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PREFACE

The present volume is slightly connected to the conference organized in
Budapest, January 2001 to the honour of Vera Sos and Andras Hajnal
on the occasion of their 70th birthdays. Namely, we mainly asked the
invited speakers of that conference to write survey papers on their favorite
subjects. Therefore the volume contains strong and well-written surveys
in the areas of the celebrated colleagues : mostly in combinatorics, graph
theory, less in number theory and set theory. The authors gave the up-to­
date state of the art in their subjects, put the recent results into integral
framework. Examples are listed below. The other papers contain original
research results.

Matthias Beck, Xueqin Wang, and Thomas Zaslavsky find a nice, so­
called unifying generalization of different versions of Sperner's theorem.
They found a uniform handling of several different generalizations.

Bela Bollobas and Alexander Scott summarize different results on dis­
crepancies of graphs and hypergraphs,

Eva Czabarka, Ondrej Sykora, Laszlo A. Szekely and Imrich Vrto survey
some bounds on biplanar crossing numbers of graphs which is the sum of
the crossing numbers over all partitions of a graph into two planar graphs.

Andras Frank studies the different notions of edge-connectivity of
graphs, digraps and hypergraphs and uses properties of submodular func­
tions to get different theorems on them. He gives an extensive survey of the
results concerning orientations and connectivity augmentations in a general
setting.

Kalman Cyory surveys when we can get (almost) complete powers as
the product of consecutive terms of an arithmetic progression or binomial
coefficients . The results are mostly negative as it turns out from the nice
overview of classical papers of Erdos and Selfridge as well as the recent ones
of the surveyer and others'.

Istvan Juhasz and Andrzej Szymanski present a purely topological gen­
eralization of Fodor's theorem called "the pressing down lemma" . By means
of it, the authors prove a partial generalization of this framework of 8010­
vay's celebrated stationary set decomposition theorem.
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In his extensive survey paper, Alexandr Kostochka summarizes the re­
sults on the minimum number of edges in color-critical graphs and hyper­
graphs .

Michael Krivelevich and Benny Sudakov give an extensive survey on
pseudo random graphs with emphasis on the results obtained by means of
the investigation of the eigenvalues of the adjacency matrix.

Jaroslav Nesetril deals with questions and results concerning order­
theoretic properties of the homomorphism order of graphs, but the author
surveys upper bounds, suprema and maximal elements of the homomor­
phism order lattice in other interesting finite structures too . The author
also studies minor closed classes of graphs, shows how the order setting
captures Hadwiger conjecture and suggests some new problems too .

Andras Recski and David Szeszler investigate VLSI routing algorithms,
especially the influence of Gallai 's Algorithm on them . They show the
first forty years of the influence on VLSI design of the classic result on the
perfectness of interval graphs.

Andras Sarkozy's paper describes advance in a specific question, the
possible behaviour of representation functions. We take a set A of positive
integers, and consider rIJn), the number of representations of n as a sum of
k elements of A, or variants where the order is neglected or where an element
can be used only once. Typical questions are whether such a function can
be monotonic, or can be very near to a given regular function. The author
presents plenty of results and unsolved problems .

Andrew Thomason presents results and methods concerning the min­
imum number of edges guaranteeing a given graph minor. It turns out
that the extremal graphs are pseudo-random. The survey describes what is
known about the extremal function and discusses some related matters.

Robert Tijdemau's survey covers a broad area, with main emphasis on
tilings and balanced words. We learn how words with small complexity
(that is, with a small number of different subwords of length n for every n)
are connected with balanced words, where the number of occurrences of
any fixed letter in subwords of given length is almost constant, and with
sequences given by the integer part of a linear function.

The organizers of the conference gratefully acknowledge the financial
support of the High Level Scientific Conferences program of the European
Union (contract No. HPCF-CT-2000-00419) .

The editors
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A UNIFYING GENERALIZATION OF SPERNER'S

THEOREM

M. BECK, X. WANG and T . ZASLAVSKY*

Dedicated to the m emories of Pal Erdos and Lev Meshalkin

Sperner's bound on th e size of an antichain in the latti ce P (S) of subsets of a
finite set S has been genera lized in three different directi ons: by Erdos to subsets
of P(S) in which chains contain at most r elements ; by Meshalkin to certain
classes of compositions of S ; by Griggs, Stahl , and Trotter through replacing
the antichains by certain sets of pairs of disjoint elements of P(S) . We unify
these three bound s with a common genera lizat ion. vVe simi larly unify their
accompanying LYM inequalities , Our bounds do not in general appear to be
the best possible.

1. SP ERNER-TYPE THEOREMS

Let S be a finite set with n elements. In the lattice P(S) of all subsets of S
one tries to estimate the size of a subset with certain characteristics. The
most famous such estimate concerns antichains , that is, subsets of P(S)
in which any two elements are incomparable.

Theorem 1.1 (Sperner [11]). Suppose AI , . . . , Am ~ S suet: tha t Ak i. Aj

for k =1= j . Tll en ni ~ (In/2J)' Furthermore, this bound can be at tained for
any n .

We at tai n the bound by taking all l~J-element subsets of S, or all
r ~l -element subsets, but in no other way. There are many ways to prove

'Research supported by Nationa l Science Foundation grant DMS-OOi 0729.
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Sperner 's bound and the near-uniqueness of the maximal exam ple; several
of them will be found in the opening chapters of Anderson 's lovely intro­
ductory book [1]. The most famous approach is perhaps th at of the "LYM
inequality" ; see Theorem 2.1 below.

