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PREFACE

The present volume is slightly connected to the conference organized in
Budapest, January 2001 to the honour of Vera Sés and Andrds Hajnal
on the occasion of their 70th birthdays. Namely, we mainly asked the
invited speakers of that conference to write survey papers on their favorite
subjects. Therefore the volume contains strong and well-written surveys
in the areas of the celebrated colleagues: mostly in combinatorics, graph
theory, less in number theory and set theory. The authors gave the up-to-
date state of the art in their subjects, put the recent results into integral
framework. Examples are listed below. The other papers contain original
research results.

Matthias Beck, Xueqin Wang, and Thomas Zaslavsky find a nice, so-
called unifying generalization of different versions of Sperner’s theorem.
They found a uniform handling of several different generalizations.

Béla Bollobéds and Alexander Scott summarize different results on dis-
crepancies of graphs and hypergraphs.

Eva Czabarka, Ondrej Sykora, Ldszl6 A. Székely and Imrich Vrto survey
some bounds on biplanar crossing numbers of graphs which is the sum of
the crossing numbers over all partitions of a graph into two planar graphs.

Andras Frank studies the different notions of edge-connectivity of
graphs, digraps and hypergraphs and uses properties of submodular func-
tions to get different theorems on them. He gives an extensive survey of the
results concerning orientations and connectivity augmentations in a general
setting.

Kalman Gyéry surveys when we can get (almost) complete powers as
the product of consecutive terms of an arithmetic progression or binomial
coefficients. The results are mostly negative as it turns out from the nice
overview of classical papers of Erdés and Selfridge as well as the recent ones
of the surveyer and others.

Istvan Juhdsz and Andrzej Szymanski present a purely topological gen-
eralization of Fodor’s theorem called “the pressing down lemma”. By means
of it, the authors prove a partial generalization of this framework of Solo-
vay’s celebrated stationary set decomposition theorem.
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In his extensive survey paper, Alexandr Kostochka summarizes the re-
sults on the minimum number of edges in color-critical graphs and hyper-
graphs.

Michael Krivelevich and Benny Sudakov give an extensive survey on
pseudo random graphs with emphasis on the results obtained by means of
the investigation of the eigenvalues of the adjacency matrix.

Jaroslav Nesetiil deals with questions and results concerning order-
theoretic properties of the homomorphism order of graphs, but the author
surveys upper bounds, suprema and maximal elements of the homomor-
phism order lattice in other interesting finite structures too. The author
also studies minor closed classes of graphs, shows how the order setting
captures Hadwiger conjecture and suggests some new problems too.

Andras Recski and David Szeszlér investigate VLSI routing algorithms,
especially the influence of Gallai’s Algorithm on them. They show the
first forty years of the influence on VLSI design of the classic result on the
perfectness of interval graphs.

Andrds Séarkozy’s paper describes advance in a specific question, the
possible behaviour of representation functions. We take a set A of positive
integers, and consider 7 (n), the number of representations of n as a sum of
k elements of A, or variants where the order is neglected or where an element
can be used only once. Typical questions are whether such a function can
be monotonic, or can be very near to a given regular function. The author
presents plenty of results and unsolved problems.

Andrew Thomason presents results and methods concerning the min-
imum number of edges guaranteeing a given graph minor. It turns out
that the extremal graphs are pseudo-random. The survey describes what is
known about the extremal function and discusses some related matters.

Robert Tijdeman’s survey covers a broad area, with main emphasis on
tilings and balanced words. We learn how words with small complexity
(that is, with a small number of different subwords of length n for every n)
are connected with balanced words, where the number of occurrences of
any fixed letter in subwords of given length is almost constant, and with
sequences given by the integer part of a linear function.

The organizers of the conference gratefully acknowledge the financial
support of the High Level Scientific Conferences program of the European
Union (contract No. HPCF-CT-2000-00419).

The editors
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A UNIFYING GENERALIZATION OF SPERNER’S
THEOREM

M. BECK, X. WANG and T. ZASLAVSKY*

Dedicated to the memories of Pdl Erdés and Lev Meshalkin

Sperner’s bound on the size of an antichain in the lattice P(S) of subsets of a
finite set S has been generalized in three different directions: by Erdds to subsets
of P(S) in which chains contain at most r elements; by Meshalkin to certain
classes of compositions of S; by Griggs, Stahl, and Trotter through replacing
the antichains by certain sets of pairs of disjoint elements of P(S). We unify
these three bounds with a common generalization. We similarly unify their
accompanying LYM inequalities. Our bounds do not in general appear to be
the best possible.

1. SPERNER-TYPE THEOREMS

Let S be a finite set with n elements. In the lattice P(S) of all subsets of S
one tries to estimate the size of a subset with certain characteristics. The
most famous such estimate concerns antichains, that is, subsets of P(S)
in which any two elements are incomparable.

Theorem 1.1 (Sperner [11]). Suppose Aj, ..., An C S such that Ay ¢ A;
for k # j. Then m < ( [7172 J)' Furthermore, this bound can be attained for
any m.

We attain the bound by taking all |3 ]-element subsets of S, or all

[5]-element subsets, but in no other way. There are many ways to prove

*Research supported by National Science Foundation grant DMS-0070729.
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Sperner’s bound and the near-uniqueness of the maximal example; several
of them will be found in the opening chapters of Anderson’s lovely intro-
ductory book [1]. The most famous approach is perhaps that of the “LYM
inequality”; see Theorem 2.1 below.

