential weights appearing in (2.23). Another definition
which will be of importance is the pointed alien derivative

�̇ω = e−ωz�ω. (2.32)

If we expand the exponential in (2.29) we find

SθF(z)

= F(z)+
∑
r≥1

ωni ∈Singθ

1

r !e
−(ωn1+ωn2+···+ωnr )z�ωn1

�ωn2
· · ·�ωnr

F (z) . (2.33)

The jump of F(z) across the Stokes direction θ is then

Sθ+F − Sθ−F
=
∑
r≥1

ωni ∈Singθ

1

r !e
−(ωn1+ωn2+···+ωnr )z Sθ−

(
�ωn1

�ωn2
· · ·�ωnr

F (z)
)
. (2.34)

Take the example given above where F (z) has a singularity in the Borel
plane at s = ω1, each of the higher sectors Gi (z) have also one singular-
ity in the Borel plane at s = ωi+1, with behaviour around the singularities
given by (2.16) and (2.24), respectively. We can directly write the non-
zero alien derivatives acting on these functions:

�ω1F(z) = −aω1 − G1 (z) , �ωi+1Gi (z) = −aωi+1 − Gi+1 (z) . (2.35)

The set of all singularities appearing in the direction θ is Singθ =
{ωi , i ∈ N}. It is not hard to see that the only terms in (2.33) acting
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non-trivially on F (z) are

SθF (z)

= F(z)+
(
e−ω1z�ω1 +

1

2!e
−(ω1+ω2)z�ω2�ω1

+ 1
3!e

−(ω1+ω2+ω3)z�ω3�ω2�ω1 + · · ·
)
F (z)

= F(z)+
∑
n≥1

(−1)n
n! e−

∑n
i=1 ωi z

(
aωn + Gn (z)

)
.

(2.36)

Comparing with (2.23) and taking into consideration (2.27), we find an
agreement with the expression found before for the discontinuity of F (z)
with the identification of the constants Cn = (−1)n

n! .

2.2 Some properties of the alien derivative revisited

There are two major properties of the alien operator �ω extremely use-
ful in the study of the Stokes phenomena occurring across singular di-
rections: �ω is a differentiation, and the pointed alien derivative �̇ω as
defined in (2.32) commutes with the natural derivative

[
�̇ω,

d
dz

] = 0. In
this subsection we follow [14] and analyse these two properties in more
detail.
The alien derivative operator is indeed a differentiation, in the sense

that it obeys Leibnitz rule. Let F (z) and G(z) be simple resurgent func-
tions. Then

�ω (F(z)G(z)) = (�ωF) (z)G(z)+ F(z) (�ωG(z)) . (2.37)

This can be clearly seen at the level of the respective Borel transforms for
simple examples. Start by noting that the product of two simple resurgent
functions will correspond to the convolution of their Borel transforms

B [F G] (s)=B [F] ∗ B [G] (s)=
∫ s

0
dζ B [F] (ζ )B [G] (s − ζ ). (2.38)

For simplicity take the case of the Borel transforms being simple poles at
s = ω for both functions F,G:

B [F] (s) = a

2π i (s − ω)
, B [G] (s) = b

2π i (s − ω)
. (2.39)

The alien derivatives acting on each of these resurgent functions give non-
zero results at s = ω: �ωF(z) = −a, �ωG (z) = −b. One can easily



15 Asymptotics, ambiguities and resurgence

see that a resummation (2.8) of each of these Borel transforms will lead
to the relation SθF(z) = a

bSθG(z). The Borel transform of the product
of the two functions will be:

B [F G] (s) = a b

(2π i)2

∫ s

0
dζ

1

ζ − ω

1

s − ζ − ω

= a b

(2π i)2
1

s − 2ω
(∫ s

0
dζ

1

ζ − ω
+
∫ s

0
dζ

1

s − ζ − ω

)
= 2 a b

(2π i)2 (s − 2ω) log
(
1− s

ω

)
, (2.40)

where we assumed |s| < |ω|. Note the appearance of a new pole at
s = 2ω, and a log cut at s = ω. We shall firstly focus on the singular
behaviour at s = ω. From the above result we can now read

B [F G] (s) = � (s − ω)
log (s − ω)

2π i
+ holomorphic. (2.41)

The function

� (s) ≡ B [H ] (s) = 2 a b

(2π i) (s − ω)
(2.42)

corresponds to the Borel transform of a function H (z), such that the
only non-zero alien derivative acting on the product FG is given by
�ω (F G) (z) = −H(z). Given the Borel transforms of F and G, it is
not difficult to note that

� (s) = a B [G] (s)+ bB [F] (s). (2.43)

Consequently for this simple example we have just shown that the oper-
ator �ω obeys the Leibnitz rule:

�ω (F G) (z) = −a G(z)− b F(z)

= �ωF (z) G(z)+�ωG (z) F(z).
(2.44)

One could worry that the new singularity at s = 2ω for the Borel trans-
form of the product F G would give rise to a new non-zero alien deriva-
tive�2ω. Given that neither Borel transforms of F orG have a singularity
at this point, one expects that �2ω (F G) = 0, as it is a differentiation.
But if one analytically continues (2.40) past the first singularity s = ω we
find that the residue at s = 2ω is non-zero. This is not an inconsistency
however, because the alien derivative can be defined via a combination
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of different analytic continuations of the paths of integration avoiding the
previous singularities (in our case s = ω).8