Speruer 's th eorem has been genera lized in many different directions .
Here are three: Erdos extended Sperner's inequality to subsets of P (S ) in
which cha ins contain at most r clements. Meshalkin proved a Sperner-like
inequality for famil ies of compos it ions of S into a fixed number of pa rts , in
which the sets in each part const itute an antichain. Finally, Griggs, Stahl,
and Trotter extended Sperner 's theorem by replacing the antichains by sets
of pairs of disjoint elements of P (S) satisfying an intersect ion conditio n.
In this pap er we unify the Er dos, Meshalkin , and Griggs- Stahl-Trot ter
inequaliti es in a single genera lization. However , except in special cases
(among which are genera lizations of the known bound s), our bounds are
not the best possible.

For a precise statement of Erdos's generalization, call a su bset of P (S )
r -cha in- fr ee if its cha ins (i.e., linearly ordered subsets) contain no more
than r elements; that is, no cha in has length 1'. 1 In particular , an ant ichain
is l- chain-fr ee. The genera lization of T heorem 1.1 to r-c ha in-Iree families is

Theorem 1.2 (Erdos [4]). Suppose {A l , . . . , Am} ~ P(S) contains no
chains with r +1 elements. Th en m is bounded by the sum of th e r largest
binom ial coe fficien ts CZ), 0 :::; k: :::; n . T he bound is attainable for every ti

and r .

Sperner's theorem is the case r = 1. To attain the bound take all subsets
of sizes I n-~+ IJ ~ k ~ lll +~ -l J or all of sizes rn-;+ll:::; k ~ rn+;-l l; these
arc the only ways.

Going in a different direct ion, Sperner 's inequality can be genera lized
to certain ordered weak par titions of S. We define a weak partial com­
position of S into p parts as an ordered p-tuple (AI , " " Ap ) of sets Ak,
possibly void (hence the word "weak" ), such that AI , . . . , Ap are pairwise
disjoint and Al U" 'UAp ~ S. If Al U· · 'U Ap = S, we have a weak compo­
si tion of S . A Sperner-like inequality suitable for this setting was proposed
by Sevast'yanov and proved by Meshalkin (see [9]) . By a p- m ult in om ia l
coefficient for n we mean a multin omial coefficient (UJ , .~. ,Q) : where ai 2: 0

and al + ...+ ap = n . Let [p] := {l ,2, ... ,p}.

IT he term "r -family" or "k-falllily" , depending 0 11 t he nam e of th e forb idden length ,
has been used ill th e pas t , but we think it is tim e for a disti ncti ve nam e.
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Theorem 1.3 (Meshalkin). Let p ~ 2. Suppose (Aj l, . . . , Ajp) for j =
1, . . . , m are different weak compositions of S into p parts such that, for
each k E [p], the set {Ajk : 1 ~ j ~ m} (ignoring repetition) forms an
antichain. Then m is bounded by the largest p-multinomial coefficient for
n. Furthermore, the bound is attainable for every nand p.

This largest multinomial coefficient can be written explicitly as

n!

where p = n - pl#J. We attain the bound by choosing any set K ~ [p] of
size p and taking all weak compositions (Aj l , . .. , Ajp) in which IAjkl = L#J
if k E K and IAjkl = f#l if k ~ K. Hochberg and Hirsch [6] showed that no
other family of weak compositions of S has maximum size. Meshalkin's the­
orem and the completion by Hochberg and Hirsch are curiously neglected:
we have not seen them mentioned in any book except [7].

To see why Meshalkin 's inequality generalizes Sperner's Theorem, sup­

pose AI ,"" Am ~ S form an antichain. Then S - AI, . . . ,S - Am also form
an antichain . Hence the ni weak compositions (Aj , S - Aj ) of S into two
parts satisfy Meshalkin's conditions and Spemer's inequality follows.

Yet another generalization of Sperner's Theorem is

Theorem 1.4' (Griggs-Stahl-Trotter [5]). Suppose {A j o, ... , Ajq} for j =
1, . .. , m are chains of size q + 1 in P(S) such that Aj i ez Akl for all i and
I and all j i=- k. Then ni :::; (L(n'~~)/2J) ' Furthermore, this bound can be
attained for all nand q.

An equivalent, simplified form of this result (in which Aj = Ajo, Bj =
S - Aj q , and n replaces n - q) is

Theorem 1.4. Let n > O. Suppose (Aj , B j ) are ni pairs of sets such that
Aj n e, = 0 for all i, Aj n s; =I 0 for all j =I k, and alllAjl + IBjl ~ n.
Tllen m ~ (Ln/2J) and this bound can be attained for every ti,

Sperner's inequality follows as the special case in which AI , .. . , Am ~ S
form an antichain and B j = S - Aj . To attain the bound in Theorem 1.4'
take {Ajo} to consist of all subsets of [n - q] of size In?J, or all of size
fn?l Then let Ajk = Ajo U {n - q + 1, . . . , n - q + k}. In Theorem 1.4,
take Aj = Ajo and Bj = [71.] - Aj .
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(1 )

T heorems 1.2, 1.3, and 1.4 are incomparable generalizat ions of Sperner 's
Theorem. We wish to combine (and hence fur ther genera lize) these gener­
alizat ions. To state our main result , we define a weak set composition as
a weak composit ion of any set S. Our genera lizat ion of Sperner' s inequality
IS:

Theorem 1.5. Fix integers P 2: 2 and r 2: 1. Suppose (A j l , ... , A j p )

for j = 1, ... , m are different weak set composit ions into p parts with the
condition that , for all k E [p] and all I ~ ['In] with III = r + 1, there exist
distinct i, j E I such that either A ik = A jk or

A ik n UAjl t= 0 t= Aj k n UAil ,

lik lik

and let n := maxl Sj 9 n ( IAjll + ... + IAjpl) . Th en rn is bounded by the
sum of tlie r P largest p-m ult inomial coefficients for integers less than or
equal to n .

