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PREFACE

This book provides articles, included in Focus on Mathematics Pedagogy and 
Content, a newsletter for middle and high school teachers, published by Texas A&M 
University. The book covers all five NCTM content strands, focusing only on grades 
6–12. The articles may be used as a reference for teachers, on both effective ways to 
teach mathematics, as well as mathematics content knowledge. 

High level mathematics content and problem solving processes are presented in 
different ways, including via historical information and creative real-world contexts. 
This book offers historical perspectives and connections, which are not typically 
found in other books that examine instructional strategies for various mathematics 
topics. The book will benefit those readers, who desire to learn more about the 
history of mathematics and its connection to teaching in the mathematics classroom. 
As related to problem solving, many articles present different ways of representing 
mathematics content, ways of connecting these representations, and different ways 
to approach the same type of problem. In addition, student misconceptions are 
interspersed throughout the book.

The book also briefly delves into assessments, looking at an amalgamation of 
topics, related to formative and summative assessments. These articles focus on test 
construction, viewpoints, background, and types of assessments. Finally, a whole 
section on “Teaching Tips” is included in the book, in addition to a section on games 
and technology integration.

We would like to thank all of the contributors to this book. All of the contributions 
were guided, based upon personal interest. Articles were not submitted, in response 
to a particular call for articles or particular content domain request. Authors were 
given complete autonomy in deciding on article content. This lack of structure 
resulted in a wide variety of articles on many different mathematics content and 
pedagogy topics, which certainly added to the uniqueness of this book. 

We hope you enjoy the book!
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CONTENT AND PEDAGOGY



SECTION 1

NUMBER
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1. A BRIEF HISTORY OF ZERO

Zero is a relatively recent addition to mathematics. Indeed, entire civilizations lasting 
longer than our entire western era (i.e. more than two thousand years) flourished and 
perished having built the pyramids and the wonders of the world, without any notion 
of zero. Zero, which is taught to youngsters, is such an important concept, and like 
much of mathematics, was invented out of necessity.

One of our principal uses of zero is as a placeholder in our system of enumeration. 
How else could we write 2005 without the zero? The ancient Egyptians, Babylonians, 
Greeks, and Romans all knew how to do so. Placeholders are a mere convenience of 
our enumeration, not an essential part of enumeration. Systems of enumeration are 
shown in Figure 1.

Figure 1. Systems of enumeration

However, they do help with our algorithms of calculation such as addition, 
subtraction, multiplication, and division. For example, our modern division algorithm 
is about five hundred years old, and once was an advanced subject taught only in 
Italy. These algorithms take keen advantage of our zero placeholder, and make rapid 
hand calculations possible. More important, they make the realization of truly large 
numbers such as a google, 10100, possible. 

The other use of zero is as a number itself. You can be the judge of which is more 
important. But for basic business type mathematics calculations, it would be the 
place holding value that is probably greatest. In higher math, the actual value of zero 
is extremely important.

While the Babylonians and ancient Greeks did finally evolve to a symbolic 
placeholder for zero, it was not really a number. What we do know is that by around 
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650 AD, the use of zero as a number came into Indian mathematics. Its original form 
is very much like our own zero, 0, only a little smaller, though there is evidence 
also that a single dot, . , was used to denote an empty space. Links: History of zero: 
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Zero.html Enumeration: 
chapters 3 and 4 of http://www.math.tamu.edu/%7Edallen/masters/hist_frame.htm

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Zero.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Zero.html
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2. APPROXIMATING PI

Ever since mankind began surveying areas and building, the need to measure circles 
has been important. For this task, we need p. As we know today, p is one of the most 
peculiar of numbers. It is not rational, but instead, irrational, and is a special kind 
of irrational number, called a transcendental number, meaning that it cannot be the 
solution of a polynomial equation with integer coefficients. Indeed, it was only in 
1840 that such numbers were even found, and this was thousands of years after the 
ancients first mused on what p might be. Well, everyone knew p was a little bit larger 
than three, but to achieve an accurate approximation was an elusive task. Let’s look 
at a couple of methods and approximations from various civilizations. 