Another important property of the alien derivative is its commutation
relations with the usual derivative dz ≡ d

dz . Firstly note that dz commutes
with the lateral Borel resummations. Using (2.7)

dzSθ±F(z) =
∫ e±iε∞

0
ds B [F] (s) (−s) e−s z

= −
∫ e±iε∞

0
ds

+∞∑
k=0

Fksk+1

� (k + 1) = Sθ± (dzF) (z),
(2.45)

and we conclude that dzSθ± = Sθ±dz . From this result and (2.27) we
easily obtain

dzSθ+ = dzSθ−◦Sθ = Sθ−◦Sθ dz ⇔ Sθ−dz Sθ = Sθ−Sθ dz, (2.46)

from which we see that dz also commutes with the Stokes automorphism.
Now using the definition of the Stokes automorphism in terms of the

pointed alien derivatives, Sθ = exp
(∑

ωi∈Singθ �̇ωi

)
, we conclude that

the pointed alien derivative commutes with the usual derivative[
�̇ω,

d

dz

]
= 0. (2.47)

With this relation it is now easy to determine the commutation relations
of the usual derivative and the regular alien derivative �ω:[

�ω,
d

dz

]
= −ω�ω. (2.48)

These properties will allow us to find a connection between alien calcu-
lus and usual calculus, thus providing a way to determine the action of
the alien derivative from the knowledge of the relevant transseries: this
comes in the form of a set of equations called bridge equations.

2.3 Bridge equations

In the context of non-linear problems in ordinary differential equations,
the transseries solution F (z, σ ) (we are taking the simplest one-parame-
ter example (2.12)) will obey a particular non-linear ODE in the variable

8 Using (2.31), we can write �2ω(FG) = −C0,2 − 1
2C0,1C1,2, where the constants Ci, j can be

read from the local behaviour of B[FG](s) at s = ω and s = 2ω (C0,1 = 1 and C0,2 = −a b,
respectively), as well as of �(s) at s = ω (C1,2 = 2a b). We then conclude that �2ω(FG) = 0.
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z. Given that the pointed alien derivative commutes with the usual deriva-
tive,

[
�̇ω, dz

] = 0, and that the transseries depends on two commuting
parameters z and σ , [dz, dσ ] = 0, one finds that �̇ωF and dσ F will obey
the same linearised ODE (in variable z).9 As these are two complete
solutions of the same ODE, it follows that they must be proportional

�̇ωF = Sω (σ )
dF

dσ
, (2.49)

with the proportionality factor only allowed to depend on the parameter
σ via some Taylor expansion:

Sω (σ ) =
+∞∑
k=0

S(k)ω σ k . (2.50)

The equations (2.49) are Écalle’s bridge equations. The coefficients in
the expansion of the proportionality factor (2.50) will depend on the spe-
cific problem one is solving, i.e. the ansatz used for the transseries and
the type of singularities in it.10 The constants S(k)ω appearing in (2.50) are
the well-known Stokes coefficients (or Stokes constants), which encode
the Stokes phenomena across the singular Stokes directions. They natu-
rally appear in the analysis of singularities in the Borel plane, as we will
see in the examples below. Note that if the transseries has more than one-
parameter (more than one singular direction) the bridge equations will
reflect this (see for example Section 4 of [23], and [19]).
We shall now turn to some applications, and detail how to use resur-

gence in different examples of ODEs. In particular we will focus on the
construction of transseries, the resurgent analysis of Borel transforms and
analytic properties of the transseries solutions (such as varying z ∈ C,
performing strong-weak coupling interpolation and how to deal with the
cancellation of ambiguities, see e.g. [42, 55, 60]). The first example we
will discuss is of a linear ODE: the very well known example of the Airy
function.

9 This linearised ODE is directly obtained from the original ODE for the transseries F (z, σ ).

10 Given a particular transseries and using the bridge equations, many of these constants will in fact
be zero.



18 Inês Aniceto

3 The simplicity of linear differential equations:
the Airy function

The Airy function example has been thoroughly studied from the point
of view of resurgence and Stokes phenomena, being the quintessential
example of these phenomena. It has been studied from the perspective
of saddle-point analysis and hyperasymptotics (see [49,93–95] and refer-
ences therein), and of resurgence techniques (see e.g. [10,49]). Presently,
we will provide a brief analysis of the known results, together with the
numerical checks and applications which can be performed. This is a
very good setting to introduce many of these numerical checks, which
can then be generalised to cases with more structure, such as the one
studied in the following Section.
The linear ODE describing the Airy function is

Z
′′
(κ)− κ Z(κ) = 0, (3.1)

whose solutions can be written in integral form as

Zγ = 1

2π i

∫
γ

du e−V (u) , V (u) = −κu + u3

3
. (3.2)

The path γ is a contour chosen such that the integral converges. There are
two homologically independent contours γ originating two independent
solutions of (3.1), usually denoted by ZAi and ZBi. A general solution to
(3.1) will be a linear combination of these two, forming a (two-parameter)
transseries.
Given the integral form of the solution (3.2) we will analyse this prob-

lem perturbatively in two ways:

1. Take the solution (3.2) as a zero dimensional path integral and perform
saddle-point analysis;

2. Construct a transseries solution and perform resurgent analysis di-
rectly from (3.1).

3.1 Saddle-point analysis

In order to construct explicit perturbative solutions of (3.2) as asymptotic
expansions, one can perform saddle-point analysis. The saddle-points of
the potential in (3.2) are

V ′(u) = −κ + u2 = 0 ⇔ u�± = ±√
κ, (3.3)

with V
(
u�±
) = ∓ 2

3κ
3/2. The leading contribution from each saddle to

the exponential in the integrand of (3.2) can be found from the expansion