Sperner’s theorem has been generalized in many different directions.
Here are three: Erdés extended Sperner’s inequality to subscts of P(S) in
which chains contain at most r elements. Meshalkin proved a Sperner-like
inequality for families of compositions of S into a fixed number of parts, in
which the sets in each part constitute an antichain. Finally, Griggs, Stahl,
and Trotter extended Sperner’s theorem by replacing the antichains by sets
of pairs of disjoint elements of P(S) satisfying an intersection condition.
In this paper we unify the Erdds, Meshalkin, and Griggs-Stahl-Trotter
inequalities in a single generalization. However, except in special cases
(among which are generalizations of the known bounds), our bounds are
not the best possible.

For a precise statement of Erdés’s generalization, call a subset of P(5)
r-chain-free if its chains (i.e., linearly ordered subsets) contain no more
than r elements; that is, no chain has length r.! In particular, an antichain
is 1-chain-free. The generalization of Theorem 1.1 to r-chain-free families is

Theorem 1.2 (Erdés [4]). Suppose {Ai,...,An} € P(S) contains no
chains with  + 1 elements. Then m is bounded by the sum of the r largest
binomial coeflicients (Z), 0 < k < n. The bound is attainable for every n

and r.

Sperner’s theorem is the case r = 1. To attain the bound take all subsets
of sizes |25t | < k < | 25=1] or all of sizes [n=tl] <k < [22=17; these
are the only ways.

Going in a different direction, Sperner’s inequality can be generalized
to certain ordered weak partitions of S. We define a weak partial com-
position of S into p parts as an ordered p-tuple (Aj, ..., A) of sets Ay,
possibly void (hence the word “weak”), such that Ay,..., A, are pairwise
disjoint and A;U---UA, € S. If A;U---UA, = S, we have a weak compo-
sition of S. A Sperner-like inequality suitable for this setting was proposed
by Sevast’yanov and proved by Meshalkin (see [9]). By a p-multinomial
coefficient for n we mean a multinomial coefficient (a1.-1-17, a,,)* where a; > 0

and a3 + -+ +ap = n. Let [p] := {1,2,...,p}.

"The term “r-family” or “k-family”, depending on the name of the forbidden length,
has been used in the past, but we think it is time for a distinctive name.
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Theorem 1.3 (Meshalkin). Let p > 2. Suppose (Aji,....Ajp) for j =
1,...,m are different weak compositions of S into p parts such that, for
each k € [p|, the set {A;r : 1 < j < m} (ignoring repetition) forms an
antichain. Then m is bounded by the largest p-multinomial coefficient for
n. Furthermore, the bound is attainable for every n and p.

This largest multinomial coefficient can be written explicitly as

(EEDIEE0a

where p =n — pl_%J. We attain the bound by choosing any set K C [p] of
size p and taking all weak compositions (Aj1, ..., Ajp) in which [Ajx| = [7]
if k € K and |Ajx| = [3]if k ¢ K. Hochberg and Hirsch [6] showed that no
other family of weak compositions of S has maximum size. Meshalkin’s the-
orem and the completion by Hochberg and Hirsch are curiously neglected:
we have not seen them mentioned in any book except [7].

To see why Meshalkin’s inequality generalizes Sperner’s Theorem, sup-
pose Ay,..., A;y C S form an antichain. Then S—A;,...,5— A,, also form
an antichain. Hence the m weak compositions (4;,S — A;) of S into two
parts satisfy Meshalkin’s conditions and Sperner’s inequality follows.

Yet another generalization of Sperner’s Theorem is

Theorem 1.4’ (Griggs-Stahl-Trotter [5]). Suppose {Ajo, ..., Ajq} for j =
1,...,m are chains of size ¢ + 1 in P(S) such that Aj; € Ay for all i and
l and all j # k. Then m < (L(n,'i;()]/zj)' Furthermore, this bound can be
attained for all n and q.

An equivalent, simplified form of this result (in which A; = Ajo, Bj =
S — Ajq, and n replaces n — q) is

Theorem 1.4. Let n > 0. Suppose (A;, Bj) are m pairs of sets such that
A;NBj = & for all j, Aj N By, # @ for all j # k, and all |A;| + |Bj| < n.
Then m < (L'"T/l? J) and this bound can be attained for every n.

Sperner’s inequality follows as the special case in which Ay,..., 4, C S
form an antichain and B; = § — A;. To attain the bound in Theorem 1.4’
take {40} to consist of all subsets of [n — ¢ of size |*51], or all of size
[51]. Then let Aj, = AjoU{n—q+1,...,n—q+k}. In Theorem 1.4,
take Aj = Ajo and B]‘ = [77] — Aj
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Theorems 1.2, 1.3, and 1.4 are incomparable generalizations of Sperner’s
Theorem. We wish to combine (and hence further generalize) these gener-
alizations. To state our main result, we define a weak set composition as
a weak composition of any set S. Our generalization of Sperner’s inequality
is:

Theorem 1.5. Fix integers p > 2 and v > 1. Suppose (Aj1,...,Ajp)
for j = 1,...,m are different weak set compositions into p parts with the
condition that, for all k € [p] and all I C [m] with |I| = r + 1, there exist
distinct i,j € I such that either Ay, = Ajj, or

(1) AikmUAjl ?é@#AjkﬂUAu,
14k ’ Ik

and let n := maxj<j<m (|Aj1| + o+ IA]-,,|). Then m is bounded by the
sum of the rP largest p-multinomial coefficients for integers less than or

equal to n.

