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Preface

The Earth’s climate is a complex, multidimensional multiscale system in which
different physical processes act on different temporal and spatial scales. Due to the
increasing atmospheric greenhouse gas concentrations, global average temperatures
increase with time as a result of interactions among components of the climate
system. These interactions and the resulting variations in various climate parameters
occur on a variety of timescales ranging from seasonal cycles, yearly cycles to those
with times measured in hundreds of years. Climatologists and environmentalists are
striking to extract meaningful information from huge amount of observational
record and simulation data for the climate system. Classic univariate time series
analysis is not capable to handle well these complex multidimensional data.
Recently, the techniques and methods of multivariate time series analysis have
gained great important in revealing mechanisms of climate change, modeling
tempo-spatial evolution of climate change and predicting the trend of future climate
change.

This book covers the comprehensive range of theory, models, and algorithms of
state-of-the-art multivariate time series analysis which have been widely used in
monitoring, modeling, and prediction of climate and environmental change. Each
chapter focuses on a specific issue of importance. Chapter 1 discusses artificial
neural networks which can make full use of some unknown information hidden in
high-dimensional climate data, although these information cannot be extracted
directly; Chap. 2 discusses multivariate Harmonic analysis which can determine
how the total variance of multivariate time series is distributed in frequency. Main
techniques and methods include Fourier transform, fractional Fourier transform,
space—frequency representation, sparse approximation, spherical harmonics, and
harmonic analysis on graphs; Chap. 3 discusses wavelet representation for multi-
variate time series with time-dependent dominant cycles. Main techniques and
methods include multiresolution analysis and wavelets, discrete wavelet transform,
wavelet packet, wavelet variance, significant tests, wavelet shrinkage, and shearlets,
bandelets, and curvelets. Chapter 4 focuses on stochastic representation and mod-
eling, including stationarity and trend tests, principal component analysis, factor
analysis, cluster analysis, discriminant analysis, canonical correlation analysis,
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multidimensional scaling, vector ARMA models, Monte Carlo methods, Black—
Scholes model, and stochastic optimization; Chap. 5 discusses multivariate spectral
analysis and estimation, including periodogram method, Blackman—Tukey method,
maximum entropy method, multitaper method, vector ARMA spectrum, and mul-
tichannel SSA; Chap. 6 focuses on the development of climate models and related
experiments to understand the climate system and climate change; Chap. 7 gives
some latest case studies on regional climate change to demonstrate how the
methods and tools in Chaps. 1-6 are used; Chap. 8 discusses basic models and key
indices on ecosystem and global carbon cycle; Chap. 9 discusses the methods used
to reconstruct paleoclimates from proxy data. Chapter 10 introduces three methods
to analyze multivariate time series in climate change economics and related latest
researches.

Current climate and environmental research is facing the challenge of complex
multidimensional data. This book on multivariate time series analysis starts from
first principles, always explains various techniques and methods step by step, and
shows clearly how to reveal physical meaning from the analysis of observed and
stimulated multidimensional data. It has a comprehensive cover and also includes
many of the author’s unpublished researches. This book is accessible for researchers
and advanced students who want to grasp state-of-the-art techniques and methods in
multivariate time series analysis. This book builds a cross-disciplinary bridge
between various analysis techniques and methods and latest published studies in the
wide branches of climatology and environmental science.

Beijing, China Zhihua Zhang
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Chapter 1
Artificial Neural Network

Multivariate time series analysis in climate and environmental research always re-
quires to process huge amount of data. Inspired by human nervous system, the artifi-
cial neural network methodology is a powerful tool to handle this kind of difficult and
challenge problems and has been widely used to investigate mechanism of climate
change and predict the climate change trend. The main advantage is that artificial
neural networks make full use of some unknown information hidden in climate data
although they cannot extract it. In this chapter, we will introduce various neural
networks, including linear networks, radial basis function networks, generalized re-
gression networks, Kohonen self-organizing networks, learning vector quantization
networks, and Hopfield networks.