ANCIENT EGYPTIANS

“A square of side 8 has the area of a circle of diameter 9.” The area of any circle was 
then approximated using proportion using the formula and what was understood to 
be an area to square of the radius formula.

A
r 2 2

64
9
2

256
81

=






=

The form we use today is shown below. 

A r=
256
81

2

Cut off each corner of the square of side length 9 divided horizontally and vertically 
in thirds, as shown, and add the resulting five squares of radius three and four 

triangles of half that size to get 5 3 4 1
2

3 63 642 2( ) + ⋅




= ≈ . See Figure 1.
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Figure 1. Approximation by Ancient Egyptians

ANCIENT GREEKS

p ≈
22
7

. This incredibly remarkable formula was determined by Archimedes, 
the greatest of the ancient mathematicians. He was able to determine the areas of 
inscribed and circumscribed regular polygons of 6, 12, 24, 48, and finally 96 sides. 

In this way, he found lower and upper estimates of p, the lower estimate being 310
71

.  

See Figure 2, where polygons of up to 24 sides are shown. What Archimedes did 
was discover a very clever relation between the areas of these figures, as the number 
of sides increased. This allowed the prodigious computational feat. The formulas 
of Archimedes were used even until modern times to compute ever more accurate 
approximations to p.

Figure 2. Approximation by Ancient Greeks
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ANCIENT CHINESE

While it is uncertain how the computation was made, the Chinese of the 5th century 
gave us the purely elementary fraction approximation to p given by

355
113

3 14159292= .

Now to ten places p = 3.141592654. So you can see that the approximation, 

p − = −
355
113

0 0000002667. , is very, very accurate, almost beyond any current needs. 

Note the pattern of the number, which uses the digits 1, 1, 3, 3, 5, 5, stacked to make 
the fraction. Now, how good are these? Can we do better? Well, 31

6
19
6

=  is not 

nearly as accurate as 22
7

. Yet, 22
7

, is the most accurate fraction approximation up to 
179
57

, but the improved accuracy of the latter fraction is slight. (Ask your students to 

compute these differences. They will begin to use very small numbers.) On the other 

hand, the next better approximation than 355
113

 is the whopping big fraction 53228
16943

, 

and as before the improvement is only slight. This should give the idea that these two 

revered fractions, 22
7

 and 355
113

, have a special place in the world of approximations.

MODERN TIMES

The current, best approximation to p is accurate to 1,240,000,000,000 places. 
(That’s more than a trillion digits.) To give an idea how many digits these are, typing 
them all out at 10 digits to the inch, the entire approximation would run 1,957,070 
miles. This is almost 78 times around the earth, or four round trips to the moon! The 
method uses a complex formula involving the arc tangent function. It was computed 
a HITACHI SR8000/MP supercomputer under the project direction of Yasumasa 
Kanada. See http://www.super-computing.org/ for more information.

ACTIVITIES

1. Make the decimal approximations of all the fractions above. Compare the 
decimals to one another and then to p itself.

2. Ask your students to recreate the clever diagram of the ancient Egyptians.

http://www.super-computing.org/
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3. In the 6th century, Indian mathematicians used this description, “Add 4 to 100, 
multiply by 8, and add 62,000. The result is approximately the circumference 
of a circle of which the diameter is 20,000. What is their effective p? Answer: 

Computing, we have 
100 4 8 62 000

20 000
3 177
1250

3 1416
+( ) × +

= =
,

,
.