Think of the p-multinomial coefficients as a sequence arranged in weakly
descending order. Then if 7P is larger than (T;p), the number of p-
multinomial coefficients, we regard. the sequence of coefficients as extended
by 0’s.

The reader may find the statement of this theorem somewhat difficult.
We would first like to show that it does generalize Theorems 1.2, 1.3, and 1.4
simultaneously. The last follows easily as the case 7 = 1, p = 2. Theorem
1.3 can be deduced by choosing 7 = 1 and restricting the weak compositions
to be compositions of a fixed set S with n elements. Finally, Theorem 1.2
follows by choosing p = 2 and the weak compositions to be compositions
of a fixed n-set into 2 parts. What we find most interesting, however, is
that specializing Theorem 1.5 yields three corollaries that generalize two at
a time of Theorems 1.2, 1.3, and 1.4 yet are easy to state and understand.
Section 4 collects these corollaries.

We came to Theorem 1.5 through seeking a common generalization of
Erdds’s and Meshalkin’s theorems (see Corollary 4.1); our original motiva-
tion was, in part, surprise at the lack of general awareness of Meshalkin’s
result. When we learned of the Griggs-Stahl-Trotter theorem, we could
not be satisfied until we succeeded in extending our result to include it as
well. (Fortunately for us, we did not encounter a fourth kind of Sperner
generalization.)

The condition of the theorem implies that each set Ay = {Ajk 1 ] €
[m]} (ignoring repetition) is r-chain-free. We suspect that the converse is
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not true in general. (It is true if all the weak set compositions are weak
compositions of the same set of order n, as in Corollary 4.1.)

All the theorems we have stated have each a slightly stronger companion,
an LYM inequality. In Section 2, we state these inequalities and show how
Theorems 1.1-1.5 can be deduced from them. The proofs of Theorem 1.5
and the corresponding LYM inequality are in Section 3. After the corollaries
of Section 4, in Section 5 we show that some, at least, of our upper bounds
cannot be attained.

2. LYM INEQUALITIES

In attempting to estimate the order of the free distributive lattice with
n generators, Yamamoto came up with the following result, which was
rediscovered by Meshalkin in the course of proving his Sperner generalization
(Theorem 1.3) and still later by Lubell with a classic short proof. In
the meantime Bollobas had independently proved even a generalization
(Theorem 2.4 below). The result is the famous LYM inequality, that has
given its name to a whole class of similar relations.

Theorem 2.1 (Yamamoto [12, §6], Meshalkin [9, Lemmal, Lubell [8]).
Suppose Ay, ..., Am C S such that Ay Q Aj for k # j. Then

m

il

S
IN
-

Sperner’s inequality follows immediately by noting that maxy ('Z) =

n
(Ln/2])'

An LYM inequality corresponding to Theorem 1.2 appeared to our
knowledge first in [10]:

Theorem 2.2 (Rota-Harper). Suppose {Ay,..., An} C P(S) contains no
chains with r + 1 elements. Then

Deducing Erdés’s Theorem 1.2 from this inequality is not as straight-
forward as the connection between Theorems 2.1 and 1.1. It can be done
through Lemma 3.1, which we also nced in order to deduce Theorem 1.5.
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The LYM companion of Theorem 1.3 first appeared in [6]; again, Me-
shalkin’s Theorem 1.3 follows immediately.

Theorem 2.3 (Hochberg-Hirsch). Suppose (Aj1,...,Ajp) forj=1,...,m
are different weak compositions of S into p parts such that for each k € [p]
the set {Ajr = 1 < j < m} (ignoring repetitions) forms an antichain. Then

m 1
<1

J=1 (IAJ’1|~,~‘7~,IAJ~,,|)

The LYM inequality corresponding to Theorem 1.4 is due to Bollobds.

Theorem 2.4 (Bollobds [3]). Suppose (Aj, B;) are m pairs of sets such
that AjN Bj = @ for all j and A; N\ By, # @ for all j # k. Then

m 1
> TG <l

=1 1451

Once more, the corresponding upper bound, the Griggs-Stahl-Trotter
Theorem 1.4, is an immediate consequence.

Naturally, there is an LYM inequality accompanying our main Theorem
1.5. Like its siblings, it constitutes a refinement.

Theorem 2.5. Let p > 2 and r > 1. Suppose (Aj1,...,Aj,) for j =
1,...,m are different weak compositions (of any sets) into p parts satisfying
the same condition as in Theorem 1.5. Then

m
1 .
- = < T.I)‘
Z (lAj\I+"'+|Ajp|) =
J=1 VA ] Ayl

Example 2.1. The complicated hypothesis of Theorem 2.5 cannot be re-
placed by the assumption that each Ay is r-chain-free, because then there
is no LYM bound independent of n. Let n > p > 2, S = [n], and
A= {(A, (n},{n—1},....{n-p+2}) : A€ Al} where A is a largest
r-chain-free family in [n — p + 1], specifically,

A= UPj([?‘),—p-i-l])

Jjel
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where

n—p+1-—r n—p+1-r n—p+1-r
I= , o= —17.

The LYM sum is

1 1A
ZW—ZW

Ac A (lAl,l,....l) A€A,

_Z<'n—p—|—1> g!
- K . - '
i j (G+p-1)

B U VU BE R
— )

i (P =145

— 00 as n — Q.