1.1 Network Architectures

Artificial neural network is a structure of interconnected units of large number of
neurons. Each neuron in the network is able to receive input signals, to process
them, and to send an output signal. It consists of a set of the weighted synapses,
an adder for summing the input data weighted by the respective synaptic strength,
and an activation function for limiting the amplitude of the output of the neuron.
Network architectures have two fundamentally different classes including multilayer
feedforward networks and recurrent networks.

1.1.1 Multilayer Feedforward Networks

Feedforward networks are currently being used in a variety of climate and environ-
ment applications with great success. It consists of a number of neurons organized in

© Springer International Publishing AG 2018 1
Z. Zhang, Multivariate Time Series Analysis in Climate and
Environmental Research, https://doi.org/10.1007/978-3-319-67340-0_1



2 1 Artificial Neural Network

Fig. 1.1 Single-layer
feedforward networks O

O

input layer output layer
with three source nodes with two neurons

layers. Every neuron in a layer is connected with all the neurons in the previous layer.
These connections are not all equal; each connection may have a different strength
or weight.

The oldest and simplest artificial neural networks is a single-layer feedforward
neural network (see Fig. 1.1). It consists of an input layer of source nodes and an
output layer of neurons, where source nodes are projected directly onto the output
layer of neurons. The word “single-layer” means that the neural network has only a
layer. The layer of source nodes is not counted because no computation is performed.

A multilayer feedforward network consists of an input layer of source nodes, one
or more hidden layers, and an output layer of neurons (see Fig.1.2). The hidden
layers in the network are not seen directly from either the input or output layer of
the network. These hidden layers enable the neural network to extract the higher-
order statistical features from its input. Neurons in hidden layers are correspondingly
called hidden neurons. These hidden neurons have a function to intervene between
external input and the network output in some useful manner.

The source nodes in the input layer supply respective elements of the activation
pattern to constitute input signals applied to neurons in the first hidden layer. The
output signals of neurons in the first hidden layer only are used as input signals to
neurons in the second hidden layer. Generally, the output signals of neurons in each
hidden layer only are used as input signals to neurons in the adjacent forward hidden
layer. There is no connection among neurons in the same layer. Finally, the output
signals of neurons in the last hidden layer only are used as input signals to neurons
in the output layer. The set of output signals of the neurons in the output layer of
the network constitute the overall response of the network to the activation pattern
supplied by the source nodes in the input layer of the network.

If every neuron in each layer of the multilayer feedforward network is connected
to every neuron in the next layer, then this kind of neural network is called fully con-
nected. The simplest fully connected multilayer feedforward network is the network
with one hidden layer and one output layer. If such network has m source nodes, &
hidden neurons, and n output neurons, for the sake of brevity, this fully connected
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input layer hidden layer output layer
with three source nodes with three neurons with two neurons

Fig. 1.2 Multilayer feedforward network with a single hidden layer (3-3-2 Network)

multilayer feedforward network is referred to as an m — h — n network. In general,
for a fully connected multilayer network with k hidden layers and one output layer,
if it has m source nodes in the input layer, &; neurons in the first hidden layer, A,
neurons in the second hidden layer, ..., i neurons in the kth hidden layer, and n
output neurons, then it is referred to as an m — h; — hy — - - - — hy — n network. If
some synaptic connections are missing from the multilayer feedforward network,
then the network is called partially connected.

1.1.2 Recurrent Networks

Recurrent networks have self-feedback loops or not, the feedback loops involve the
use of particular branches composed of unit-delay elements, and recurrent networks
also have hidden neurons or not. A recurrent neural network distinguishes from
feedforward networks in that it has at least one feedback loop. This offers a lot of
flexibility and can approximate arbitrary dynamical systems with arbitrary precision.
The network with a single-loop feedback is called a single-loop feedback network.