T hink of the p-mult inomial coefficients as a sequence arranged in weakly
descending order. T hen if r P is larger than (r;p) , the number of P:
multin omial coefficients, we regard. the sequence of coefficients as extended
by O's.

The reader may find the statement of thi s t heorem somewhat difficult.
We would first like to show that it does genera lize T heorems 1.2, 1.3, and 1.4
simultaneously. The last follows easily as the case T = 1, p = 2. T heorem
1.3 can be deduced by choosing T = 1 and restrict ing the weak composit ions
to be composit ions of a fixed set S with n elements. Finally, Theorem 1.2
follows by choosing ]J = 2 and the weak composit ions to be composit ions
of a fixed n-set into 2 parts. What we find most interesting, however , is
that specializing T heorem 1.5 yields three corollaries that generalize two at
a time of T heorems 1.2, 1.3, and 1.4 yet are easy to state and understand .
Section 4 collects these corollaries.

We came to Theorem 1.5 through seeking a common genera lizat ion of
Erdos's and Meshalkin 's theorems (see Corollary 4.1); our origina l motiva­
t ion was, in pa rt , surprise at the lack of genera l awareness of Mesha lkiu's
result . When we learned of the Griggs- St ahl-Trotter theorem, we could
not be satisfied until we succeeded in extending our result to include it as
well. (Fortunately for us, we did not encounte r a four th kind of Sperner
generalization.)

The condit ion of the theorem implies th at each set Ak = {Aj k : j E
[m]} (ignoring repeti tion) is r- chain-frce. We suspect th at the converse is
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not t rue in genera l. (It is true if all the weak set compositions are weak
composit ions of the same set of order n , as in Corollary 4.1.)

All the theorems we have stated have each a slight ly stronger companion,
a ll LYM inequality. In Section 2, we state these inequalit ies and show how
Theorems 1.1-1.5 can be dedu ced from them. The proofs of T heorem 1.5
and the corresponding LYM inequality are in Section 3. After the corollaries
of Sect ion 4, in Section 5 we show that some, at least , of our upp er bounds
cannot be attained .

2. LYIVI INEQUALITIES

In attempting to est imate the order of th e free distributive lat ti ce with
n generators , Yam amoto came up with th e following result , which was
rediscovered by Meshalkin in the course of proving his Sperner genera lization
(T heorem 1.3) and st ill later by Lub ell with a classic short proof. In
the meantime Bollobas had illdependently proved even a genera lization
(T heorem 2.4 below). The result is the famous LYM inequali ty, that has
given its name to a whole class of similar relations.

Theorem 2.1 (Yamamoto [12, §6], Meshalkin [9, Lemm a], Lub ell [8]).
Suppose AI , "" Am ~ S sucu that AI.: C/:. Aj for k i= j. Th en

I1l 1
"'- <1.L...J( II ) -
k =1 IAk l

Sperner 's inequality follows immediately by notin g that maxi, (Z) =

( II )In/2J .
An LYM inequali ty corresponding to Theorem 1.2 appea red to our

knowledge first in [10]:

Theorem 2.2 (Rota-Harper). SlIpp ose {A I , " " A lii} ~ P (S ) contains no
chains with T' + 1 elem ents. Th en

m 1

L-(") <r.
1.:= 1 IAkl

Deducing Erdos's T heorem 1.2 from this inequality is not as st ra ight ­
forward as the connection between Theorems 2.1 and 1.1. It can be done
through Lemma 3.1, which we also need in order to dedu ce Theorem 1.5.
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The LYM companion of Theorem 1.3 first appeared in [G]; again, Me­
shalkin's Theorem 1.3 follows immediately.

Theorem 2.3 (Hochberg-Hirsch). Suppose (Ajl "'" A j p) for j = 1, ... , tn

are different weak compositions of S into ]J parts such that for each k E [p]
the set {Aj k : 1 :::; j :::; rn} (ignoring repetitions) forms an nnticluuu. Then

The LYM inequality corresponding to Theorem 1.4 is due to Bollobas.

Theorem 2.4 (Bollobas [3]). Suppose (Aj , Bj) are rn pairs of sets such
that A j n e, = 0 for all j and Aj n Bk =1= 0 for all j =1= k. Tl1cn

Once more, the corresponding upper bound, the Griggs-Stahl-Trotter
Theorem 1.4, is an immediate consequence.

Naturally, there is an LYt-v'I inequality accompanying our main Theorem
1.5. Like its siblings, it constitutes a refinement.

Theorem 2.5. Let p 2: 2 and T 2: 1. Suppose (Aj l , ... , A j p ) for j =

1, .. . , rn are differcnt weak compositions (of any sets) into p parts satisfying
the same condition as in Theorem 1.5. Then

Example 2.1. The complicated hypothesis of Theorem 2.5 cannot be re­
placed by the assumption that each Ak is r-chain-free, because then there
is no LYM bound independent of n . Let 71. » p 2: 2, S = [71.]' and
A = {( A, {n}, {n - 1}, .. . , {n - I' + 2}) : A E AI} where Al is a largest
r-chain-free family in [n - p + 1]' specifically,

Al = UPj ( [n - p+ 1])
.'lEI
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where

15

I={in-p+1- rliTl,-p+1-rl in - p + 1 - r l '- }I 2 ' I 2 + 1, I 2 + r 1 .

The LYM sum is

'" 1 = '" IAI!
D (IAI+p-l) D (IAI+p-1) !

AEAl IAI,! ,..,,1 il EAl

= '" (11, - P+1) j !
D j (j + p - 1)!
,lE I

= '" (n - p + 1) .,. (n - p - j +2)
D (p-1+j)!
,lE I

--t 00 as n --t 00 ,

There is no possible upp er bound in terms of n.