There is no possible upper bound in terms of n.

3. PROOF OF THE MAIN THEOREMS

Proof of Theorem 2.5. Let S be a finite set containing all Aj;, for
j=1,...,mand k=1,...,p, and let n = |S|. We count maximal chains
in P(S). Let us say a maximal chain separates the weak composition
(Aq,...,Ap) if there exist elements @ = Xy € X;; €--- C X;, = S of the
maximal chain such that A, C X;, — Xj, _, for each k. There are

n
@) <|Al|+...+ 1A l>|A1|!"'|A7,|!(n— IAI'—"-—|AP|)!
P

maximal chains separating (A1, ..., 4,). (To prove this, replace maximal
chains @ C {z1} C {x1,29} C --- C S by permutations (r1,Z2,...,Zn)
of S. Choose |A;| + -+ |A,] places for A; U---U Ap; then arrange A; in
any order in the first |A| of these places, Ay in the next |Ayl, etc. Finally,
arrange S — (A; U--- U A,) in the remaining places. This constructs all
maximal chains that separate (Ay,...,4p).)
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We claim that every maximal chain separates at most r” weak par-
tial compositions of |S|. To prove this, assume that there is a maximal
chain that separates N weak partial compositions (A;1,...,Ajp). Con-
sider all first components A;; and suppose r + 1 of them are different,
say A1, As1,...,Ar+11. By the hypotheses of the theorem, there are
i,i" € [r+1] such that A;; meets some Ay where I’ > 1 and A;;; meets some
Aj where | > 1. By separation, there are ¢ and ¢} such that 4;; C X, —Xo
and A;q C erl — Xo, and there are q;_1, g1, q;_y, qp such that ¢y < g1 < g,
¢y < qp_y < qp, and

Ay C Xy — Xy, and A C Xy — X

@ QG

Since A;; meets Ay, there is an element a;y € Xy, — X, ah it follows that
! -1

q;,_1 < q. Similarly, ¢—; < ¢j. But this is a contradiction. It follows
that, amongst the N sets Aji, there are at most r different sets. Hence
(by the pigeonhole principle) there are [N/r] among the N weak partial
compositions that have the same first set A;;.

Looking now at these [N/r] weak partial compositions, we can repeat
the argument to conclude that there are [ [N/r]/r| > [N/r?] weak partial
compositions for which both the A;;’s and the A;o’s are identical. Repeating
this process p — 1 times yields [NV /rP~1] weak partial compositions into p
parts whose first p — 1 parts are identical. But now the hypotheses imply
that the last parts of all these weak partial compositions are at most r
different sets; in other words, there are at most r distinct weak partial
compositions. Hence [N/r?~!] < r, whence N < rP. (If we know that
all the compositions are weak—but not partial—compositions of S, then
the last parts of all these [N/rP~1] weak compositions are identical. Thus
N <rP7l)

Since at most r? weak partial compositions of S are separated by each
of the n! maximal chains, from (2) we deduce that

m
n
rPpl > Al A n = A = —A[)!
70 —Z(lAﬁ|+~~+zAjp|>' Il LAl (n — [ Agt] = -+ = |4))
m n|
- Z (|f\j1|+‘“+|AJ‘p|) '
Jj=1 |Aj1[,.‘..|Ajp]

The theorem follows. ®
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To deduce Theorem 1.5 from Theorem 2.5, we use the following lemma,
which originally appeared in somewhat different and incomplete form in
[10], used there to prove Erdés’s Theorem 1.2 by means of Theorem 2.2,
and appeared in complete form in [7, Lemma 3.1.3]. We give a very short
proof, which seems to be new.

Lemma 3.1 (Harper-Klain-Rota). Suppose M, ..., My € R satisfy M; >
My > .-+ > My > 0, and let R be an integer with 1 < R < N. If
q1,---,qn € [0,1] have sum

q+-+av <R,

then
@M+ + gy My < M+ oo+ My,

Proof. By assumption,

Hence, by the condition on the My,

N N R R
Yo My <Mp > qe<Mp) (1-q) <> (1-q)My,
k=R+1 k=R+1 k=1 k=1

which is equivalent to the conclusion.
Proof of Theorem 1.5. Let S be any finite set that contains all A;;. Write
down the LYM inequality from Theorem 2.5.

From the m weak partial compositions (Aj1,...,Aj,) of S, collect
those whose shape is (a1,...,a,) into the set C(ay,...,a,). Label the p-
multinomial coefficients for integers n’ < n as M{, M}, ... so that M| >

My > - If M| is (01" ) let qj, := |Cl(ay,...,ap)|/Mj. By Theorem
2.5, the ¢’s and M}’s batxsfy all the conditions of Lemma 3.1 with N re-

placed by the numbe1 of p-tuples (a1, ...,a,) whose sum is at most n, that
is (";”), and R replaced by min(N,r?). Hence

Y |Clar,....ap)| < Mj+---+ Mp.
a1 +-+ap<n
The conclusion of the theorem now follows, since

m = Z IC’(al,...,ap)|. ]

apt-+ap<n
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4. CONSEQUENCES

As promised in Section 1, we now state special cases of Theorems 1.5/2.5
that unify pairs of Theorems 1.2, 1.3, and 1.4 as well as their LYM com-
panions.