Consider a single-loop feedback network. Denote its input signal by x (), internal
signal by X (n), and output signal by y(n), where x (n), X(n), y(n) are dependent on
the discrete-time variable n. Assume that the network consists of a forward path A
and a feedback path B, where A and B are operators (see Fig. 1.3).

Assume that the output of the forward channel determines in part its own out-
put through the feedback channel. Then, the input and output satisfy the following
relationship:

y(n) = Alx(m)],
x(n) = x(n) + Blym)],
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Fig. 1.3 Single-loop B
feedback system -
1 i
z(n)  —  (n) — y(n)
A

where A[X(n)] and B[y(n)] mean that the operators A and B act on X(n) and y(n),
respectively. Eliminating X (n) from both equations, we get

y(n) = [x(m)], (1.1.1)

A
1 - AB

where ﬁ is called a closed-loop operator and AB is called an open-loop operator.
In general, AB # BA.

If the operator A is a fixed weight w and the operator B is a unit-delay operator
z~! whose output is delayed with respect to the input by one time unit, then the

closed-loop operator becomes

A w S
TmAB - Tmwe -2
1=0
Substituting it into (1.1.1), we get
oo
Y =D w2 xm)],
1=0

where z7/[x (n)] means that the operator z~/ acts on x(n). Since z~! is a unit-delay
operator,
2 [x(m] =x(n - D),

Furthermore,

y(n) = Zw”lx(n —1).
=0

From this, the dynamic behavior of the single-loop feedback network with the fixed
weight w and the unit-delay operator z~! is determined by the weight w. When |w| <
1, the output signal y(n) is convergent exponentially. In this case, the system is stable.
When |w| > 1, the output signal y(n) is divergent. In this case, the system is unstable.
If |[w| = 1, the divergence is linear. If |w| > 1, the divergence is exponential.
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1.2 Perceptrons

The perceptron is a kind of neural networks that can decide whether an input belongs
to some specific class. It was the first algorithmically described neural network.
Perceptrons can be classified into Rosenblatt’s perceptron and multilayer perceptrons.

1.2.1 Rosenblatt’s Perceptron

Rosenblatt’s perceptron is a network with m input source nodes and a single output
neuron, a more general computational model than McCulloch—Pitts model. The per-
ceptron belongs to basically a single-layer neural network and consists of a single
neuron with adjustable synaptic weight and bias.

Rosenblatt’s perceptron can be described mathematically by the pair of equations:

m
V= Z wiXx; + b,
i=1

y=9@)

1.2.1)

or by an equivalent equation:

y=§0(zwixi+b),
i=1

where x; (i = 1,...,m) are the input signals applied to the perceptron, w; (i =
1, ..., m) are the synaptic weights of the perceptron, b is the externally applied bias,
v is called the induced local field (or linear combiner), ¢ is the activation function
(or hard limiter), and y is the output signal of the perceptron (see Fig.1.4). The
Rosenblatt’s perceptron consists of a linear combiner followed by a hard limiter, and
the hard limiter ¢ (v) determines the output of the perceptron in terms of the induced
local field v.

Letxy = 1and wy = b be the input and the weight of a new synapse. An equivalent
form of (1.2.1) is

m m
v = w;X;,
zz(:) o or y=(ﬂ(zwixi)~
y=9) i=0

The activation function in Rosenblatt’s perceptron is a threshold function as fol-
lows:
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Fig. 1.4 Rosenblatt’s

Z1
perceptron w1
€2
w2 b
N v %)
: o — o —
W,
LTm
input hard output
signals limiter signal

(a) The Heaviside function is defined as

= [1ifv=>0.
P =10ifv <o.

If v is the induced local field and v = /| w;x; + b, then the corresponding output
is expressed as
_ | 1ifv >0,
y_[OKUSO

(b) The signum function is defined as

1 ifv>0,
p(w)y=40 ifv=0,
—1lifv <O.

