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Preface

This volume is the outcome of two conferences: “Recent Advances in Commutative
Ring and Module Theory” held in Bressanone/Brixen, Italy, June 13–17, 2016; and
“Conference on Rings and Polynomials” held in Graz, Austria, July 3–8, 2016.
The volume contains contributed as well as invited papers by the speakers at these
conferences, and a small collection of invited papers by some of the leading experts
in the area, carefully selected for the impact of their research on the major themes
of the conferences.

The aim of the meetings was to present recent progress and new trends in the area
of commutative algebra, with emphasis on commutative ring theory, module theory,
and integer-valued polynomials along with connections to algebraic number theory,
algebraic geometry, topology, and homological algebra. The wide range of topics is
reflected in the table of contents of this volume.

The two conferences brought together over one hundred mathematicians from
over 20 countries—renowned researchers as well as promising young new-
comers—in a pleasant and peaceful atmosphere that engendered many fruitful
collaborations.

In addition to the conference participants and authors of papers, a number
of other people helped make these conferences and this volume of proceedings
possible. Among those we count the organizing and scientific committees of both
conferences. The organizing committee of the Bressanone conference consisted
of Florida Girolami, Francesca Tartarone, and Paolo Zanardo, while the scientific
committee included Valentina Barucci, Dikran Dikranjan, Brendan Goldsmith, Evan
Houston, Bruce Olberding, Francesca Tartarone, and Paolo Zanardo. The organizing
committee of the Graz conference consisted of Sophie Frisch, Carmelo Finocchiaro,
and Roswitha Rissner, while the scientific committee included Karin Baur, Jean-Luc
Chabert, Marco Fontana, Alfred Geroldinger, Sarah Glaz, and Irena Swanson. We
wish to thank them all for their efforts, without which these conferences would
not have taken place and this volume would not have seen the light of day. In
addition, the Graz conference editors wish to thank the departmental secretary
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vi Preface

Hermine Panzenböck for administrative support and many students for technical
support. The Bressanone conference editors wish to extend special thanks to Marco
Fontana, Stefania Gabelli, and Luigi Salce for useful suggestion.

We also thank the many organizations who sponsored these conferences and,
most importantly, made it possible to provide support for graduate students and
mathematicians not supported by their institutions. The Bressanone conference was
sponsored by Istituto Nazionale di Alta Matematica (INdAM), the departments
of mathematics of Università degli Studi di Padova and Sapienza Università di
Roma, and the department of mathematics and physics of Università degli Studi
Roma Tre. The Graz conference was sponsored by the Austrian Science Fund
(FWF), the Austrian Mathematical Society, the province of Styria, and the faculty
of mathematics and physics of Technische Universität Graz.

Last, but not least, we thank the editorial staff of Springer, in particular Elizabeth
Loew, for their cooperation, hard work, and assistance with this volume.

Rome, Italy Marco Fontana
Graz, Austria Sophie Frisch
Storrs, CT, USA Sarah Glaz
Rome, Italy Francesca Tartarone
Padova, Italy Paolo Zanardo
July 2017
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Reducing Fractions to Lowest Terms

Daniel D. Anderson and Erik Hasse

Abstract The purpose of this paper is to investigate putting or reducing a fraction
to lowest terms in a general integral domain. We investigate the integral domains in
which every fraction can be (uniquely) put in or reduced to lowest terms.

Keywords ACCP • Atomic domain • GCD domain • Lowest terms • gcd •
Weak gcd

Subject Classifications Primary 13G05, Secondary 13A05, 13F15

We are all familiar with reducing fractions to lowest terms over the integers or
polynomials over a field. The purpose of this paper is to study this in the context of
general integral domains. We investigate when a fraction a=b can be put in lowest
terms c=d (i.e., a=b D c=d where c and d are relatively prime) or reduced to lowest
terms . a

d /=.
b
d / (i.e., . a

d /=.
b
d / is in lowest terms for some common divisor d of a

and b) and when the lowest terms representation for a=b is “unique”. Of particular
interest are the integral domains in which every fraction can be reduced to lowest
terms.

Throughout D will be an integral domain with quotient field K. Let a; b 2 D�:D
D � f0g. We denote the gcd of a and b by Œa; b�, if it exists. Of course, Œa; b� is
only unique up to a unit factor. We write Œa; b� D 1 .Œa; b� ¤ 1) if a and b are
(not) relatively prime. A common divisor d of a and b is a weak gcd for a and
b if

�
a
d ;

b
d

� D 1. And D is a (weak) GCD domain if every pair a; b 2 D� has a
(weak) gcd. For a nonzero fractional ideal I of D, I�1:D fx 2 KjxI � Dg and
Iv:D .I�1/�1 D \fDxjx 2 K with I � Dxg. If .a; b/v D .d/ (or equivalently
lcm.a; b/ D ab

d ), then Œa; b� D d, but not necessarily conversely (see Example 2).
However, if D is a GCD domain with Œa; b� D d, then .a; b/v D .d/. We remark that
the following three conditions are equivalent: (1) lcm.a; b/ exists, (2) .a/ \ .b/ is
principal, and (3) .a; b/v is principal. And in this case ..a/ \ .b// .a; b/v D .a/.b/.
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2 D.D. Anderson and E. Hasse

If .a; b/ D .d/, then .a; b/v D .d/, but not conversely. A nonzero nonunit a of D
is irreducible or an atom if a D bc implies b or c is a unit and D is atomic if each
nonzero nonunit of D is a finite product of atoms. An integral domain D satisfies
the ascending chain condition on principal ideals (ACCP) if every ascending chain
.a1/ � .a2/ � � � � of principal ideals of D stabilizes. And D is a Bezout domain
if every finitely generated ideal, equivalently, every two-generated ideal of D, is
principal. Thus a Bezout domain is a GCD domain in which the gcd for each pair
a; b is a linear combination of a and b.

We begin with the following definitions.

Definition 1 Let D be an integral domain and let a; b; c; d; e; f 2 D�. We say that
a=b can be put in the form c=d if a=b D c=d and that a=b can be reduced to the form
c=d if there is a common divisor e of a and b with c D a

e and d D b
e . The fraction

a=b is in (strong, resp., absolute) lowest terms if Œa; b� D 1 (.a; b/v D D, resp.,
.a; b/ D D). Thus a=b can be put in lowest terms if a=b D c=d where Œc; d� D 1

and a=b can be reduced to lowest terms if a=b D c=d where c D a
e and d D b

e
for some common divisor e of a and b and Œc; d� D 1. We will then sometimes
say that c=d is a (reduced) lowest terms for a=b. Similar statements hold for strong
and absolute lowest terms. The fraction a=b has essentially unique (strong, resp.,
absolute, reduced) lowest terms if there exists at least one c=d in (strong, resp.,
absolute, reduced) lowest terms with a=b D c=d and if a=b D e=f where e=f is in
(strong, resp., absolute, reduced) lowest terms, then e D uc and f D ud for some
unit u of D.

Remark 1 Let a; b 2 D with b nonzero. There is some ambiguity in the notation
a=b as to whether a=b just denotes an element of K or the particular representation
of that element. Indeed, an element x 2 K has many representations in the form
a=b with a=b D c=d , ad D bc (a; b; c; d 2 D, b; d nonzero). However, when we
write a=b we will usually mean the particular representation, even though we write
a=b D c=d to mean they are equal as an element of K, i.e., ad D bc.

Definition 2 The integral domain D is a lowest terms (LT) domain (resp., reduced
lowest terms (RLT) domain) if each nonzero fraction a=b (a; b 2 D�) can be put in
(resp., reduced to) lowest terms. And D is a unique lowest terms (ULT) domain if
each nonzero fraction a=b (a; b 2 D�) has essentially unique lowest terms.

Remark 2 In an obvious way we could have defined the following integral domains:
unique reduced lowest terms domain, strong (resp., absolute) lowest terms domain,
unique strong (resp., absolute) lowest terms domain, reduced strong (resp., absolute)
lowest terms domain, and unique reduced strong (resp., absolute) lowest terms
domain. The reason we have not is because by Theorem 1 (5, resp., 6) they (resp.,
the last four) are all equivalent to the integral domain being a GCD domain (resp.,
Bezout).

Remark 3 So far we have only considered nonzero fractions a=b (a; b 2 D�).
Suppose that a D 0 and consider 0=b where b 2 D�. Since Œ0; b� D b,
.0; b/v D .b/ and .0; b/ D .b/, we see (with the obvious extension of the definitions
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in Definition 1) that 0=b can be reduced to 0=1 and 0=b has essentially unique
(strong resp., absolute) lowest terms 0=1. Thus there is no loss in generality in only
considering nonzero fractions.