The first special case unifies Theorems 1.2/2.2 and 1.3/2.3. (It is a
corollary of the proof of the main theorems, not of the theorems themselves.
See [2] for a very short, direct proof.)

Corollary 4.1. Suppose (Aj1, ..., Ajp) are m different weak compositions
of S into p parts such that for each k € [p — 1], the set {Ajr, : 1 < j <m}
is r-chain-free. Then
m
1
= < rPh
j:l (|A]’1| ..... IAjpl)

Consequently, m is bounded by the sum of the rP~! largest p-multinomial
coefficients for n.

Proof. We note that, for a family of m weak compositions of S, the condi-
tion of Theorem 2.5 for a particular k € [p—1] is equivalent to {A;}, being
r-chain-free. Thus by the hypothesis of the corollary, the hypothesis of the
theorem is met for k = 1,...,p — 1. Then the proof of Theorem 2.5 goes
through perfectly with the only difference, explained in the proof, that (even
without a condition on k = p) we obtain N < rP~L. In the proof of Theorem
1.5, under our hypotheses the sets C(ay,...,ap) with a; +---+ap <n are
empty. Therefore we take only the p-multinomial coefficients for n, labelled
M; > My > ---. In applying Lemma 3.1 we take R = min(N, rP~1) and
summations over aj + -+ + a, = n. With these alterations the proof fits
Corollary 4.1. =

A good way to think of Corollary 4.1 is as a theorem about partial weak
compositions, obtained by dropping the last part from each of the weak
compositions in the corollary.

Corollary 4.2. Fixp > 2 and r > 1. Suppose (Aj1, ..., Ajp) are m different
weak partial compositions of an n-set S into p parts such that for each
k € [p), the set {A; : 1 < j < m} is r-chain-free. Then m is bounded by
the sum of the rP largest (p + 1)-multinomial coefficients for n. m
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A difference between this and Theorem 1.5 is that Corollary 4.2 has a
weaker and simpler hypothesis but a much weaker bound. But the biggest
difference is the omission of an accompanying LYM inequality. Corollary 4.1
obviously implies one, but it is weaker than that in Theorem 2.5 because,
since the top number in the latter can be less than n, the denominators are
much smaller. We do not present in Corollary 4.2 an LYM inequality of the
kind in Theorem 2.5 for the very good reason that none is possible; that is
the meaning of Example 2.1.

The second specialization constitutes a weak common refinement of
Theorems 1.2/2.2 and 1.4/2.4. We call it weak because its specialization to
the case Bj = S — Aj, which is the situation of Theorems 1.2/2.2, is weaker
than those theorems.

Corollary 4.3. Let r be a positive integer. Suppose (A;, Bj) are m pairs
of sets such that A; N B; = @ and, for all I C [m] with |I| = r + 1,
there exist distinct i,j € I for which A; N By # @ # Ay N Bj. Let
n =max; (|A4;] +|Bj|). Then

m

1
—_— <
Z |A]’|+]le r

Jj=1 ( IAJI )
Consequently, m is bounded by the sum of the r largest binomial coefficients
(’i) for 0 < k < n’ < n. This bound can be attained for all n and r.
Proof. Set p = 2 in Theorems 1.5/2.5. To attain the bound, let A; range
over all k-subsets of [n] and let Bj = [n] — 4;. m

The last special case of Theorems 1.5/2.5 we would like to mention is
that in which r = 1; it unifies Theorems 1.3/2.3 and 1.4/2.4.

Corollary 4.4. Suppose (4Aj1,..., Ajp) are m different weak set composi-
tions into p parts with the condition that, for all k € [p] and all distinct
i,j € [m], either Ay = Ajj, or

AianAjl#g?éAjkmUAil-
I#k I#k
and let n > max; (|Aj1| + -+ + |Ajp|). Then

m
Z ______1______ <1
(lAjl|+"'+|Ajp|) -

J=1 VAT Ajpl

Consequently, m is bounded by the largest p-multinomial cocfficient for n.
The bound can be attained for every n and p.
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Proof. Everything follows from Theorems 1.5/2.5 except the attainability
of the upper bound, which is a consequence of Theorem 1.3. =

5. THE MAXIMUM NUMBER OF COMPOSITIONS

Although the bounds in all the previously known Sperner generalizations of
Section 1 can be attained, for the most part that seems not to be the case
in Theorem 1.5. The key difficulty appears in the combination of r-families
with compositions as in Corollary 4.1. (We think it makes no difference if
we allow partial compositions but we have not proved it.) We begin with a
refinement of Lemma 3.1. A weak set composition has shape (a1,...,ap)
if |Ag| = ay, for all k.

Lemma 5.1. Given values of n, r, and p such that P~} < (";f;l), the
bound in Corollary 4.1 can be attained only by taking all weak compositions
of shape (ay,...,ap) that give p-multinomial coefficient larger than the
(rP~! + 1)-st largest such coefficient M,p-1,,, and none whose shape gives
a smaller coefficient than the (rP~!)-st largest such coefficient M, p-1.

Proof. First we need to characterized sharpness in Lemma 3.1. Our lemma
is a slight improvement on [7, Lemma 3.1.3].