READINGS

“A History of Pi”;  
http://www-groups.dcs.stand.ac.uk/history/HistTopics/Pithroughtheages.html

http://www-groups.dcs.stand.ac.uk/history/HistTopics/Pithroughtheages.html
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3. THE CAESAR CYPHER

A cypher (or encryption) is a method of transforming a message into a set of alternate 
characters that conceals the contents of the message. The Caesar cypher (or shift) 
was one of the earliest cyphers ever used. More than two thousand years ago, Julius 
Caesar was able to convey secret messages to his generals and colleagues. It is 
simple and effective. Each character is shifted a specified number of places to the 
right, with the provision that at the end of the alphabet, the characters “wrap around” 
to the beginning of the alphabet. This is shown below for a shift of four places. So, 
“A” is shifted to “E”; “B” is shifted to “F”, “W” is shifted to “A”, and so on. For 
example, the message “Send more money” is encrypted to “Wirh qsvi qsric.” 

An alternative to the Encoder-Decoder wheel is a linear representation of the shift.      

However, the cypher is now easy to decipher using frequency analysis. That is, the 
number of each letter occurrence is counted and compared with standard frequency 
counts for normal text. For example, “E” is the most commonly occurring letter, 
occurring 12.702% of the time. So, it is natural to guess that the letter in the encrypted 
message occurring most often is an “E.” This can help the cryptographer determine 
or guess the true letters. In the version of the Caesar cypher below, numbers are 

Shift by four characters 
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shifted as numbers, capital letters are shifted as capitals, and lower case letters are 
shifted as lower case. For each shift, the Encoder-Decoder wheel is shown. (Press 
“Show encoder wheel.”) Frequency counts of letters for the English language can be 
found at http://en.wikipedia.org/wiki/Letter_frequencies

Example. With the four character shift, the message “I love American Idol,” is 
encoded as “L oryh Dphulfdq Lgro.”

Where’s the Math? It lies in what is call modular arithmetic. Modular arithmetic is 
based on a specific modulus. We define 

a = b (mod c)

to be the remainder of b divided by c. The modulus is c. For example 5 = 12 (mod 
7) because 5 is the remainder of 12 divided by 7. For our present situation we are 
working with the twenty six letters of the alphabet; so our modulus c = 26. Encode 
the letters as the numbers 0, 1, 2, ... , 25 as shown in the chart below.

So with a shift of four, each encoded letter is increased by four units. The letter 
“A” is encoded as “0” and this is shifted to “4” which is “E”. Written in modular 
arithmetic this is 4 = 4 (mod 26). On the other hand, the letter “Y” is encoded as 
“24” and this is shifted by “4” which is 28. Now dividing by 26 gives the remainder 
2 and this is decoded to “C”. Written in modular arithmetic this is 2 = 28 (mod 26). 

In summary, letters are encoded as numbers. To encrypt the letters, we perform 
modular arithmetic on the numbers, in this case add 4, and then the numbers are 
decoded back to letters. Essentially every modern encryption scheme uses the 
encoding of letters to numbers.

TERMINOLOGY:

• Cypher (also spelled as Cipher) - Encryption
• Caesar cypher (cipher)
• Encode - Encoding
• Decode - Decoding
• Modular arithmetic 
• Modulus

http://en.wikipedia.org/wiki/Letter_frequencies
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4. HOW BIG IS INFINITY?

Infinity is a relatively recent term in mathematics, having officially been around 
only since the nineteenth century. It was paradoxically created in an attempt to solve 
a complicated mathematical problem, but its presence was felt for centuries prior 
to that. It was felt in philosophy, religion, and in mathematics, partly due to the 
seeming need for infinite processes, infinite time span, infinitesimal divisibility of 
matter, and so on. In the months ahead, we can consider all of these if there becomes 
a need, but today we want to discover how big it is. Historically, infinity was a 
number, concept, or idea that could be approached but never reached or achieved. 
Today, it has attained its rightful place as a number, with precise rules on how to use 
it and what it means.

Everyone knows infinity is the biggest “thing” there is, no matter what the context. 
So, it matters not to discuss this aspect, the bigness. What is more fun is to consider 
some of the anomalies it creates.