We next determine when a fraction can be put in or reduced to (strong, absolute)
lowest terms.

Theorem 1 Let D be an integral domain and let a; b; c; d; e; f 2 D�.

1. a=b can be put in lowest terms if and only if there exists an s 2 D� so that sa and
sb have a weak gcd. If d is a weak gcd for sa and sb, then a=b D � sa

d

�
=
�

sb
d

�
and

the last fraction is in lowest terms. So D is an LT domain if and only if for each
a; b 2 D�, there exists s 2 D� so that sa and sb have a weak gcd.

2. a=b can be reduced to lowest terms if and only if a and b have a weak gcd. If a
and b have a weak gcd d, then a=b D � a

d

�
=
�

b
d

�
and the last fraction is in lowest

terms. So D is an RLT domain if and only if D is a weak GCD domain.
3. The following are equivalent:

a. Œa; b� exists, and
b. i. If c is a common divisor of a and b, then

�
a
c

�
=
�

b
c

�
can be reduced to lowest

terms and
ii. a=b has essentially unique reduced lowest terms.

4. a=b is in strong lowest terms if and only if a=b D c=d implies there exists e 2 D�
with c D ea and d D eb.

5. a. The following are equivalent:

i. .a; b/v is principal (or equivalently, .a/ \ .b/ is principal or
lcm.a; b/ exists),

ii. a=b can be reduced to strong lowest terms, and
iii. a=b can be put in strong lowest terms.

If .a; b/v D .d/, then a=b D �
a
d

�
=
�

b
d

�
where the last fraction is in strong

lowest terms. Moreover, this strong lowest terms representation is unique in
the following sense. If a=b D e=f where Œe; f � D 1, then e D u

�
a
d

�
and

f D u
�

b
d

�
where u is a unit of D. Hence e=f is actually a strong lowest terms

representation for a=b.

b. For the integral domain D, the following are equivalent:

i. G is a GCD domain,
ii. Every nonzero fraction of D can be reduced to strong lowest terms,

iii. Every nonzero fraction of D can be put in strong lowest terms,
iv. Every nonzero fraction of D has a essentially unique reduced lowest terms.
v. D is an RLT domain and a ULT domain.

6. a. The following are equivalent:

i. .a; b/ is principal,
ii. a=b can be reduced to absolute lowest terms, and

iii. a=b can be put in absolute lowest terms.
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If .a; b/ D .d/, then a=b D . a
d /=.

b
d / where the last fraction is in absolute

lowest terms. Moreover, this absolute lowest terms representation is unique
in the following sense. If a=b D e=f where Œe; f � D 1, then e D u. a

d / and
f D u. b

d / where u is a unit of D. Hence e=f is actually an absolute lowest
terms representation for a=b.

b. For an integral domain D, the following are equivalent:

i. D is a Bezout domain,
ii. Every nonzero fraction of D can be reduced to absolute lowest terms,

iii. Every nonzero fraction of D can be put in absolute lowest terms.

Proof (1) Suppose there exists an s 2 D� with sa and sb having weak gcd d. Then�
sa
d ;

sb
d

� D 1 and a=b D sa=sb D �
sa
d

�
=
�

sb
d

�
. So a=b can be put in lowest terms.

Conversely, suppose that a=b can be put in lowest terms c=d. Now a=b D c=d
implies ad D bc and so ajbc. Thus a is a common divisor of ac and bc and

�
ac
a ;

bc
a

� D
Œc; d� D 1, i.e., a is weak gcd of ac and bc. The last statement is now immediate.

(2) Note that d is a weak gcd for a and b if and only if d is a common divisor of
a and b with

�
a
d ;

b
d

� D 1. This just says that a=b D � a
d

�
=
�

b
d

�
where the last fraction

is in lowest terms. This proves the first statement and the second statement is now
immediate.

(3) .a/ ) .b/ If Œa; b� exists and c is a common divisor of a and b, then
�

a
c ;

b
c

�

exists and hence is the unique weak gcd for a
c and b

c . Then apply (2).
.b/ ) .a/ Let a; b 2 D�. Since a=b can be reduced to lowest terms, by (2),

a and b have a weak gcd d. We show that Œa; b� D d. Certainly d is a common
divisor of a and b. Suppose e is a common divisor of a and b. Then

�
a
e

�
=
�

b
e

�
can be

reduced to lowest terms, so again by (2) there is an f 2 D� with
h

a
ef ;

b
ef

i
D 1. Now

�
a
d

�
=
�

b
d

� D a=b D
�

a
ef

�
=
�

b
ef

�
where the first and third fractions are in lowest

terms. By uniqueness a
d D u a

ef for some unit u. Hence d D u�1ef , so ejd. Thus
Œa; b� D d. (We have shown that for a; b 2 D�, Œa; b� exists if and only if a and b
have a unique (up to associates) weak gcd and for every cja; b, a

c and b
c have a weak

gcd.)
(4) ())a=b D c=d implies ad D bc, so ajbc. Since .a; b/v D D, ajc (see

Remark 4). So c D ea for some e 2 D� and hence d D bc
a D eb. (() Suppose

that .a; b/ � .˛=ˇ/ for ˛; ˇ 2 D�. Then ˇ.a; b/ � .˛/, so aˇ D c˛ and bˇ D d˛
for some c; d 2 D�. So a=b D aˇ=bˇ D c˛=d˛ D c=d. Hence c D ax, and d D bx
for some x 2 D�. Then aˇ D ax˛ ) ˇ D x˛ ) ˛=ˇ D 1=x. So D � .˛=ˇ/.
Hence .a; b/v D D.

(5) (a) (i))(ii) Suppose .a; b/v D .d/. Then dja and djb and
�

a
d ;

b
d

�
v
D 1

d .d/ D
D; so a=b D �

a
d

�
=
�

b
d

�
where the last fraction is in strong lowest terms. (ii))(iii)

Clear. (iii))(i) Suppose a=b D c=d where .c; d/v D D. Now ad D bc and
.c; d/v D D implies .a/ D .ac; ad/v D .ac; bc/v D .a; b/vc ; so .a; b/v D

�
a
c

�

is principal. This proves the equivalence of (i)–(iii) and the second statement. Next
suppose .a; b/v D .d/ and a=b D e=f where Œe; f � D 1. Now e=f D a=b D � a

d

�
=
�

b
d

�
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where Œe; f � D 1 and
�

a
d ;

b
d

�
v
D D. By (4) e D a

d g and f D b
d g for some g 2 D� So

1 D Œe; f � D � a
d g; b

d g
�
. Hence g must be a unit.

(b) The equivalence of (i)–(iii) and (i))(iv),(v) follow from (a). (iv),(v))(i)
follows from (3).

(6) (a) This is similar to the proof of 5(a). Indeed, we can just delete the
“subscript” v wherever it occurs.

(b) This follows from 6(a).

Remark 4 The proof of Theorem 1 (4) used the well-known fact that for a; b; c 2 D�
with .a; b/v D D, then ajbc ) ajc. For suppose ar D bc for some r 2 D�. Then
.c/ D c.a; b/v D .ac; bc/v D .ac; ar/v � .a/; so ajc. It is interesting to note that
the converse is also true: If ajbc) ajc for all c 2 D�, then .a; b/v D D. As we will
not need this result, the proof is left to the reader.

Thus it is not true in general that ajbc with Œa; b� D 1 implies bjc. The “proof"
breaks down because Œa; b� D 1 does not imply that Œac; bc� D c. If fact, for a; b 2
D�, Œac; bc� exists for all c 2 D� if and only if .a; b/v exists [1, Theorem 2.1]. It is
easy to check that if Œac; bc� exists, then Œa; b� exists and Œac; bc� D Œa; b�c. If d is a
(weak) gcd for a and b and cjd, then d

c is a (weak) gcd for a
c and b

c .
The above paragraphs explain why a=b having a strong lowest terms represen-

tation forces .a; b/v to be principal while a=b having a lowest terms representation
does not force Œa; b� to exist.

Remark 5 An integral domain R is said to satisfy Property D if whenever a; b; c 2
R� with Œa; b� D 1 and ajbc, then ajc. Property D is equivalent to a number of
other properties slightly weaker than being a GCD domain such as PSP2: a; b 2 R�
with Œa; b� D 1 implies .a; b/v D R (also called Property � in [5]). Property D
implies that atoms are prime, so an atomic domain satisfying Property D is a UFD,
and conversely. See [2] for a thorough investigation of these related properties. Via
Theorem 1 (3)(a) the following are equivalent: (1) R satisfies PSP2, (2) if a fraction
a=b (a; b 2 R�) can be put in lowest terms, it can be put in strong lowest terms, and
(3) any lowest terms representation of a fraction a=b (a; b 2 R�) is actually a strong
lowest terms representation.