3. PROOF OF TH E M AIN TH EOREMS

Proof of Theorem 2.5 . Let 8 be a finite set conta ining all Aj/,; for
j = 1, , , " 'In and k: = 1,. " ,p, and let ti = 181. We count maximal chains
in P(8) , Let us say a maximal chain separates the weak composit ion
(A] " " ,Ap ) if there exist elements 0 = Xo ~ XII ~ . .. ~ Xlp = 8 of th e
maximal cha in such th at AI" ~ X lk - Xlk_ 1 for each k. Th ere are

maximal chains separating (A] , ... ,Ap) . (To prove this , replace maxim al
chains 0 c {ri} C {XI , X2} c .,· c 8 by permutations (:Q , x2, ... ,Xn )

of 8 . Choose IAII + ...+ IApl places for Al u ··· u Ap; then arrange Al in
any order in th e first IAII of these places, A2 in the next IA21, etc . Finally,
arrange 8 - (A 1 u .. . u Ap ) in th e remaining places. This const ructs all
maximal chains th at separate (A I , .. . , Ap ) . )
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We claim that every max imal chain separates at most r P weak par­
t ial composit ions of lSI . To prove this, assume th at t here is a maximal
cha in that separates N weak par ti al composit ions ( A j l , .. . , A j p) . Con­
side r all first components Aj l and suppose 'I' + 1 of them are different ,
say All , A 2l , . . . , A /"+ 1,1 . By the hypotheses of the t heorem, there are
i , i' E ['1' +1] such that A il meets some A i' I' where [' > 1 and A j'l meets some
Ail where l > 1. By separation , there are ql and q~ such t hat Ail ~ XI/! - Xo
and A i'l ~ Xq~ - X o , and t here are q/-l , q/, qf,-l' qf, such that (jl ::; q/-l ::; ql ,

q~ ::; qf,- 1 ::; qf" and

and

Since Ail meets Ai'I', t here is an element a il E Xq' - .Xq, ; it follows that
[, [' -I

qf' -l < ql · Similarly, ql-I < q~ . But this is a cont ra dict ion. It follows
th at , amongst the N sets Aj 1, t here are at most r different sets. Hence
(by t he pigeonhole pr inciple) t here are rNlr1 am ong the N weak partial
composit ions th at have t he same first set Aj l .

Looking now at th ese rN1'1'1weak partial composit ions , we can repeat
th e argument to conclude that th ere are rrN [r1/1'1 2: rN /1'21weak partial
composit ions for which both the A jl 's and the A j 2's ar e ident ical. Repeating
this process p - 1 times yields rN Irp- l1 weak par tial composit ions into P
par ts whose first p - 1 par ts are identical , But now the hyp oth eses imply
th at the last parts of all these weak partial compos itions are at most r

different sets ; in other words, there are at most 1· distin ct weak partial
composit ions . Hen ce rN Irp - l 1 ::; 1', whence N ::; r" , (If we know that
all th e composit ions are weak-but not partial- compositions of S, then
the last parts of all these rN Irp- l1 weak compositi ons are iden tical. Thus
N ::; rP- l . )

Since at most r P weak partial composit ions of S are separated by each
of t he n ! maximal chains , from (2) we deduce t hat

The theorem follows. •



A Uni fying Generalization of Sp etu er's Theorem 17

To ded uce Theorem 1.5 from T heorem 2.5, we use the following lemma,
which originally appeared in somewhat different and incomplete form in
[10], used there to prove Er dos 's T heorem 1.2 by means of T heore m 2.2 ,
and appeared in complete form in [7, Lemma 3.1.3]. We give a very short
proof, which seems to be new.

Lemma 3.1 (Harper-Klain-Rota) . Sup pose M l , ... , MN E rn: satisfy ivIl ~

!'vh ~ ... ~ M N ~ 0, and let R be an int eger wit h 1 < R < N . If
ql , . . . , qN E [0,1 ] hsve sum

ql + ...+ qN ::; R ,

then
ql M l + . . . + qN!lIN ::; M 1+ .. . + MR .

Proof. By assumption,

N R

L qk::; L(1- qd·
k=R+ l k= l

Hence, by the condit ion on the !11k ,

N N R R

L qk!'vh ::; !I1R 2: qk::; M R2:(1 - qk) ::; 2:(1 - qk)Mk,
k=R+l k=R+l k=l k=l

which is equivalent to th e conclusion. _

Proof of Theorem 1.5. Let 5 be any finite set that contains all A j k . Write
down the LYM inequality from T heorem 2.5.

From the m. weak partial composit ions (A j l , , Aj l' ) of 5, collect
those whose shape is (o,l , . . . , o.p) into the set C(o,l, , ap). Label the p-

mult inomial coefficients for integers n' ::; n as Mf,M~, .. . so that Mf 2':
M2' 2': .. . . If Mk'. is ( n' ) , let qk'.:= IC( al , .. . ,ap) I/M£. By Theorem

01 , .. . ,° 11

2.5, the q~ ' s and M£'s satisfy all the condit ions of Lemma 3.1 with N re­
placed by the number of p-t uples (0. 1, .. . ,ap ) whose sum is at. most n , that
is (n; p), and R replaced by min(N, r P) . Hence

L jC(al'''' ,ap)1 ::;M~ +...+ !11k·
0.1 +.·.+u.p:Sn

T he conclusion of the theorem now follows, since

rn =

(II + " · +U. p :S1I

IC(aI , . .. , ap) I· -
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As promised in Section 1, we now state sp ecial cases of T heo rems 1.5/2.5
that uni fy pairs of T heorems 1.2, 1.3, and 1.4 as well as t heir LYM com­
pani ons.

The first special case unifies Theorems 1.2/2 .2 and 1.3/2 .3. (It is a
corolla ry of the proof of the main theorems , not of the theorems themselves.
See [2] for a very short , direct proof.)