ARITHMETIC

To work numerically with infinity, mathematicians have created the extended number 
system, which consists of all real numbers plus infinity (∞) and minus infinity (–∞). 
For real numbers, the rules are the same as usual, but for the arithmetic involving ∞, 
we have for every real a

a
a a a

a

+ ∞ = ∞
∗∞ = ±∞ ≠ ± for  with the  generated by the sign of 0

∞∞
=

∗∞ =
∞ +∞ = ∞

∞−∞ =
∞
∞

0

0 0

 is undefined and  is undefined

With this set of rules, the extended real numbers form a consistent number system 
that obeys the laws of closure, commutativity, associativity, and distibutivity. The 

reason ∞−∞
∞
∞

 and  are undefined is because we can’t make any consistent sense 
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of what it should be to maintain a consistent number system. For example, suppose 
we do what seems natural and define ∞ – ∞ = 0. Then, adding 1 to both sides of the 
equation gives 1 + ∞ – ∞ = 1 + 0 . By associativity, we have (1 + ∞) = ∞. So, 1 + 
∞ – ∞ = (1 + ∞) – ∞ = ∞ – ∞ = 0, but 1 + 0 = 1. This implies 0 = 1, which we know 
is not so. Selecting ∞ – ∞ to be anything else similarly will result in a contradiction. 

Ditto for ∞
∞

.

MAGNITUDE

We know ∞ is really, really big. But, it’s bigger than that. One way of comparing the 
size of a basket of apples and a basket of pears is to put them in correspondence. In 
other words, you would place each apple next to a pear until one of the baskets is 
exhausted of fruit. Then, we can say that the basket with fruit remaining in it is the 
larger in size. Basically, we also do this by counting. However, there are records of 
some tribes of Indians, not knowing counting, who used this correspondence idea.

So, now let’s suppose we have our baskets filled with an infinite quantity of objects. 
To make things easier, let’s work with just the real numbers in the interval [0,1] and 
[0,2]. Clearly, both contain an infinite number of numbers, and just as clearly, the 
larger interval has “twice” the size. But, does it? We can’t do the arithmetic 2∞ – ∞ 
because this quantity is not defined. (Note. 2∞ – ∞ = ∞ – ∞, and we’ve shown there 
can be no meaning to this.) Using the correspondence idea, we take any number x 
in [0,1] and multiply it by 2 to get 2x. Now, all the numbers in [0,1] have been put 
in correspondence with those in [0,2]. Not only is the correspondence perfect but, 
it is one-to-one. This remarkable observation shows that these two sets with one 
obviously “twice” the other have exactly the same number of points in them. (Note. 
Use rational numbers, and the argument is the same.)

Definition: An infinite number of numbers is called countable if it can be put into 
one-to-one correspondence with the natural numbers.

Problem: Show that there is exactly the same number of even positive integers as 
there are positive integers.

Problem: The famous Hotel Infinity, with an infinite number of rooms, is 
completely filled, and a new guest arrives requesting lodging for the night. The clerk 
says, “Of course, sir”, and makes a room available. How did he do it?

HIGHER ORDERS OF INFINITY

Infinity gets more bizarre when we consider all the real numbers in [0,1] and all 
the natural numbers, i.e., 1, 2, 3…. Both sets of numbers have an infinite number 
of members. This time, there is not a possible way to put them in a perfect 
correspondence. This means the infinity of [0,1] is fundamentally larger than 
that of the natural numbers. So there are magnitudes of infinity, just like there are 
magnitudes of numbers.
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Let’s show that the number of numbers in [0,1] cannot be put into one-to-one 
correspondence with the natural numbers. Each number in [0,1] has a decimal 
expansion. Assume we can put all of them in correspondence with the natural 
numbers. We express this assumption by writing d1,d2,d3,... as all of the decimals 
written with their correspondent integer. Each decimal number has a full decimal 
expansion. So,

d d d d
d d d d
1 11 12 13

2 21 22 23

0
0

=
=

. ...
. ...

and so on, where all the digits dij are integers 0, 1, 2, …, 9. Now, construct a brand-
new decimal f = f1,f2,f3... by the rule that f1 ≠ d11, f2 ≠ d22, f3 ≠ d33, and so on. In this 
way, f cannot equal any of the d1,d2,d3,..., and this “proves” we cannot make the 
correspondence we assumed we could.