Remark 6 R. Gilmer briefly considers fractions in (strong) lowest terms in [4,
Exercise 5, p.183]. Let D be an integral domain and a; b 2 D�. There he defines a
fraction a=b to be irreducible if Œa; b� D 1 and to be in canonical form if a=b D c=d
for c; d 2 D� implies there is a x 2 D� with c D ax and d D bx. The exercise
asks to show that a=b is in canonical form if and only if .a; b/v D D which is our
Theorem 1 (4) and that every fraction can be put in canonical form if and only if D
is a GCD domain which is .i/, .iii/ of our Theorem 1 (5)(b).

Remark 7 We can give a star-operation version of Theorem 1 (5,6). Recall that a
star-operation ? on D is a closure operation ? on the set F.D/ of nonzero fractional
ideals of D that satisfies .aA/? D aA? and .a/? D .a/ for a 2 K� and A 2 F.D/.
Examples of star-operations include the v-operation A ! Av and the d-operation
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A! Ad D A. For an introduction to star-operations, see [4, Section 32]. For a; b 2
D�, we say that a=b is in ?-lowest terms if .a; b/? D D. Then a=b can be put in
(equivalently, reduced to) ?-lowest terms if and only if .a; b/? is principal. Thus
every fraction a=b can be put in (equivalently, reduced to) ?-lowest terms if and
only if every nonzero doubly generated (equivalently, finitely generated) ideal A has
A? principal. Here Theorem 1 (5, resp., 6) is just the case where ? D v (resp., d).

We next show the ubiquity of RLT domains.

Theorem 2 Let D be an integral domain. If D is a GCD domain or satisfies ACCP,
then D is a weak GCD domain and hence is an RLT domain.

Proof The case where D is a GCD domain is immediate, so assume that D satisfies
ACCP. Suppose there exists a0; b0 2 D�, so that a0; b0 do not have a weak gcd. Then
the set S D{.a/ja 2 D�; there exists a b 2 D� so that a; b do not have a weak gcd}
is a nonempty set of proper principal ideals. Let .a/ be a maximal element of S. So
there exists a b 2 D� so that a; b do not have a weak gcd. In particular, Œa; b� ¤ 1.
So there is a nonunit e 2 D� with eja and ejb. But then a

e 2 D� with
�

a
e

�
© .a/. So

either a
e is a unit or

�
a
e

�
is a proper principal ideal of D. Thus a

e and b
e have a weak

gcd d, so
�

a
ed ;

b
ed

� D 1. So ed is a weak gcd for a and b, a contradiction.

Corollary 1 An integral domain D is a UFD if and only if D satisfies ACCP and D
is a ULT domain.

Proof ()) Suppose D is a UFD. It is well known that D satisfies ACCP and since
a UFD is a GCD domain, D is a ULT domain by Theorem 1 (4). (() Since D
satisfies ACCP, D is an RLT domain by Theorem 2. So D is an RLT domain and a
ULT domain. By Theorem 1 (4), D is a GCD domain. But a GCD domain satisfying
ACCP is a UFD.

We next give an example of an integral domain that is not an LT domain. We
later use this example to give an example (Example 4) of an integrally closed atomic
domain that is not an LT domain.

Example 1 (An Integral Domain That is Not an LT Domain) Let D be the integral
domain kŒX;Y;Z�Œ

˚
X
Zn ;

Y
Zn

�
n�1�where k is a field and X;Y;Z are indeterminates over

k. Then we cannot write X=Y D a=b where a; b 2 D� with Œa; b� D 1. For suppose
X=Y D a=b for a; b 2 D�. We can write a D f=Zm and b D g=Zn where f ; g 2
kŒX;Y;Z�� and m; n � 0. Then XgZm D YfZn. Then Xjf and Yjg in kŒX;Y;Z� and
hence X

Zm ja and Y
Zn jb in D. But Zj X

Zm and Zj Y
Zn in D, so Zja and Zjb in D. Hence

Œa; b� ¤ 1.
By Corollary 1, any integral domain satisfying ACCP that is not a UFD is an

RLT domain that is not a ULT domain. We next examine a concrete example.

Example 2 (An RLT Domain That is Not a ULT Domain) Let D D kŒX2;X3� where
k is a field and X is an indeterminate over k. Then D is Noetherian and hence satisfies
ACCP and thus is an RLT domain. Here X2 and X3 are irreducible, with X2 �X2 �X2 D
X3 � X3, so R is not a UFD and hence not a ULT domain. Indeed X4=X3 D X3=X2
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where ŒX3;X4� D ŒX2;X3� D 1. Now ŒX4;X5� D X2, but ŒX5;X6� does not exist. In

fact, both X2 and X3 are weak gcds for X5 and X6 since
h

X5

X2
; X6

X2

i
D �

X3;X4
� D 1

and
h

X5

X3
; X6

X3

i
D ŒX2;X3� D 1. Moreover, X6=X5 can be reduced to both X4=X3 and

X3=X2, each of which is in lowest terms, but there does not exist a unit u 2 D with
X3 D uX4 and X2 D uX3. Here X4=X3 can be put in lowest terms form X3=X2,
but cannot be reduced to the lowest terms form X3=X2. Note that ŒX2;X3� D 1, but
.X2;X3/v D .X2;X3/ ¤ D and .X2/ \ .X3/ D .X5;X6/ is not principal. In fact, by
Theorem 1 (5)(a) we cannot write X3=X2 D f=g where f ; g 2 D� with .f ; g/v D D.

We have made a distinction between putting a fraction in lowest terms and
reducing a fraction to lowest terms. We now give an example of a fraction that
can be put in lowest terms but cannot be reduced to lowest terms.

Example 3 (A Fraction That Can Be Put in, But Not Reduced to, Lowest Terms)
Let D D kŒX;Y;Z;T�ŒX

T ;
Y
T ;
˚

X
Zn ;

Y
Zn

�
n�1� where k is a field and X;Y;Z; and T

are indeterminates over k. Then T is a weak gcd for X and Y , so X=Y can be
reduced to lowest terms

�
X
T

�
=
�

Y
T

�
. Now the set of divisors of X

Z (resp., Y
Z ) isn

uZn; uX
ZnC1 j u 2 k�; n � 0

o
(resp.,

n
uZn; uY

ZnC1 j u 2 k�; n � 0
o
). So any common

divisor of X
Z and Y

Z is of the form uZn where n � 0 and u 2 k�. It follows that
X
Z and Y

Z do not have a weak gcd in D and hence
�

X
Z

�
=
�

Y
Z

�
cannot be reduced to

lowest terms in D. However,
�

X
Z

�
=
�

Y
Z

�
can be put in lowest terms

�
X
T

�
=
�

Y
T

�
. It is

interesting to note that in the localization DŒT�1� of D, X=Y cannot be put in lowest
terms.

Now LT domains and weak GCD domains were introduced in [3] in the context of
atomic factorization. Let D be an integral domain. Then a nonzero nonunit element
a of D is irreducible, or an atom, if a D bc for b; c 2 D implies b or c is a unit.
And D is atomic if every nonzero nonunit of D is a finite product of atoms. It is
well known that if D satisfies ACCP, then D is atomic, but the converse is false. It
is easily shown that if D satisfies ACCP, then so does DŒX�. This raised the question
of whether D atomic implies DŒX� is atomic which was answered in the negative in
[6]. (It is easy to see that if DŒX� satisfies ACCP (resp., is atomic), then D satisfies
ACCP (resp., is atomic)). Recall that an integral domain D is strongly atomic if for
a; b 2 D�, there exist atoms a1; : : : ; as.s � 0/ and c; d 2 D� with Œc; d� D 1 and
a D a1 � � � asc and b D a1 � � � asd. Note that D satisfies ACCP ) DŒX� is atomic
) D is strongly atomic. The following result links these various concepts.

Theorem 3 For an integral domain D the following are equivalent.

1. D is an atomic RLT domain.
2. D is an atomic weak GCD domain.
3. D is strongly atomic.
4. Every linear polynomial in DŒX� is a product of atoms.
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Proof (1),(2) Theorem 1 (2). (2))(3) Let a; b 2 D�. So D a weak GCD domain
gives a D a0c; b D b0c where Œa0; b0� D 1. Since D is atomic, either c is a unit or c is
a product of atoms.