Lemma 5.2. In Lemma 3.1, suppose that Mpr > 0. Then there is equality
in the conclusion if and only if

qk=1if]\/[k>]\/f}2 and q. =0 Iif M), < Mg
and also, letting Mg, and Mg be the first and last M),’s equal to Mg,

qri+1+ -+ qr=R-R. n

In Lemma 5.1, all M, > 0 for k < (";f’;l), (We assume N is no larger

than (";f;l). The contrary case is casily derived from that one.) It is
clear that, when applying Lemma 3.1, we have to have in our set of weak

compositions all those of the shapes (a1, ..., ap) for which (, " a,,) > M,p-1
and none for which ( o " a.,,) < M, p-1. The rest of the m weak compositions

can have any shapes for which (a‘l,:ff’(l.p) = Myp-r. If Myp-1 > Myp-14

this means we must have all weak compositions with shapes for which
(L, " )>Msp-1,y. ®

a1,...,0p
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To explain why the bound cannot usually be attained, we need to define
the “first appearance” of a size a; in the descending order of p-multinomial
coefficients for n.

Fixp>3and nandlet n =vp+p where 0 < p <p. In (0.1,.1.1.@,,)’ the a;
are the sizes. The multiset of sizes is the form of the coefficient. Arrange
the multinomial coefficients in weakly decreasing order: My > My > M3 >
-++. (There are many such orderings; choose one arbitrarily, fix it, and call
it the descending order of coefficients.) Thus, for example,

n n
M, = > M, =
! (l/,...,l/> 2 <z/+1,z/,...,1/,1/—1>

= JV[3 == Mp(p—l)—H if p | n
since M3, ..., Mp,-1)+1 have the same form as M, and
M, = " = =Mm>M T
L= v+1,...,v - - (z) (ﬁ)“ ot

where the form of M; has p sizes equal to v + 1, so My, ..., M(p) all have

the same form. ’

As we scan the descending order of multinomial coefficients, each pos-
sible size kK, 0 < k < n, appears first in a certain M;. We call M;
the first appearance of k and label it L. For example, if p | n,
L,=M; > L,y; = L,_1 = My, while if p{ n then L, = L,41 = M.
It is clear that L, > L,—; > ... and L,4y1 > Ly42 > ..., but the way in
which the lower L's, where k < v, interleave the upper ones is not obvious.
We write L for the k-th L, in the descending order of multinomial coeffi-
cients. Thus L} = L,; LY = Ly and L3 = L, (or vice versa) if p | n,
and Ly = L,y if p{n while L3 = L, 42 or L,_.

Theorem 5.1. Given r > 2, p > 3, and n > p, the bound in Corollary 4.1
cannot be attained if L} > M p-1,,.

The proof depends on the following lemma.

Lemma 5.3. Let r > 2 and p > 3, and let ky,..., K, be the first r sizes
that appear in the descending order of p-multinomial coefficients for n. The
number of all coefficients with sizes drawn from K1, ..., Ky is less than P!
and their sum is less than M + -+ + M p-1.
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Proof. Clearly, k1,...,k, form a consecutive set that includes v. Let s
be the smallest and ' the largest. One can verify that, in (, "_.) and

(n’,..fn’,y)’ it is impossible for both z and y to lie in the interval [x, &'] as

longas (r—1)(p—2)>0. =

Proof of Theorem 5.1. Suppose the upper bound of Corollary 4.1 is
attained by a certain set of weak compositions of S, an n-element set. For
each of the first r sizes k1, ..., K, that appear in the descending order of
p-multinomial coefficients, L, has sizes drawn from &1,..., s, and at least
one size ;. Taking all coefficients M}, that have the same forms as the Ly;,
ki will appear in each position j in some M. By hypothesis and Lemma
5.1, among our set of weak compositions, every x;-subset of S appears in
every position in the weak compositions. If any subset of S of a different
size from ky,...,k, appeared in any position, there would be a chain of
length 7 in that position. Therefore we can only have weak compositions
whose sizes are among the first 7 sizes. By Lemma 5.3, there are not enough
of these to attain the upper bound. m

Theorem 5.1 can be hard to apply because we do not know M,,-1,;. On
are as nearly equal as possible. A more practical criterion for nonattainment
of the upper bound is therefore

Corollary 5.1. Given r > 2, p > 3, and n > p, the bound in Corollary 4.1
cannot be attained if Ly > L} .

Proof. It follows from Lemma 5.3 that Ly, is one of the first rP=1 coeffi-

cients. Thus L} > LY, | > M,p-1,; and Theorem 5.1 applies. ®

It seems clear that L* will almost always be larger than Ly, (if 7 > 3 or
p 1 n) so our bound will not be attained. However, cases of equality do exist.

For instance, take p = 3, r = 3, and n = 10; then L = Ly = (5’14(31) = 1260

and Ly = Lg = (6’1:22) = 1260. Thus if » = 5, Corollary 5.1 does not apply
here. (We think the bound is still not attained but we cannot prove it.) We
can isolate the instances of equality for each r, but as r grows larger the
calculations quickly become extensive. Thus we state the results only for
small values of .

Proposition 5.1. The bound in Corollary 4.1 cannot be attained if 2 <
r<5andp>3andn >r—1, except possibly when r = 2, p | n, and
p=3,4,5 or whenrt=4,p>4,andn=2p—1, or whenr =5, p =3, and
n = 10.
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Proof sketch. Suppose p t n. We have verified (by long but routine
calculations which we omit) that L} = Ly > L3 > L} > L} > L§ except
that L} = L ifp=p—landp>4andv=1and L = Ly whenp=v =3
and p = 1.