It was hardly 140 years ago that these ideas of orders of infinity turned mathematics 
on its axis. Infinity is now quite tamed; it is no longer the mystery it once was.

REFERENCE

http://www.math.tamu.edu/~dallen/masters/infinity/content2.htm

http://www.math.tamu.edu/~dallen/masters/infinity/content2.htm
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5. MAKING COMPLEX ARITHMETIC REAL!

With              being called an imaginary number, it’s easy to see why many students 
don’t view complex numbers as actual numbers and/or take any interest in them. 
Such complex analysis is an important tool in engineering, and students need real-
world examples that will motivate them to study the topic of complex numbers. We 
might humor our students by telling them that the real reason they need to know 
about complex numbers is to pass the next test or class. Instead, we should offer 
some simple exercises that give insight into the value of complex numbers.

We can associate with each complex number, z = a + bi, the point (a, b), in the 
plane. The real number a is called the real part of z and the real number b is called 
the imaginary part of z. Adding two complex numbers z = a + bi and w = c + di is 
done by adding the real parts and imaginary parts: z+w = (a+c) + (b+d)i. Combining 
this definition of arithmetic and the geometry of the numbers themselves leads to the 
following activities. 

Plot points associated with the following complex numbers: z1 = 1 + i, z2 = –1 + i, 
z3 = –1 – i, and z4 = 1 – i. Add the complex number w = 2+3i to each of the numbers 
z1 to z4, plotting the sums as well. To complete the picture, connect the numbers z1 to 
z4 as vertices of a square. Connect the sums in the same way. The resulting picture 
gives us our first clue as to the power of complex arithmetic: adding a complex 
number translates another complex number or set of numbers. This is a way of doing 
geometry with arithmetic.

z z+(2+3i)

 1+i

–1+i

–1–i

 1–i

What about complex multiplication? Multiplying two complex numbers z = a + bi 
and w = c + di is performed the same way as multiplication of any two real binomials, 
while also using the identity, i2 = –1. We can verify that zw = (ac–bd) + (ad+bc)i. 

i = −1
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Start with a clean plot of the points z1 to z4 again. Multiply each of them by the 
complex number w = i2 2 2 2/ /+  Again, connect the numbers z1 to z4 as vertices 
of a square, and do the same for the resulting products. The resulting picture gives 
us more evidence of the power of complex arithmetic: multiplying by a complex 
number can rotate another complex number or set of numbers. We have extended the 
reach of arithmetic into geometry. 

z z*w

 1+i

–1+i

–1–i

 1–i

If we repeat the multiplication exercise with w = 1 + 1i = 1+i instead, we get 
a slightly different result. Instead of a simple rotation, the original square is 
stretched as well. Yes, there is a connection between the multiplication and, 
2 2 2 2 2 1/ /+( ) = +i i and the stretch. This gives us evidence that multiplying 

by a real number dilates (stretches/contracts) another complex number or set of 
complex numbers. 

z z*(1+i)

 1+i

–1+i

–1–i

 1–i

Who knew that it would be possible to translate, rotate or stretch a figure just 
by arithmetic? And it doesn’t end there. We might wonder if it is possible to do 
reflections, inversions or other geometric transformations with complex numbers. 
Why, of course. 

Here are some exercises to work on. In them, S refers to the square in the plane, 
with vertices z1 to z4, as above. 

Suppose there is a translation of S so that z1 has image, –3 + 2i. What complex 
number, w, could be added to the vertices of S for that translation?