(3))(4) Let aX C b 2 DŒX� be a linear polynomial, so a 2 D�. Suppose b ¤ 0.
Then a D a1 � � � asc and b D a1 � � � asd where the ai’s are atoms (s � 0) and Œc; d� D
1, c; d 2 D�. Then aX C b D a1 � � � as.cX C d/ is a product of atoms. So suppose
b D 0. Then aX is a product of atoms if and only if a is, so it suffices to show that
D is atomic, i.e., strongly atomic) atomic. Let a 2 D� be a nonunit. Write a D
a1 � � � asc and a2 D a1 � � � asd where Œc; d� D 1. Then a21 � � � a2s c2 D a2 D a1 � � � asd.
So canceling gives d D a1 � � � asc2. Thus cjd and hence c is a unit. So a is a product
of atoms.

(4))(2) For a nonunit a 2 D�, aX a product of atoms implies a is a product of
atoms, so D is atomic. For a; b 2 D�, aX C b is a product of atoms, so aX C b D
a1 � � � as.cX C d/ where each ai is an atom and Œc; d� D 1. Put e D a1 � � � as. So�

a
e ;

b
e

� D Œc; d� D 1 and hence e is a weak gcd for a and b. (We note that the
equivalence of (2) and (3) is given in [3, Theorem 1.3]).

While an integral domain satisfying ACCP is an RLT domain, we next give an
example of an atomic domain that is not even an LT domain.

Example 4 (An Integrally Closed Atomic Domain That is Not an LT Domain) Let
D be the integral domain kŒX;Y;Z�Œf X

Zn ;
Y
Zn gn�1� where k is a field. From Example

1 we have Zja and Zjb whenever X=Y D a=b for a; b 2 D�. Let A D A1.D/ as
in [6, Example 5.1]. There it is noted that A is integrally closed and atomic, in fact
every reducible element of A is a product of two atoms. It is shown that X and Y do
not have a weak gcd, so A is not a weak GCD domain, or equivalently, not an RLT
domain. We prove the stronger result that if X=Y D a=b where a; b 2 A, then Zja
and Zjb; so X=Y cannot be put in lowest terms in A. Thus A is not an LT domain.
To prove this it suffices to prove the following. Let S be a subring of A containing D
with the property that wherever X=Y D a=b for a; b 2 S�, then Zja and Zjb. Then for
s 2 S� and indeterminate Xs, if X=Y D a=b where a; b 2 S ŒXs; s=Xs�

�, then Zja and
Zjb. With a change of notation, it suffices to prove the following. Let R be an integral
domain and let a; b 2 R�. Suppose that t 2 R� has the property that whenever
a=b D c=d for c; d 2 R�, then tjc and tjd. Let s 2 R� and X be an indeterminate
over R. Suppose that a=b D f=g for f ; g 2 RŒX; s=X��. Then tjf and tjg. Let f D
r0
nsn

Xn C� � �C r0
1s
X Cr0Cr1XC� � �CrmXm and g D t0nsn

Xn C� � �C t01s
X Ct0Ct1XC� � �CtmXm.

Then a=b D f=g gives ag D bf . So equating coefficients gives at0isi D br0
is

i and
ati D bri. If t0i ¤ 0 (equivalently r0

i ¤ 0), then a=b D r0
i=t0i ; so tjr0

i and tjt0i . If t0i D 0
(equivalently r0

i D 0), then certainly tjr0
i and tjt0i . Likewise, tjri and tjti. Hence tjf

and tjg.
We next consider the stability of the various types of “lowest terms” domains

with respect to certain ring constructions. First, none of the “lowest term” domains
except Bezout domains are preserved by homomorphic image. Indeed, for any set of
indeterminates fXag;ZŒfXag� is a UFD, but any integral domain is a homomorphic
image of a suitable ZŒfXag�. Also, as a field satisfies all the lowest term properties,
none of the various “lowest term” domains are preserved by subrings. Example 4
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shows that none of the “lowest term” domains except Bezout domains are preserved
by overrings. For kŒX;Y;Z� is a UFD while its overring KŒX;Y;Z�Œf X

Zn ;
Y
Zn gn�1� is not

even an LT-domain. We next show that the LT and RLT properties are not preserved
by polynomial extensions. In fact, we give an example of an atomic RLT domain A
with AŒX� neither atomic nor even an LT domain.

Example 5 (An Atomic RLT Domain A So That AŒX� is Neither Atomic Nor an
LT Domain) Let D be the integral domain kŒX1;X2;X3;Z�ŒfX1

Zn ;
X2
Zn ;

X3
Zn gn�1� where

X1;X2;X3; and Z are indeterminates over the field k. Let A D A!;2.D/ as in [6,
Example 5.2]. There it is shown that A is an atomic domain, in fact, every nonzero
nonunit of A is either irreducible or a product of two irreducibles, and that A is a
weak GCD (= RLT) domain. But it is also shown that the polynomial ring AŒX�
is not atomic and is not a weak GCD domain. Indeed, X1X C X2; and X3 do not
have a weak GCD in AŒX� since X1;X2; and X3 do not have an MCD in A (i.e., an
element d with ŒX1

d ;
X2
d ;

X3
d � D 1). Thus AŒX� is not an RLT domain. We prove the

stronger result that if .X1X C X2/=X3 D a=b for a; b 2 AŒX�, then Zja and Zjb; so
.X1X C X2/=X3 cannot be put in lowest terms. Thus AŒX� is not an LT domain. To
prove this it suffices to prove the following. Let S be a subring of A containing D with
the property that whenever .X1XCX2/=X3 D a=b for a; b 2 SŒX��; then Zja and Zjb.
Then for any ideal I of S and indeterminate Y over SŒX�, if .X1XCX2/=X3 D a=b for
a; b 2 SŒY; IY�1�ŒX��, then Zja and Zjb. Since SŒY; IY�1�ŒX� D SŒX�ŒY; ISŒX�Y�1�,
it suffices to prove the following. Let R be an integral domain and let a; b 2 R�.
Suppose that t 2 R� has the property that whenever a=b D c=d for c; d 2 R�, then
tjc and tjd. Let I be a nonzero ideal of R and X an indeterminate over R. Suppose
that a=b D f=g for f ; g 2 RŒX; IX�1��. Then tjf and tjg. The proof of this follows
mutatis mutandis from the proof given for f ; g 2 RŒX; s=X�� in Example 4.

Suppose a; b 2 D�. We can consider a; b 2 DŒX��. As such it is possible to put
a=b in lowest terms f .X/=g.X/ where f .X/; g.X/ are positive degree polynomials
of DŒX�; see the paragraph after Theorem 4. However, if a=b is reduced to lowest
terms f .X/=g.X/ in DŒX�, then f .X/; g.X/ 2 D�. Thus, if DŒX� is an RLT domain
so is D. Now DŒX� is an “absolute LT domain” if and only if DŒX� is Bezout, or
equivalently, D is a field. And DŒX� is a “strong LT domain”, equivalently a GCD
domain, if and only if D is a GCD domain, equivalently, a “strong LT domain”. We
have been unable to determine if DŒX� an LT domain implies that D is an LT domain.
However, if DŒX� is a ULT domain, so is D; in fact, D must be a GCD domain. This
is our next theorem.

Theorem 4 For an integral domain, the following are equivalent: (1) DŒX� is a ULT
domain, (2) DŒX� is a GCD domain, and (3) D is a GCD domain.