Corollary 4.1. Suppose (Aj l , . .. , Ajp) are Tn different weak compositions
of 5 into p parts sucl: that for each k E [p - 1], the set {Aj k : 1 :S j :S rn}
is r-ctieiti-Ivee. Then

< p- l_ r .

Conse quently, Tn is bo unded by the sum of the r P- l largest p-nmltinomial
coe fficien ts for n .

Proof. We note tha t , for a family of Tn weak composit ions of 5, the condi­
t ion of Theorem 2.5 for a par ticular k E [p- 1] is equivalent to {Ajd j being
r -chai n-free . Thus by the hyp othesis of the corollary, the hyp othesis of the
theorem is met for k = 1, ... , P - 1. Then t he proof of Theorem 2.5 goes
throu gh perfectly with the only difference, explained in the proof, that (even
without. a condit ion on k = p) we obtain N :S r P- l . In the proof of Theorem
1.5, under our hyp otheses t he sets C(a l ," . , ap ) with a l + ., .+ ap < n are
empty. Therefore we take only the p-mult inomial coefficients for n , lab elled
M, ~ M 2 ~ . ... In applying Lemma 3.1 we take R = min(N , r P- l ) and
summations over a l + ... + 0p = n . Wi th these alterat ions t he proof fits
Corollar y 4.1. _

A good way to think of Corollary 4.1 is as a t heorem abo ut parti al wea k
composit ions , obtained by dropp ing the last part from each of the weak
composit ions in t he corollary.

Corollary 4.2. Fix p ~ 2 and T ~ 1. Suppose (Aj l , .. . , Ajp) are n i different
weak partial com posit ions of an n- set 5 in to p parts such th at for each
k E [p], the set {Aj k : 1 :S j :S rn ] is r -efrain-free . Then Tn is bounded by
the slim of the r P largest (p + 1)-m ult inomial coe fficients for n . _
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A difference between this and Theorem 1.5 is that Corollary 4.2 has a
weaker and simpler hypothesis but a much weaker bound. But th e biggest
difference is th e omission of an accompa nying LYM inequ ality. Corollary 4.1
obviously implies one, but it is weaker than that in Theorem 2.5 because,
since the top number in th e latter can be less th an '11, the denominators are
much smaller . We do not present in Corollary 4.2 an LyrvI inequ ality of the
kind in Theorem 2.5 for the very good reason that non e is possible; that is
the meaning of Example 2.1.

The second sp ecializ ation constit utes a weak common refinement of
Theorems 1.2/2 .2 and 1.4/2.4. We call it weak because its spec ializat ion to
t he case B j = S - A j , which is the situ ation of Theorems 1.2/2 .2, is weaker
than those theorems.

Corollary 4.3. Let r be a positive integer. Suppose (A j , B j ) are m pairs
of sets such that Aj n Bj = 0 and, for all I ~ [rn] with III = r + 1,
there exist distinct i , j E I for which A j n Bk =1= 0 =1= 11k n B] . Let

'11 = maxj (IAjl + IBjl) . Th en

In 1

L (IAjl+IBjl) ::; r.
) = 1 IAjl

Consequently, m is bounded by the Slim of th e r largest binomial coefficients
(~) for 0 ::; k ::; '11' ::; n . This bound can be attained for all '11 and r.

Proof. Set p = 2 in Theorems 1.5/2.5. To attain th e bound, let Aj range
over all k-subsets of ['II] and let B j = ['11] - Aj . •

T he last speci a l case of T heorems 1.5/2.5 we would like to mentio n is
tha t in which r = 1; it unifies Theorems 1.3/2 .3 and 1.4/2.4.

Corollary 4.4. Suppose (Aj 1, . . . , Ajp) are m different weak set composi­
tions into p parts with the condition that , for all k E [p] and all distinct
i, j E [rn], either Aik = Ajk or

Aik n UAjl =1= 0 =1= Ajk n UAil ·
1# 1#

and let '11 2: maxj (IAjIi +...+ IAjp!) . Th en

In 1

~ (IA jJl+"+IAjpl) ::; 1.
)-1 IAjJl,...,IAjpl

Consequently, ni is bounded by the largest p-nmltinomial coefficient for n.
Th e bound can be at tained for every '11 and p.
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Proof. Everything follows from Theorems 1.5/2.5 except the attainability
of the upper bound, which is a consequence of Theorem 1.3. •

5. THE MAXIMUM NUMBER OF COMPOSITIONS

Although the bounds in all the previously known Sperner generalizations of
Section 1 can be attained, for the most part that seems not to be the case
in Theorem 1.5. The key difficulty appears in the combination of r-families
with compositions as in Corollary 4.1. (We think it makes no difference if
we allow partial compositions but we have not proved it .) We begin with a
refinement of Lemma 3.1. A weak set composition has shape (0,1 , . .. ,ap )

if IAkl = o,k for all k.

Lemma 5.1. Given values of n, r, and p such that r P- 1 ~ (n;~~ 1) , the
bound in Corollary 4.1 can be attained only by taking all weak compositions
of shape (0,1 , ... , o,p) that give p-multinomial coefficient larger than the
(rP- 1 + l)-st largest such coefficient Mr11- I + I , and none whose shape gives
a smaller coefficient than the (rP- 1)-st uugest. such coefficient M';«: I.

Proof. First we need to characterized sharpness in Lemma 3.1. Our lemma
is a slight improvement on [7, Lemma 3.1.3].