If p| nthen L} > Ly = Lj > L} > L > L§. This implies the
proposition for r = 3, 4, or 5. We approach r = 2 differently. The largest
coefficients are

n n
]\/{ = A([‘-_— = .
! (1/,...,1/>> 2 (1/—{—1,1/,...,1/,1/—1)

= Mp(p-1)+1 > Myp-1)+42-

If p(p — 1)+ 1 < 7P~1, the bound is unattainable by Theorem 5.1. That is
the case when p > 6.
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A QUICK PROOF OF SPRINDZHUK’S DECOMPOSITION
THEOREM

Y. F. BILU and D. MASSER

Dedicated to the memory of V. G. Sprindzhuk

In [11] Sprindzhuk proved the following striking theorem.

Theorem 1 (Sprindzhuk [11]). Let F(z,y) € Q[z,y] be a Q-irreducible
polynomial satisfying

OF
(1) F(0,0) = 0, Ey—(O,O) £0.

Then for all but finitely many prime numbers p, the polynomial F(p,y) is
Q-irreducible.

Actually, prime numbers can be replaced by prime powers, as well as by
numbers of the form 1/t, where ¢t € Z, t # 0: see Corollary 3.

In the subsequent paper [12] (see also [13, 14] for a more detailed ex-
position) Sprindzhuk obtained an even more amusing result. To formulate
it, recall that the height of a rational number o = a/b (where a and b are
coprime integers) is defined by

(2) H(a) = max {|al, |b]}.

One immediately verifies that

(3) H(a) = H max {1,]al,} = H max {1, |al;'},

S /\’IQ vE A[Q

where Mg is the set of all places of the field Q (that is, Mg = {primes} U

{o0}).
For a € Q put V() = {v e Mg : |a], <1}.
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Theorem 2 (Sprindzhuk [12]). Let F(xz,y) be as in Theorem 1 and € a pos-
itive number. For every o € Q let dy(c),...,d(a) be the degrees of the Q-
irreducible factors of F(a,y) (so that di(a) + -+ + dp(a) = deg, F). Then
for all but finitely many a € Q there is a partition V(o) = V1 U ... U Vj such
that

- ZUEVi log |alv di(a)

(4) og Ha) deg, F (i=1,...,k).

We do not formally assert that the partition sets Vi,...,V, are non-
empty. However, (4) implies that they are indeed non-empty when ¢ is
sufficiently small (in fact, when e < 1/ deg, F').

Theorem 1 easily follows from Theorem 2. Put Q = {prime powers} U
{1/t 1 teZ, |t| > 1}.

Corollary 3. Let F(z,y) be as in Theorem 1. Then F(w,y) is Q-irreducible
for all but finitely many w € ).

Proof. As we observed above, the partition sets Vi, ..., V; are non-empty
when ¢ is sufficiently small. But for every w € Q the set V(w) consists of
a single element, and cannot be partitioned into more than one non-empty
part. m

Here is another amazing consequence of Theorem 2 (the proof is imme-
diate).

Corollary 4. Let F(xz,y) be as in Theorem 1 and let {q,}, {r,} be two
sequences of prime powers such that lim,_,.logqy,/logr, exists and is
irrational. Then F(q,r,,y) is Q-irreducible for all but finitely many v.
]

We invite the reader to invent many other corollaries of this wonderful
theorem.
Actually Sprindzhuk in [12] obtained a yet sharper version of Theorem 2

with € replaced by an error term of order ( log H(c)) 12 1 prove this he
used Siegel’s Lemma and some sophisticated machinery from the theory of
Diophantine approximation and transcendence such as the cancellation of
factorials and a zero estimate (Lemma 6 of [11]). He also used Eisenstein’s
theorem, which is easy when (1) is assumed.

In the final paragraph of the Russian edition of his book [13], Sprindzhuk
wrote that, while methods of Diophantine approximation are used in the
proof of Theorem 2, its formulation
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“...involves no concepts related to the theory of Diophantine
approximation. This gives hope that a different proof exists,
which is independent of the theory of Diophantine approxima-
tion.”

Indeed, such a proof was soon after found by Bombieri [1], who used the
machinery of Weil functions and Néron-Tate height. Weil functions were also
employed by Fried [9] in the prime-power case. It was Bombieri who pointed
out the connection with G-functions and Fuchsian differential operators of
arithmetic type. This connection was further developed by Deébes (and
Zannier) [3, 4, 5, 6].

The object of the present note is to point out that Theorem 2 itself can
be established rather quickly, also along the lines of Sprindzhuk’s original
articles, but without most of the sophisticated machinery. Our proof relies
only on the simplest properties of heights (see Proposition 5 below) and
Eisenstein’s theorem.

Recall the definition of the height of an algebraic number. This is

1/[K:Q]
H max{l, |a|LK”:Q”]}> ,

veM

) ) = (

where K is a number field containing o and My is the set of valuations
on K, which are normalized to extend the standard valuations of Q. As
usual, K, and Q, stand for the topological completions with respect to
vE Mg.

It is straightforward to verify that the right-hand side of (5) does not
depend on the choice of the field K. Also (3) implies that this definition is
compatible with the definition of the height of a rational number from (2).

The product formula
[T lelf @ =1 (ae k)
vEME

implies that for any V C Mg and a € K* one has the following “Liouville
inequality”:

(6) [T el @) > H(a)HC,
veV

The following two well-known properties of the height function are (al-
most) immediate consequences of its definition (5).
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Proposition 5. Let «, 8 be algebraic numbers and F(z,y) a polynomial
with algebraic coefficients. Put m = deg, F' and n = deg, F'.