Proof It is well known that (2),(3) and (2))(1) by Theorem 1 (5)(b); so it suffices
to show that (1))(3). We first show that D is a ULT domain. Suppose a; b 2 D�, so
a=b D f .X/=g.X/ where f .X/; g.X/ 2 DŒX�� with Œf .X/; g.X/� D 1. Suppose that
deg f .X/ > 0. Then for each r 2 D, f .X/=g.X/ D a=b D f .X � r/=g.X � r/ and
Œf .X�r/; g.X�r/� D 1. We may assume that D is infinite, so there exists an r0 2 D�
with f .X/ and f .X � r0/ not associate. But then f .X/=g.X/ and f .X � r0/=g.X � r0/
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are two lowest term representations for a=b, contradicting our assumption that DŒX�
is a ULT domain. Hence 0 D deg f .X/ D deg g.X/. So D is an LT domain and hence
a ULT domain. By Theorem 1 (5)(b), to show that D is a GCD domain it suffices to
show that D is an RLT domain. Let a; b 2 D�; so a=b D c=d where c; d 2 D� with
Œc; d� D 1. Now a=b D c=d D .c C aX/=.d C bX/. Since DŒX� is a ULT domain,
we must have Œc C aX; d C bX� ¤ 1. Let f .X/ 2 DŒX�� be a nonunit divisor of
c C aX and d C bX. If deg f .X/ D 0, then f .X/ is a nonunit of D dividing both c
and d, a contradiction. So deg f .X/ D 1 say f .X/ D ˛ C ˇX. So ˛ j c and ˛ j d;
hence ˛ must be a unit of D, so we can take ˛ D 1. Then cC aX D c.1C ˇX/ and
d C bX D d.1C ˇX/. Thus a D cˇ and b D dˇ. So a=b D c=d D . a

ˇ
/=. b

ˇ
/. Thus

D is an RLT domain.
Now it is quite possible for a; b 2 D�, to have a=b D f .X/=g.X/ where

f .X/; g.X/ 2 DŒX�� with Œf .X/; g.x/� D 1 and deg f .X/ D deg g.X/ > 0. Indeed,
suppose that a=b D c=d D e=f where c; d; e; f 2 D� with Œc; d� D 1 D Œe; f � and c
and e are not associates. Then a=b D .cCeX/=.dC fX/ where ŒcCeX; dC fX� D 1.
Suppose that we take D D kŒX2;X3� as in Example 2. Let T be an indeterminate over
D. Then X3=X2 D .X3 C X4T/=.X2 C X3T/ where ŒX3 C X4T; X2 C X3T� D 1.

The following diagram shows the relationships among the various integral
domains we have discussed. None of the implications can be reversed with the
possible exceptions of RLT)LT and GCD)ULT.

UFD Bezout
⇐ ⇓ ⇐

⇓ ⇐ ⇓
strongly atomic ⇒ RLT ULT

⇓ ⇓  ⇐
atomic LT

ACCP GCD

We end with the following two questions.

Question 1 Must an LT domain be an RLT domain?

Question 2 Must a ULT domain be a GCD domain?
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free content modules are factorial modules. Moreover, factorially closed extensions
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1 Introduction

Unique factorization in integral domains plays a prominent role in algebra. It is
explained in many books on basic algebra; moreover, the last decades have seen
generalizations of this concept in several directions, see, e.g., [1] and the literature
cited there. One of these directions is to introduce various types of factorizations of
elements in domains (cf. also [2]); another one is the generalization to commutative
rings with zero-divisors (cf. also [3, 4]). Further, in [17], a generalization to torsion-
free modules over (factorial) domains has been proposed by A.-M. Nicholas and
subsequently refined in [18–20] as well as by Costa [8], by Lu [16], and by Anderson
and Valdes-Leon [4].

In this note it is proven that locally projective modules, flat Mittag-Leffler
modules, and torsion-free content modules are factorial modules in the sense of
Nicholas [17, 18]. Moreover, factorially closed extensions of factorial domains are
characterized with the help of factorial modules.

G. Angermüller (�)
e-mail: gerhard.angermueller@googlemail.com

© Springer International Publishing AG 2017
M. Fontana et al. (eds.), Rings, Polynomials, and Modules,
https://doi.org/10.1007/978-3-319-65874-2_2

13

mailto:gerhard.angermueller@googlemail.com
https://doi.org/10.1007/978-3-319-65874-2_2


14 G. Angermüller

The content of this paper is organized as follows: In Sect. 2, preliminaries
are proven to be used in the following sections; possibly, some of them are of
independent interest, e.g. Proposition 1. The basic definitions and properties of
factorable modules over commutative domains are contained in Sect. 3. The core
of this paper is Sect. 4, where the theory is further developed in the special case of
factorial base domains; moreover, in this section it is proven that locally projective
modules, flat Mittag-Leffler modules or torsion-free content modules are factorial
modules. In Sect. 5 ring extensions are considered which are factorable as modules;
in particular, factorially closed extensions of factorial domains are characterized
with factorial modules. The last section contains some hints to related literature.

Notation
The basics on (unique) factorization in domains can be found, e.g., in [13, 2.14 and
2.15]; basic concepts of Commutative Algebra used in this note are contained in
[5], as well as our standard notation. For more advanced subjects we give detailed
references to [6, 7, 11, 12, 14].

In the following sections R denotes a commutative domain with 1, K D
Q.R/ the field of quotients of R and M a torsion-free R-module. M is identified
with its image in KM WD K �R M under the map 1 � idM; further, bM WDT fMPjP 2 Spec.R/; ht.P/ D 1g � KM. Moreover, R� denotes the group of units
of R.

2 Preliminaries

In this section we recall some definitions and prove some results to be used in the
subsequent sections.

If R is a commutative ring and M an R-module, an element x of R is called a zero-
divisor on M, if x annihilates some non-zero element of M; M is called torsion-free,
if 0 2 R is the only zero-divisor on M. r; s is called a (two-element) M-sequence, if
r; s 2 R, r is not a zero-divisor on M and s is not a zero-divisor on M=rM. M is said
to satisfy accc, if M satisfies the ascending chain condition on cyclic submodules
(or equivalently: any non-empty family of cyclic submodules of M has a maximal
element). R is said to satisfy accp, if R satisfies the ascending chain condition on
principal ideals. A submodule N of M is called torsion-closed in M if M=N is
torsion-free; N is called pure in M, if for all finite families .xi/i2I , .yj/j2J , .rij/i2I;j2J

of elements of N, M and R respectively such that for all i 2 I, xi D P

j2J
rijyj, there is

a family .zj/j2J of elements of N such that for all i 2 I, xi D P

j2J
rijzj. Clearly, any

pure submodule of M is torsion-closed in M. M� denotes the R-module of R-linear
forms on M. M is called torsionless, if for each x 2 M there is a f 2 M� such that
f .x/ ¤ 0; M is called reflexive, if the canonical homomorphism m 7! .f .m//f 2M�

is a bijection from M onto M��. M is called locally projective, if for each surjective
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homomorphism f W P ! Q of R-modules, each R-homomorphism g W M ! Q and
each finitely generated submodule N of M there is an R-homomorphism h W M ! P
such that f ı h.x/ D g.x/ for all x 2 N; obviously, any projective module is locally
projective. M is called a content module, if for every family .I�/�2ƒ of ideals I�
of R:

T

�2ƒ
.I�M/ D .

T

�2ƒ
I�/M; if x 2 M and .I�/�2ƒ is the family of all ideals I� of

R such that x 2 I�M, then c.x/ �
T

�2ƒ
I� is called the content of x. M is called a

Mittag-Leffler-module, if for every family .Qi/i2I of R-modules, the canonical map
M �R

Q
i2I Qi !Q

i2I M �R Qi is injective.
An element q of a commutative ring R is called an atom, if it is non-zero, not a

unit and for all r; s 2 R such that q D rs, either r or s is a unit of R; q is called
prime, if qR is a non-zero prime ideal of R. A domain R is called atomic, if any
non-zero non-unit element of R can be expressed as a finite product of atoms. R is
called a factorial domain (or a UFD), if any non-zero non-unit element of R can be
expressed uniquely as a finite product of atoms up to units of R; as is well-known,
e.g., by [13, Theorem 2.21], a domain R is factorial if and only if it satisfies accp
(resp. is atomic) and every atom of R is prime. R is called a GCD-domain, if any two
elements of R have a greatest common divisor. By [13, Theorem 2.22], a domain is
factorial iff it is a GCD-domain satisfying accp. Concerning Krull domains, we refer
to [7, Chapter VII].

The following technical argument is used in the proof of [4, Theorem 2.8].

Lemma 1 Let M ¤ 0 be such that for each x 2 M, x ¤ 0, there is a natural number
j.x/ so that if x D r1 � � � rky, where ri .i D 1; : : : ; k/ is a non-unit of R, and y 2 M,
then k � j.x/. Then R is atomic.

Proof Choose m 2 M, m ¤ 0. Let r be a non-zero non-unit of R. If r D r1 � � � rk is a
factorization of r into non-units ri of R .i D 1; : : : ; k/, then k � j.rm/ by assumption
on M; in particular, there are such factorizations of r with maximal k. By definition
of an atom, any factorization r D r1 � � � rk of r into non-units ri of R .i D 1; : : : ; k/
with maximal k is in fact a factorization into atoms. ut

The following lemma is easily proved and probably known, but we could not find
a reference.

Lemma 2 Let R � S be a ring extension.

a) If S is a torsion-free R-module such that S \ Q.R/ D R, then S� \ R D R�.
b) If S is a domain satisfying accp and S� \ R D R�, then S satisfies accc as

R-module.