Lemma 5.2. In Lemma 3.1, suppose that 1I1R > O. Then there is equality
in the conclusion if and only if

and qk = a if Mk < M R

and also, letting MRI+l and MRII be the first and last Mk'S equal to MR,

qR'+1 + ... + qR" = R - R'. •

In Lemma 5.1, all lIh > a for k ~ (n;~~ I) . (We assume N is no larger

than (n;~~1). The contrary case is easily derived from that one .) It is
clear that, when applying Lemma 3.1, we have to have in our set of weak
compositions all those of the shapes (0,1 , . . . , o,p) for which ( n ) > lI;[rp-1al ,···,ap

and none for which (al ,.~. ,a) < Jv!rP- I. The rest of the m. weak compositions

can have any shapes for which el, .n. ,a) = Jv!rP-J. If 1I1rp- 1 > Mrp- l +1

this means we must have all weak compositions with shapes for which

el ,.n.,ap) > lI1.rp- l+ l · •
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To explain why the bound cannot usually be attained, we need to define
the "first appearance" of a size ai in the descending order of p-multinomial
coefficients for n .

Fix p 2: 3 and n and let n = vp +p where a ::; p < p. In C
1

,.~., a) ' the ai
are the sizes. The multiset of sizes is the form of the coefficient. Arrange
th e multinomial coefficients in weakly decreasing order: M1 2: M2 2: M3 2:
.. ' . (There are many such orderings; choose one arbitrarily, fix it, and call
it the descending order of coefficients.) Thus, for example,

( n) ( n )M 1 = > M 2 =
t/, . • • , v v + 1, v, ... , v, v-I

= M3 = .. . = M p(p- l )+ l if pin

since Nh, .. . ,M p(p- l )+ l have the same form as M2 , and

M 1 = ( n ) = .. . = f..1(p) > M(P)+l if p t n,
v+1 , . .. ,v p p

where the form of M1 has p sizes equal to v + 1, so M1, ..• , M(:) all have

the same form.

As we scan the descending order of multinomial coefficients, each pos­
sible size K" a ::; K, ::; n , appears first in a certain Mi. We call M,
the first appearance of K, and label it LK, ' For example, if pin,
L; = M1 > LV +1 = LV - 1 = M2 , while if p t n then L; = LV +1 = Mi.
It is clear that Lv > Lv- 1 > ... and LV+l > LV +2 > . . . , but the way in
which the lower LK, 's, where K, ::; t/ , interleave the upper ones is not obvious.
We write L'k for the k-th LK, in the descending order of multinomial coeffi­
cients . Thus Li = Lv; L'2 = LV +1 and L; = Lv- 1 (or vice versa) if pin,
and L'2 = LV + 1 if Pt n while L; = LV + 2 or Lv-i ·

Theorem 5.1. Given r 2: 2, p 2: 3, and n 2: p, the bound in Corollary 4.1
cannot be attained if L; > Mrp-l +i-

The proof depends on the following lemma.

Lemma 5.3. Let r 2: 2 and p 2: 3, and let K,1,"" K,r be tue first r sizes
that appear in the descending order ofp-multinomial coefficients for n. The
number of all coefficients with sizes drawn from K,1, ..• , K,r is less than rP- 1

and their sum is less than M; + ...+ Mrp-l.
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Proof. Clearly, K }, . . . , K r form a consecutive set that includes u, Let K

be the smallest and K' the largest . One can verify that, in C,..~ K;) and

C,;I ,..: K;' ,y)' it is impossible for both x and y to lie in the interval [K ,K'] as
long as (1' - 1)(p - 2) > O. •

Proof of Theorem 5.1. Suppose the upp er bound of Corollary 4.1 is
attained by a certain set of weak composit ions of S, an n-element set . For
each of the first r sizes K 1, . . . , /iT t hat appea r in the descending order of
p-multinomial coefficients, £ K;i has sizes drawn from K} , . . . , K r and at least
one size ru, Taking all coefficients Mi. that have the same forms as th e £ K;i '
Ki will app ear in each position j in some M k . By hypothesis and Lemma
5.1, among our set of weak compositions, every Ki-subset of S appears in
every position in the weak compositions. If any subset of S of a different
size from K} , . . . , K T appea red in any position, there would be a chain of
length r in that position. Therefore we can only have weak compositions
whose sizes are among the first r sizes. By Lemma 5.3, there are not enough
of these to attain th e upp er bound. •

Theorem 5.1 can be hard to appl y because we do not know M r p-l + i- On
the other hand , we do know £1{ since it equals ( n ) where a2, . . . , apK ,U2 ,· · · ,a p

are as nearly equal as possible. A more practical criterion for nonattainment
of the upp er bound is therefore

Corollary 5 .1. Given T 2: 2, P 2: 3, and n 2: p, the bound in Corollary 4.1
cannot be attained if £; > £;'+1 '

Proof. It follows from Lemma 5.3 that £ ; +} is one of the first 1'P- } coeffi­
cients. Thus t; > £; +1 2: M rP- l + 1 and Theorem 5.1 applies. •

It seems clear that £ ; will almost always be larger than £ ; +1 (if r 2: 3 or
p t n) so our bound will not be attained. However , cases of equality do exist .
For inst ance, take p = 3, r = 3, and n = 10; th en £'5 = L 1 = (5,14~1) = 1260

and L6= L6 = (61~2) = 1260. Thus if T = 5, Corollary 5.1 does not apply
here. (We think tl;~ bound is still not attained but we cannot prove it.) We
can isolate the instances of equality for each 1' , but as r grows larger the
calculations quickly become extensive. Thus we state the results only for
small values of 1' .

P roposition 5. 1. Th e bound in Corollmy 4.1 cannot be attained if 2 ~

r ~ 5 and P 2: 3 and n ~ r - 1, except possibly when r = 2, pin, and
p = 3,4,5, or when r = 4, p ~ 4, and n = 2p - 1, or when r = 5, p = 3, and
n = 10.
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Proof sketch. Suppose p f n. We have verified (by long but routine
calculations which we omit) that Li = L2 > L3 > L4 > L'5 > L'6 except
that L4= L'5 if p = p - 1 and p ~ 4 and v = 1 and L'5 = L'6 when p = v = 3
and p = 1.