1. For v = F(a, ) one has H(y) < H(a)™H(B)".

2. Assume that F is not divisible by x — . Then F(a,) = 0 implies
that H(B) < H(a)™.

Constants implied by “«” depend only on the polynomial F'.

Proof. Part “1” is straightforward. To prove “2”, write F'(z,y) = fo(z)y"+
-« 4 fo(y). By the assumption, not all of the numbers fo(a),..., fa(a)
vanish. Put v = max {j . fi(a) #0}.
Let K be a number field containing «, 8 and the coefficients of F. The
equality f,(@)B” + fo-1(@)B""! + -+ fo(a) = 0 implies that

max { 1,|8|,} < max{1,|v],}

max{1,|fl,_1 a)/ fu(a | |f0 )/ fu( )l} (v € Mk).

Using the product formula, we obtain

H(ﬁ)gH(u)< I max{1,|fo-1(@)/ful@)],--

veEMp

IfO /fl/ }[Kv Qv])

=l/< H max{|f,, v |f,, 1 |

veMy

1/[K:Q]

) 1/[K:Q]
Ifo(a)lv}[K"'Q“}> < H{)™

as wanted. ®
Recall also Eisenstein’s theorem.

Theorem 6. Let Y(z) = ap + a17 + asx® + - -+ be a power series with co-
efficients in a number field K, algebraic over the field K(x). Then for
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every v € My there exists ¢, > 1 such that all but finitely many c, are
equal to 1, and

(7) lajl, < (ve Mg, j=1,2,..).

Classically, Eisenstein’s theorem reads as follows: there exists a posi-
tive integer 7" such that Tja/j are algebraic integers for j =1,2,.... This
immediately implies Theorem 6. Indeed, for non-archimedean v one may
put ¢, = [T'|, ! For archimedean v, the existence of ¢, follows from the fact
that the convergence radius of a complex algebraic power series is positive.

Eisenstein’s theorem goes back to Eisenstein’s paper [8]. See [10,
page 151] for an old-fashioned proof and [7] for a modern quantitative argu-
ment. See also [2, page 28] for an especially quick proof when K = Q, which
suffices for the present note. In addition, if ap =0 and F (r,Y(x)) =0,
where F(z,y) € Z[z,y] satisfies (1), then a very easy induction gives the

value T = (9F/0y(0,0)) 2, and in fact this case suffices as well.

Proof of Theorem 2. Put m = deg, F' and n = deg, F. To prove the
theorem, it is sufficient to find a partition V(a) = Vj U... UV}, satisfying

_Zvevi log |al,, < di(a)
log H(a) - n

(8) +e  (i=1,...,k).

Indeed, by the second equality in (3),

ZL: veV; log !O’l i dl(a
— log H n

1=1

Hence (8) implies that

- Seevloglal,  difo)
log H(«) - n

(k-1 (i=1,....k),

and (4) follows after redefining €.

It follows from (1) that there exists a power series Y (z) = ajz+agz?+- -
with rational coefficients satisfying F(z,Y (z)) = 0. Put

9) N = [dm(n —1)/e].
There is a non-zero polynomial G(z,y) € Q[z,y] satisfying
(10) deg, G <n-—1, deg,G<N,

(11) ordg=0 G(z,Y(z)) > nN.
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(Indeed, the vector space of polynomials satisfying (10) is of dimension
n(N + 1), while (11) is equivalent to nN linear relations.) In the sequel,
constants implied by “O(-)”, “<” and “>” may depend only on F, G and €.

Put U(z) = G(z,Y(z)). By Eisenstein’s theorem, for every v € Mg
there exists ¢, > 1 such that all but finitely many c, are equal to 1, and the
coefficients of the power series Y (z) = }°°2, aja? and U(z) = Y32,y bja?
satisty

(12) lajlys 1bil, <€ (ve My).
For a € Q put

< 1/(2¢y) if v = o0,

V'(a) = {v eV(a) : |af }, V'(a) =V(a)\V'(a).

Y<1/e, ifv<oo.

Since — Zve‘///(a) log ||, < 1, for all but finitely many o we have

- ZvEV”(a) log ,alv
log H ()

<:.
=2

Hence it is sufficient to find a partition V'(a) =V U... UV such that

- ZvGVi’ IOgIa'v < di(a)
log H(«) T n

(13) +

N ™

for then putting, say, Vi = V] UV"(a) and V; = V/ for i > 2, we obtain (8).

Thus, fix & € Q and let F(a,y) = fi(y) - - fe(y) be the decomposition
of F(a,y) into Q-irreducible factors. We may assume (discarding finitely
many o at which the y-discriminant of F(z,y) vanishes) that the polyno-
mials f; are pairwise coprime. We put d; = deg f;.

For any v € V/(a) the series Y (x) converges v-adically at a. Its sum
in Q,, denoted by Y, (), is a zero of F(a,y). Define the partition V'(a) =
Vi U...UV] as follows:

V) ={veV'(a) : Yy(a) is a zero of fily)} (i=1,...,k).

Now fix ¢ and let 8= (3; be a zero of f;(y). Again discarding finitely
many o, we may assume that n:= G(a,f) # 0. Indeed, since F(z,y)
is irreducible, and deg, G < deg, F', the system of algebraic equations
F(a,8) = G(a, 8) = 0 has only finitely many solutions.