Proof a) Let r 2 S�\R, i.e. rs D 1 for some s 2 S. Then s D 1=r 2 S\Q.R/ D R,
whence r 2 R�. b) Let .Rxi/i2I be any non-empty family of cyclic R-submodules
of S. Then .Sxi/i2I is a non-empty family of principal ideals of S, whence has a
maximal element Sx for some x D xj, j 2 I. Rx is a maximal element of .Rxi/i2I : Let
i 2 I and Rx � Rxi. Then x D rxi for some r 2 R; by choice of x, Sx D Sxi. If x D 0,
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the assertion is obvious; otherwise, rs D 1 for some s 2 S. Then r 2 S� \ R D R�
and in particular, Rx D Rxi. ut

The following assertion is more generally true for arbitrary (weakly) regular
sequences, but for the sake of this note, the special case is sufficient.

Lemma 3 If M is a flat M-module, then any two-element R-sequence is an M-
sequence.

Proof Let r; s be an R-sequence. As M is torsion-free, r is not a zero-divisor on M.
Further, multiplication by s on R=rR is injective; as M is flat, multiplication by s on
M=rM Š R=rR �R M is injective too. ut

The following lemma is shown in the proof of [9, Proposition 1.5].

Lemma 4 If R is a Krull domain, M D bM if and only if every two-element R-
sequence is an M-sequence.

Proof First, assume M D bM. Let r; s be an R-sequence and x; y 2 M such that
rx D sy. Then for any prime ideal P of R of height 1, .r; s/ ª P (see, e.g., [14,
Theorem 132]), i.e. r … P or s … P. In the first case, y 2 MP D rMP; in the second
case, y D r.x=s/ 2 rMP. Thus y 2 T frMPjP 2 Spec.R/; ht.P/ D 1g D rbM D rM.
Secondly, assume that every two-element R-sequence is an M-sequence and let x 2
bM. Then for every prime ideal P of R of height 1, .M W x/P D .MP W x/ D RP,
whence .M W x/ ª P. Choose r 2 .M W x/, r ¤ 0, and denote by P1; : : : ;Pn the
prime ideals of R of height 1 containing r. If n D 0, r 2 R� and thus x 2 M;
so, let us assume n > 0. R being a Krull domain, Rr is a decomposable ideal of
R [11, Corollary 43.10], whence

S
iD1;:::;n Pi is the set Z of zero-divisors of R on

R=Rr [5, Proposition 4.7]. By the above, .M W x/ is not contained in any Pi for
i D 1; : : : ; n, and hence .M W x/ ª Z by [5, Proposition 1.11 i)]. Thus we can
choose s 2 .M W x/ n Z. Then r; s is an R-sequence, whence an M-sequence by
assumption. By choice of r; s: rx; sx 2 M and thus r.sx/ D s.rx/ implies rx 2 rM,
i.e. x 2 M. ut

An extension R � S of Krull domains is said to satisfy PDE, if for every prime
ideal P of S of height 1, the prime ideal P\R of R is zero or of height 1 (cf. [7, VII,
§1.10]). The following lemma is proven in [9, Proposition 1.5].

Lemma 5 If R and S are Krull domains, R � S satisfies PDE if and only if every
two-element R-sequence is an S-sequence.

Proof Observe that in any Krull domain T , any principal ideal I, 0 ¤ I ¤ T , has
a primary decomposition, whose primary ideals belong to prime ideals of height 1
[11, Corollary 43.10 a)]; in particular, the set of zero-divisors on T=I is a finite union
of prime ideals of T of height 1 [5, Proposition 4.7]. Assume first that R � S satisfies
PDE and let r; s be an R-sequence. Further, denote by Z the set of zero-divisors on
S=rS; by the above, Z D P1 [ : : : [ Pn for some height 1 prime ideals Pi of S. If s
would be an element of Z, then r; s 2 Pi \ R for some i by [5, Proposition 1.11 i)],
whence Pi \ R would be of height > 1 [14, Theorem 132], contradicting PDE. Thus
s is not a zero-divisor on S=rS, that is, r; s is an S-sequence. Assume now that any
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two-element R-sequence is an S-sequence and let P be a prime ideal of S of height
1; it has to be shown that the height of P \ R is 0 or 1 . Assuming the contrary,
we can choose r 2 P \ R, r ¤ 0 and, by the above, s 2 P \ R such that s is not
a zero-divisor on R=rR. Then r; s would be an R-sequence, whence an S-sequence
contained in the height 1 prime ideal P, a contradiction [14, Theorem 132]. ut

The conditions (3) and (4) of the following proposition are considered in [16,
Theorem 2.1].

Proposition 1 Let R be a factorial domain. The following conditions are equiva-
lent:

(1) M D bM
(2) Every two-element R-sequence is an M-sequence
(3) For every prime element p of R, rx 2 pM for r 2 R; x 2 M implies r 2 Rp or

x 2 pM.
(4) For all r 2 R, x 2 M, the submodule rM \ Rx is cyclic.

Proof (1),(2) follows by Lemma 4, any factorial domain being a Krull domain.
(2))(3): Let p be a prime element of R, r 2 R and x; y 2 M such that rx D py.
If p does not divide r, then p; r is an R-sequence, whence an M-sequence and thus
x 2 pM. (3))(2): Let r; s be an R-sequence and x; y 2 M such that rx D sy. As R
is factorial, r and s are relatively prime. We prove by induction on the number n of
primes dividing r that y 2 rM. If n D 0, r is a unit in R and the assertion is clear. Let
now n > 0 and assume the assertion to be true for n � 1. Choose a prime element
p of R dividing r, i.e. r D pt for some t 2 R. Then sy D rx D ptx, whence y D pz
for some z 2 M by assumption (3). Thus psz D sy D ptx, whence sz D tx and thus
z D tw for some w 2 M by induction hypothesis. Putting all together, one obtains
y D pz D ptw D rw 2 rM. (3))(4): Let r 2 R, x 2 M. We prove by induction
on the number n of primes dividing r that rM \ Rx is cyclic. If n D 0, r is a unit
in R and rM \ Rx D M \ Rx D Rx. Let now n > 0 and assume the assertion to
be true for n � 1. Choose a prime element p of R dividing r, i.e. r D ps for some
s 2 R. If x D py for some y 2 M, then sM \ Ry D Rz for some z 2 M by induction
hypothesis, and thus rM \ Rx D psM \ Rpy D p.sM \ Ry/ D Rpz. If x … pM, we
first observe that pM \ Rx D Rpx: in fact, if t 2 R, w 2 M are such that pw D tx,
then (by assumption (3)) t D up for some u 2 R, whence pw D tx D upx 2 Rpx.
Moreover, by induction hypothesis, sM\Rx D Rv for some v 2 M. Then rM\Rx D
.rM\pM/\Rx D rM\ .pM\Rx/ D psM\Rpx D p.sM\Rx/ D Rpv. (4))(3):
Let p be a prime element of R, r 2 R and x; y 2 M such that rx D py. By assumption
(4), pM \ Rx D Rz for some z 2 M; in particular, rx D py D sz for some s 2 R as
well as px D tz for some t 2 R. Furthermore, z D ux D pw for some u 2 R, w 2 M.
If x D 0, the assertion is trivially true. If x ¤ 0, then px D tz D tux, whence p D tu;
as p is prime, either t 2 R� or u 2 R�. If t 2 R�, then rx D sz D st�1px, whence
r D st�1p 2 Rp; if u 2 R�, then x D u�1z D u�1pw 2 pM. ut
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3 Atomic and Factorable Modules

The following definitions are basic for this note.

Definition 1 Let x 2 M.
An element r 2 R (resp. m 2 M) is called an R-divisor of x (resp. an M-divisor

of x), if x D ry for some y 2 M (resp. x D sm for some s 2 R); r (resp. m) is called
a greatest R-divisor (resp. a smallest M-divisor) of x, if any R-divisor of x divides r
(resp. m is an M-divisor of any M-divisor of x).

x is called irreducible if any R-divisor of x is a unit of R.
x is called primitive if x ¤ 0 and x is a smallest M-divisor of any non-zero

element of Rx.
M is called atomic, if any non-zero element of M has an irreducible M-divisor.
M is called factorable, if any non-zero element of M has a smallest M-divisor.
M has the finite divisor property (or has fdp) if each non-zero element of M has,

up to units, only a finite number of proper R-divisors.
A prime element p of R is called prime for M if rx 2 pM for r 2 R, x 2 M implies

r 2 Rp or x 2 pM.