If pin then Li > L2 = L3 > L4 > L'5 > L'6 . This implies the
proposition for r = 3, 4, or 5. We approach r = 2 differently. The largest
coefficients are

( n) ( n )M, = > M2 =
v, .. . , v v +1, v, ... , v, v-I

= Mp(p-l)+l > M p(p- l )+2 '

= '"

If p(p - 1) + 1 :s: r P- l , the bound is unattainable by Theorem 5.1. That is
the case when p ~ 6.
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A QUICK PROOF OF SPRINDZHUK 'S D E COMP OSIT ION

THEOREM

Y. F . BILU and D. MASSER

Dedicated to the memory of V. G. Sprind zhuk

In [11] Sprindzhuk proved the following st riking theorem.

Theorem 1 (Sprindzhuk [11]). Let F (x , y) E Q [x , y] be a Q-irreducible
polyn omial satisfying

(1) F (O, 0) = 0,
BF
By (0, 0) # O.

Then for all but finitely many prim e numbers p, the polyn omial F(p , y) is
Q-irreducible.

Actu ally, prim e numb ers can be replaced by prime powers , as well as by
numbers of the form lit , where t E Z, t # 0: see Corollary 3.

In the subsequent pap er [12] (see also [13 , 14] for a more detailed ex­
position) Sprindzhuk obtained an even more amusing result . To formulate
it , recall that the height of a ra tional numb er a = alb (where a and b are
coprime integers) is defined by

(2) H( a) = max {Ia l,Ibl} .

One immediately verifies that

(3) H(a ) = II max {I, lalJ = II max {I, la l~ l } ,
v EA/Q VEMQ

where MQ is the set of all places of th e field Q (th at is, MQ = {primes} U
{oo}).

For a E Q put V (a) = {v E MQ : lalv < I}.
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Theorem 2 (Sprindzhuk [12]). Let F( x ,y) be as in Theorem 1 and E a pos­
itive number. For every 0' E Q let d l (0') , .. . ,ddO') be the degrees of the Q­
irreducible factors of F(O', y) (so that dI(O') +...+dk(O') = degy F). Then
for all but finitely many 0' E Q there is a partition V(O') = VI U . . . U Vk sucu
that

(4) (i=I , .. . , k).

We do not formally assert that th e partition sets VI, . .. , Vk are non­
empty. However, (4) implies that th ey are indeed non-empty when E is
sufficientl y small (in fact , when E < II degy F).

Theorem 1 easily follows from Theorem 2. Put n = {prime powers} U

{l it : t E Z, ItI > I} .

Corollary 3. Let F(x ,y) be as in Th eorem 1. Then F(w,y) is Q-irreducible
for all but finitely many w E n .

Proof. As we observed above, the partition sets VI, ... , Vk are non-empty
when E is sufficiently small. But for every wEn the set V(w) consists of
a single element , and cannot be partitioned into more than one non-empty
part. _

Here is anot her amazing consequence of Th eorem 2 (th e proof is imme­
diate).

Corollary 4. Let F( x ,y) be as in Th eorem 1 and let {qv} , {Tv} be two
sequences of prime powers such the: limv->oo log qvl log Tv exists and is
irrational. Then F(qvTv , y) is Q-irreducible for all but finitely many 1/ .

-
We invite th e reader to invent many other corollaries of this wonderful

theorem.

Actually Sprindzhuk in [12] obtained a yet sharper version of Theorem 2

with E replaced by an error term of order ( log H (0') ) -1 /2 . To prove this he
used Siegel's Lemma and some sophisticat ed machinery from the th eory of
Diophantine approximation and tr anscendence such as the cancellat ion of
factorials and a zero estimate (Lemma 6 of [11]) . He also used Eisenstein's
theorem, which is easy when (1) is assumed .

In the final paragraph of the Russian edition of his book [13], Sprindzhuk
wrote that, while methods of Diophantine approximation are used in the
proof of Theorem 2, its formulation
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".. . involves no concepts related to the th eory of Diophantine
approximation. This gives hope th at a different proof exists,
which is independent of th e th eory of Diophantine approxima­
tion ."

27

Indeed, such a proof was soon after found by Bombieri [1], who used the
machinery ofWeil functions and Neron-Tat e height . Weil functions were also
employed by Fried [9] in the prime-power case. It was Bombieri who pointed
out the connect ion with G-functions and Fuchsian differenti al operators of
arithmet ic typ e. This connection was further developed by Debes (and
Zann ier) [3 ,4, 5, 6].

Th e object of th e present note is to point out th at Theorem 2 itself can
be established rather quickly, also along the lines of Sprindzhuk 's original
arti cles, bu t without most of the sophisticated machinery. Our proof relies
only on the simplest properties of heights (see Proposition 5 below) and
Eisenst ein's theorem.

Recall th e definition of th e height of an algebraic number. This is

(5)

where K is a numb er field containing a and MJ( is th e set of valuati ons
on K , which are norm alized to exte nd the standard valuat ions of Q. As
usual , K; and Qv stand for the topological completions with respect to
v E MJ(.

It is st raightforward to verify th at th e right-hand side of (5) does not
depend on th e choice of th e field K. Also (3) implies th at this definition is
compat ible with th e definition of th e height of a rational numb er from (2).

The product formula

II lal!;(v:Qul = 1
VElv!{.(

(a E K *)

implies th at for any V c MJ( and a E K* one has the following "Liouville
inequality" :

(6) II l al~(u : Qvl ~ H(a)-[J( :Ql .

v EV

The following two well-known properties of the height function are (al­
most) immediate consequences of its definition (5).
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Proposition 5. Let a , 13 be algebraic numbers and F( x , y) a polynomial
with algebraic coefficients. Put m = deg, F and n = degy F .