Remark 1

a) The irreducible elements of R—considered as an R-module—are the units of
R. To avoid conflicts, we use the term “atom” for “irreducible elements of a
domain” in the sense of [13, Section 2.14].

b) R—considered as an R-module—is atomic and factorable; the primitive elements
are the units of R.

c) It is easily checked that the R-module K D Q.R/ has irreducible elements if and
only if K D R; in particular, K is neither atomic nor factorable, if K ¤ R.

d) If R is a factorial domain, then R has fdp when considered as an R-module; in
this case, any prime element of R is prime for R.

e) If R is a field and x is any non-zero element of M, then x is a smallest M-divisor
of x: in fact, if x D ry, where r 2 R and y 2 M, then r ¤ 0 and y D r�1x. In
particular, every vector space is factorable.

f) Let R � kŒX;Y� be a polynomial ring in two variables X, Y over a field k and
M � RX C RY . The irreducible elements of M are the prime elements of the
factorial domain R which are contained in M, thus showing, e.g., that the sets of
irreducible elements of a module and that of a factorable module containing it
can be disjoint (cf. a)). Moreover, M does not have primitive elements: otherwise
there would exist an element x of M, x ¤ 0, such that x is a smallest M-divisor
of xX as well as of xY , i.e. a divisor of X and of Y , a contradiction to M ¤ R.
A similar argument shows that the element XY of M does not have a smallest
divisor in M, thus proving that the submodule M of the factorable module R is
not factorable. As M is a submodule of R, it has fdp too (cf. d); in Remark 3 there
is an example of a module having fdp which is not a submodule of a factorable
module.
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More elementary facts related to Definition 1 are contained in the following lemma:

Lemma 6

a) Greatest R-divisors (resp. smallest M-divisors) of any non-zero element of M
are uniquely determined up to units of R.

b) Let m; x 2 M, r 2 R, x ¤ 0 such that x D rm. Then r is a greatest R-divisor of
x if and only if m is a smallest M-divisor of x.

c) A smallest M-divisor of any non-zero element of M is irreducible.
d) Every primitive element of M is irreducible.
e) If m; n 2 M are primitive and r; s 2 R, r; s ¤ 0 are such that rm D sn, then

m D un and s D ur for some u 2 R�.
f) For every x 2 M the following assertions are equivalent:

(1) x is primitive
(2) x ¤ 0 and Kx \M D Rx
(3) Rx is a maximal rank 1 submodule of M
(4) x ¤ 0 and Rx is torsion-closed in M
(5) x ¤ 0 and for every y 2 M either Rx \ Ry D 0 or Ry � Rx
(6) x ¤ 0 and for every r 2 R, r ¤ 0, r is a greatest R-divisor of rx.

Proof a): Let x 2 M, x ¤ 0. If r; s 2 R (resp. m; n 2 M) are greatest R-divisors
(resp. smallest M-divisors) of x, then r divides s (resp. m is an M-divisor of n) and
vice versa. In any case, by the assumption on R and M, r and s (resp. m and n) differ
by units of R. b) follows immediately from the definitions. c): Let x 2 M, x ¤ 0. Let
m 2 M be a smallest M-divisor of x and let r 2 R and n 2 M be such that m D rn. By
assumption on m, m is an M-divisor of n , whence r is a unit of R. d) follows from c).
e) follows from the definition of primitive elements and a). f): Let x 2 M. (1))(2):
If x is primitive and .r=s/x D y for some y 2 M and some r; s 2 R, s ¤ 0, then
rx D sy, whence y D tx for some t 2 R and thus r D st and y D .r=s/x D tx 2 Rx.
(2))(3): Let N be a rank 1 submodule of M such that Rx � N. As x ¤ 0 by
assumption (2), one has KN D Kx and thus N � KN \ M D Kx \ M D Rx.
(3))(4): Let r; s 2 R, r ¤ 0 and y 2 M be such that ry D sx. Then y D 0 2 Rx
or Ky D Kx and thus Rx � Ky \ M, whence Ky \ M D Rx by assumption (3); in
particular, y 2 Rx. (4))(5): Let y 2 M and assume that there are r; s 2 R such that
rx D sy ¤ 0. By assumption (4), y 2 Rx and thus Ry � Rx. (5))(1): Let r; s 2 R,
r ¤ 0 and y 2 M be such that rx D sy. Then Rx \ Ry ¤ 0 and by assumption,
Ry � Rx, whence x is an M-divisor of y. (1),(6) follows from b). ut
Lemma 7

a) If M is factorable, then M is atomic.
b) If M satisfies accc, then any submodule of M is atomic.
c) If M is atomic (resp. factorable), then any torsion-closed submodule of M is

atomic (resp. factorable); in particular, if M is atomic (resp. factorable), then
any pure submodule of M is atomic (resp. factorable).

d) If M D Rm is free of rank 1, then M is factorable; more precisely, m is a smallest
M-divisor of any element of M and R�m is the set of irreducible (resp. primitive)
elements of M.
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Proof a) follows from Lemma 6 c). b): Assuming the contrary, a strictly ascending
infinite chain of cyclic submodules of M can be easily constructed. c): Clearly, any
irreducible (resp. smallest) M-divisor of any non-zero element of a torsion-closed
submodule N of M is an N-divisor and is obviously irreducible in N too (resp. a
smallest N-divisor). d) follows from the definitions (and Lemma 6 d)). ut

The following proposition and its corollaries give some indication of the
usefulness of factorable modules.

Proposition 2 The following conditions are equivalent:

(1) M is factorable
(2) Every non-zero element of M has a greatest R-divisor
(3) Every non-zero element x 2 M has a representation x D ry with r 2 R, y an

irreducible element of M and this representation is unique up to a unit of R
(4) M is atomic and every irreducible element of M is primitive
(5) Every non-zero element of M has a primitive M-divisor
(6) Every non-zero element x 2 M has a representation x D ry with r a greatest

R-divisor of x and y a primitive M-divisor
(7) Every maximal rank 1 submodule of M is free.

Proof (1),(2) follows from Lemma 6 b). (1))(3): The first part of (3) follows
from Lemma 6 c). Let x 2 M, x ¤ 0 be such that x D ry D sz with r; s 2 R and
irreducible elements y; z of M. Choose a smallest M-divisor w of x; then y D ew
and z D fw with e; f 2 R�. Further, u WD e�1f 2 R� and r D us; z D uy. (3))(4):
By the first part of (3), M is atomic. To prove the second part of (4), let x 2 M
be irreducible and r; s 2 R; y 2 M be such that rx D sy. Let y D tz with t 2 R
and z 2 M irreducible. By assumption, r D ust; z D ux for some u 2 R�, whence
y D tux showing x primitive. (4))(5) is clear from the definition. (5))(6): by
assumption, x has a representation x D ry with r 2 R and y a primitive M-divisor. By
definition, y is a smallest M-divisor of x, whence the assertion follows by Lemma 6
b). (6))(7): let N be a maximal rank 1 submodule of M. Choose n 2 N; n ¤ 0 and
r 2 R; x 2 M primitive such that n D rx. Maximality of N implies N D KN \ M.
In particular, x D r�1n 2 N, whence Rx � N and thus Rx D N by Lemma 6 f)
(1))(3). (7))(1): let x 2 M; x ¤ 0. Then Kx \M is a maximal rank 1 submodule
of M; by assumption, Kx\M D Ry for some y 2 Kx\M. By Lemma 6 f) (3))(1),
y is primitive in M, whence a smallest divisor of x. ut

Proposition 2 (7))(1) yields another proof that any vector space is factorable
(cf. Remark 1, e)). The next two corollaries shed some light upon modules of rank
1 and factorability:

Corollary 1 If M has rank 1, then M is factorable if and only if M is free.

Proof One direction by Proposition 2, (1))(7), and the other by Lemma 7 d). ut
Remark 2 An immediate consequence of Corollary 1 is that every non-principal
ideal of any domain R is not factorable, although R is so (cf. Remark 1 b), f)).

Corollary 2 If M is factorable, every non-zero cyclic submodule N of M is
contained in a unique maximal rank 1 submodule of M, and this submodule is free.
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Proof Let N D Rx for some x 2 M; x ¤ 0. By Proposition 2 (1))(5), x has a
primitive M-divisor y, i.e. Rx � Ry and Ry is a maximal rank 1 submodule of M
by Lemma 6 f) (1))(3). If N is contained in a maximal rank 1 submodule N0 of
M, then N0 D Rz for some z 2 M by Proposition 2 (1))(7) and z is primitive by
Lemma 6 f) (3))(1). As x 2 Ry\Rz, one has Ry D Rz by Lemma 6 f) (1))(5). ut
Corollary 3 If M is factorable, then every R-sequence r; s is an M-sequence.

Proof Let x; y 2 M be such that rx D sy. Then x D r0u; y D s0v for some r0; s0 2
R and some primitive elements u; v of M by Proposition 2 (1))(6). This implies
rr0u D ss0v, whence rr0t D ss0 for some t 2 R� by Lemma 6 e). As r; s is an R-
sequence, this yields s0 2 Rr and thus y 2 rM. ut
Corollary 4 Let R be a Noetherian integrally closed domain and M a finitely
generated factorable R-module. Then M is reflexive.

Proof If M is factorable, then M D bM by Corollary 3 and Lemma 4. As M is finitely
generated and R a Noetherian integrally closed domain, M is reflexive by [7, VII,
§4.2, Theorem 2]. ut
Corollary 5 If M is factorable and M ¤ 0, then:

a) For all r; s 2 R: rM � sM if and only if s divides r.
b) For all r 2 R: rM D M if and only if r 2 R�.
c) For every greatest divisor r of a non-zero element x of M and for every s 2 R, sr

is a greatest divisor of sx.

Proof a): Let r; s 2 R be such that rM � sM. By Proposition 2, (1))(5), there is
a primitive element x of M; in particular, rx D sy for some y 2 M. By Lemma 6
b), r is a greatest R-divisor of sy, whence s divides r. b) follows immediately from
a). c): Let y 2 M be such that x D ry. By Lemma 6 b),c), y is irreducible, whence
a primitive element of M by Proposition 2, (1))(4). Thus y is a smallest divisor of
sx D sry and the assertion follows by Lemma 6 b). ut

The next result shows that in general, factorable modules are far away from
containing divisible modules. If R is not a field, it shows in particular that any
torsion-free R-module containing K D Q.R/ as a submodule is not factorable.

Corollary 6 If M is a factorable module containing an element x ¤ 0 which has
every non-zero element of R as R-divisor, then R is a field.

Proof By Proposition 2 (1))(2), x has a greatest R-divisor t. By assumption, t2

divides t, whence t 2 R�. As by assumption, any non-zero element of R divides t,
R n 0 � R�, i.e. R is a field. ut

Factorability of modules have consequences for the base ring:

Corollary 7 R2 is factorable if and only if R is a GCD-domain. In particular, if R
satisfies accp, R2 is factorable if and only if R is factorial.

Proof Let r; s; t 2 R. It is easily seen that t is a greatest R-divisor of .r; s/ 2 R2 if
and only if t is a greatest common divisor of r and s. Thus the first assertion follows
from Proposition 2 (1),(2), the second from [13, Thm. 2.22]. ut
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Corollary 8 If M is factorable and R satisfies accp, then M satisfies accc.

Proof Let .Rxi/i2I be any non-empty family of cyclic submodules of M. By
Proposition 2 (1))(5), for each i 2 I, xi D siyi for some si 2 R and primitive
yi 2 M. Then .Rsi/i2I is a non-empty family of principal ideals of R, whence has
a maximal element Rsj for some j 2 I. Then Rxj D Rsjyj is a maximal element of
.Rxi/i2I : let i 2 I and Rxj � Rxi. Then xj D rxi for some r 2 R; whence sjyj D rsiyi.
If sj D 0, the assertion is clear; otherwise, sj D trsi, yi D tyj for some t 2 R� by
Lemma 6 e). By choice of j, Rsj D Rsi, whence r 2 R� and thus Rxj D Rxi. ut
Corollary 9 If M is factorable and R satisfies accp, then any submodule of M is
atomic.

Proof Immediate by Corollary 8 and Lemma 7 b). ut
If M is factorable, then M is atomic (by Proposition 2) and every two-element

R-sequence is an M-sequence (by Corollary 3). In case of GCD-domains there is a
converse:

Corollary 10 Let R be a GCD-domain. If M is atomic and every two-element R-
sequence is an M-sequence, then M is factorable.

Proof By Proposition 2 (4))(1), it is sufficient to prove that every irreducible
element of M is primitive. Let x 2 M be irreducible and y 2 M, r; s 2 R n 0 be
such that rx D sy. Let d be a greatest common divisor of r; s; then r D r0d, s D s0d
for some relatively prime elements r0; s0 2 R. Moreover, r0x D s0y and s0; r0 is an
R-sequence; by assumption, s0; r0 is an M-sequence, whence s0 is an R-divisor of x.
As x is irreducible, s0 2 R� and x is an M-divisor of y. ut

4 Factorable Modules over Factorial Domains

The next definition reflects a straightforward approach to the generalization of UFDs
to modules, cf. [17–20]. The subsequent propositions and its corollaries explain the
role of factorial domains in this context.

Definition 2 M is called factorial, if M ¤ 0 and every non-zero element x of
M has a representation x D r1 � � � rny with atoms ri .i D 1; : : : ; n/ of R, y an
irreducible element of M and this representation is unique up to units of R; that
is, if x D s1 � � � smz is another representation with atoms si .i D 1; : : : ;m/ of R
and an irreducible element z of M, then n D m, there are units ui; u 2 R� and a
permutation � of f1; : : : ; ng such that ri D uis�.i/ .i D 1; : : : ; n/ and y D uz.

Proposition 3 The following conditions are equivalent:

(1) M is factorial
(2) R is atomic and M is factorial
(3) R is a factorial domain, M ¤ 0 and M is factorable
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(4) M ¤ 0 and every non-zero element x of M has a representation x D r1 � � � riy
with atoms r1; : : : ; ri of R and an irreducible element y of M; moreover, every
atom of R is a prime element of R and every irreducible element of M is primitive

(5) M ¤ 0 and every non-zero element x of M has a representation x D r1 � � � riy
with atoms r1; : : : ; ri of R, y a primitive element of M and this representation is
unique up to units of R.

Proof (1))(2): To prove that R is atomic, it suffices to show that M satisfies the
assumptions of Lemma 1. Let x 2 M, x ¤ 0, and x D r1 : : : rky with non-units
r1; : : : ; rk of R and y 2 M. Further, by (1), write x D s1 � � � smz with atoms si

.i D 1; : : : ;m/ of R and an irreducible element z of M; j.x/ � m is independent of
the choice of atoms si .i D 1; : : : ;m/ of R and irreducible element z of M. We prove
now: k � j.x/. By (1), rky D rk;1 � � � rk;mk yk�1 with atoms rk;1; : : : ; rk;mk of R and an
irreducible element yk�1of M. It follows mk � 1; otherwise, rky D yk�1 would be
irreducible, i.e. rk a unit of R, a contradiction. Continuing similarly with rk�1yk�1
etc., we obtain a representation of x D r1 � � � rky D r1 � � � rk�1rk;1 � � � rk;mk yk�1 D
r1;1 � � � r1;m1 � � � rk�1;1 � � � rk�1;mk�1rk;1 � � � rk;mk y1 with atoms r1;1; : : : ; rk;mk of R, an

irreducible element y1 of M and mj � 1 for j D 1; : : : ; k. Thus k �
kP

jD1
mj D j.x/ by

assumption (1). (2))(3): As M ¤ 0, M contains an irreducible element m. R is a
factorial domain: by assumption (2), any non-zero element r of R has a factorization
into atoms and this factorization is unique up to units of R, because that is the case
for the element rm of M. M is factorable by Proposition 2 (3))(1). (3))(4) follows
from basic properties of factorial domains and Proposition 2 (1))(3), (4). (4))(5)
is clear. (5))(1) follows by Lemma 6 d). ut
Proposition 4 Let R be a factorial domain. The following conditions are equiva-
lent:

(1) M is factorable
(2) M is a submodule of a factorable R-module and every two-element R-sequence

is an M-sequence
(3) M has fdp and every two-element R-sequence is an M-sequence
(4) M satisfies accc and every two-element R-sequence is an M-sequence
(5) M is atomic and every two-element R-sequence is an M-sequence.

Proof (1))(2) follows by Corollary 3. (2))(3) by Proposition 2 (1))(2) and the
fact that R is factorial. (3))(4) by definition of accc. (4))(5) by Lemma 7 b).
(5))(1) by Corollary 10. ut

The condition “every two-element R-sequence is an M-sequence” has some
remarkable equivalencies, cf. Proposition 1.

Corollary 11 Let R be a factorial domain and M be a flat R-module. Then the
following conditions are equivalent:

(1) M is factorable
(2) M is a submodule of a factorable R-module