1. For 1 = F (a , 13) one has H b ) « H (a )mH( j3t·

2. Assume that F is not divisible by x -a. Then F (a ,{3) = a implies
that H{ j3) « H (a )m.

Constants implied by "«" depend only on the polynomial F.

Proof. Part "I" is straigh tforward. To prove "2", write F( x , y) = fn(x)yn+
...+ fo{Y). By the assumption, not all of the numbers fo{a) , ... , fn(a)
vanish . Put v = max {j : f j( a) =1= a}.

Let J( be a number field containing a , 13 and th e coeffic ients of F . The
equality fv(a)j3v + fv_l( a) j3v-1 + . . . + fo(a) = a implies th at

max { 1, Ij3lv} ~ max { 1, Ivlv}

Using the product formula, we obtain

H( {3)::; H(V )( II max{l ,lfv-I(a)/fv (a)l v"'"
VEMf{

)

l/IK:iQJ
Ifo{a)/ fv(a)1 JIKv : iQvJ

=v( II max{lfv(a)l lI ,lfv-I(a)! v"' "
vE M f{

as wanted. -

Recall also Eisenstein 's t heorem.

Theorem 6. Let Y( x) = ao + alx + a2x2 + . . . be a power series with co­
efficients in a number field J( , algebraic over the field K (:1: ). Th en for
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every v E Mg th ere exists Cv ~ 1 such that all but finitely many Cv are
equal to 1, and

(7) (v EMf( , j = 1,2 , ... ).

(i=I , .. . ,k).(8)

Classically, Eisenstein 's theorem reads as follows: there exists a posi­
tive int eger T such t hat T j o,j are algebraic integers for j = 1,2, . ... This
immedi at ely implies Theorem 6. Indeed , for non-archimedean v one may
put Cv = ITI;;-l . For archimedean v , the existence of Cv follows from th e fact
tha t th e convergence radius of a complex algebraic power series is positive.

Eisenstein 's th eorem goes back to Eisenstein 's paper [8]. See [10,
page 151] for an old-fashioned proof and [7] for a modern quantit ative argu­
ment. See also [2, page 28] for an especially quick proof when J( = Q, which
suffices for the present note. In addit ion, if 0,0 = 0 and F( x ,Y(x)) = 0,
where F(x ,y) E Z [x ,y] satisfies (1), th en a very easy induction gives the

value T = ( fJF/fJy(O ,0)) 2 , and in fact this case suffices as well.

Proof of Theorem 2. P ut rn = deg, F and n = degy F. To prove the
theorem, it is sufficient to find a partition V (a) = VI U . . . U VI,; sat isfying

- I:VEY: log lalv di(a), < - - +c
log H( a) - n

Indeed, by th e second equa lity in (3),

1,; " I I I,;
"\' - D v EVi log a v = 1 = "\' di(a).
L 100. H( a) L n
i = ! b i=l

(i = I , ... ,k),

Hence (8) implies tha t

- I:vEV log lalv di(a), > -- - (k - l) c
log H( a) - n

and (4) follows afte r redefining c.

It follows from (1) that th ere exists a power series Y(x) = o,l x+o,2x2+. . .
with rational coefficients satisfying F( x ,Y(x)) = O. Put

(9) N = r4rn(n - l) /c1-
There is a non-zero polynomi al G(x,y) E Q[x,y] sat isfying

(10)

(11)

elegyG :::; n - 1, deg; G :::; N ,

ord:r=oG( x , Y(x)) ~ nN.
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(Indeed, th e vector space of polynomials satisfying (10) is of dimension
n(N + 1), while (11) is equivalent to nN linear relations.) In the sequel,
constants implied by "0 (·)", "«" and "»" may depend only on F , G and E.

Put U(x) = G( .7:, Y(x)) . By Eisenstein's theorem, for every v E MQ
there exists Cv 2: 1 such that all but finitely many cv are equal to 1, and the
coefficients of the power series Y(x) = 2:~I OjX

j and U(x) = 2:~nN bjxj

satisfy

(12)

For 0: E Q put

{
< 1/(2cv ) if v = 00, }

V'(o:) = v E V(o:) : 100Iv - ,

< 1/Cv if v < 00 .

V"(o:) = V(o:) \ V'(o:) .

Since - 2:vEVII(Q) log 100Iv « 1, for all but finitely many 0: we have

- L:vEV II(Q) log 100I v E
--~-'-.:.-_- < -.

logH(o:) - 2

Hence it is sufficient to find a partition V' (0:) = V{ U . .. U Vi such that

(13)
- L:vEV' log 100Iv d(o:) E, < -~- + -

log H (0:) - n 2
(i = 1, ... , k) ,

for then putting, say, VI = V{ U V"(o:) and Vi = Vi' for i 2: 2, we obtain (8).

Thus, fix 0: E Q and let F(o: ,y) = h(y)' " h(y) be the decomposition
of F( 0: , y) into Q-irreducible factors. We may assume (discarding finitely
many 0: at which the y-discriminant of F( x ,y) vanish es) that the polyno­
mials Ii are pairwise coprime. We put di = deg k

For any v E V'(o:) the series Y(x) converges v-adically at 0:. Its sum
in Qv, denoted by ~(o:) , is a zero of F(o: , y). Define th e partition V'(o:) =

V{ U .. . U Vi as follows:

Vi' = {v E V'(o:) : Yv(O:) is a zero of Ji(y)} (i=l , ... , k ).

Now fix i and let {3 = (3i be a zero of fi(y) . Again discarding finitely
many 0: , we may assume that 'r/ := G(o: , (3) =J O. Ind eed, since F( x , y)
is irreducible, and elegy G < elegy F , the system of algebraic equations
F(0:, (3) = G( 0: , (3) = 0 has only finitely many solutions.