If v is the induced local field and v = 3| w;x; + b, then the corresponding output
is expressed as

1 ifv >0,
y=10 ifv=0,
—1ifv <O.

Based on the feature of the harder limiter, Rosenblatt’s perceptron can classify
correctly the set of externally applied stimuli xy, . . ., x,, into one of two classes. The
decision rule for the classification is as follows:

e If the input to the hard limiter v > 0, when the activation function is the Heaviside
function (or the signum function), the points represented by stimuli xy, . . ., x,, are
assigned to Class 1;

e If the input to the hard limiter v < 0, when the activation function is Heaviside
function (or the signum function), the points represented by stimuli x4, . . ., x,, are
assigned to Class O (or Class —1).
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Here, Class k is the set consisting of points represented by the stimuli x1, ..., x,,
having the output y = k.
The input to the hard limiter v = 0, i.e., the hyperplane

m

Zwixi +b=0
i=1

is referred to as the decision boundary of two classes. The simplest Rosenblatt’s
perceptron with two source nodes and a single output neuron can classify the set of
externally applied stimuli x, x, into one of two classes, and the decision boundary
of these two classes is a straight line:

wix] + waxo +b =0, (1.2.2)

where w; (i = 1, 2) and b are the synaptic weights and bias of the perceptron, respec-
tively. For example, assume that w; = 1, w, = 0.5, b = —0.5, and the sampling set
of externally applied stimuli x;, x, consists of seven points:

X(l) = (_1’ 2)’ X(2) = (17 2)’ X(%) = (2’ _1)1
X =(1,1), x0=(2,1, xO®=(1-1, x?=,0).

By (1.2.2), the decision boundary of two classes is x; + 0.5x, — 0.5 = 0. It is seen
that four points x®, x| x® _x lie above the straight line and the rest xV, x®, x©
lie below the straight line. The decision rule for the classification shows that these
seven points can be classified into two classes.

1.2.2 Multilayer Perceptron

The architecture of multilayer perceptrons is very different from the single-layer
perceptron. It is a perceptron consisting of an input layer of m source nodes, i hidden
layers of i; neurons, and an output layer of n neurons. Each neuron of the network has
a differentiable nonlinear activation function. The architecture of a fully connected
multilayer perceptron is that a neuron node in any layer of the network is connected
to all neuron nodes in the previous layer and the signal flow through the network
progresses in a forward direction from left to right and on a layer-by-layer basis.

The activation function used commonly in the multilayer perceptron is the sigmoid
function. The sigmoid function is mathematically convenient and is close to linear
near the origin while saturating rather quickly when getting away from the origin.
This allows multilayer perceptrons to model well both strongly and mildly nonlinear
relations. The logistic function and the hyperbolic tangent function are two popular
sigmoid functions. The logistic function is defined as
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1
= — () s
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where a is its slop parameter. Logistic functions of different slopes can be obtained
by varying this parameter. The logistic function is differentiable, and its derivative is

ae” a

! — — _ 1 — _
IO = T = T e (1 1 +eav) = ap()(1 — p(v)).

The hyperbolic tangent function is defined as
¢(v) = atanh(bv) (a>0,b=>0).
The hyperbolic tangent function is also differentiable, and its derivative is

¢'(v) = ab sech?(bv) = ab(1 — tanh?(bv)) = 2(a® — ¢?(v))
ba—o)(a+9o®).

The process of the multilayer perceptron includes forward propagation of func-
tion signals and backward propagation of error signals which are identified. Forward
propagation of function signals is such a process that an input signal comes in at the
input end of the network, propagates forward neuron by neuron through the network,
and emerges at the output end of the network as an output signal. Backward propa-
gation of error signals is such a process that the error signal originates at an output
neuron of the network and propagates backward layer-by-layer through the network.

Due to one or more hidden layers, the multilayer perceptron can classify nonlin-
early separable patterns, while the single-layer perceptron cannot.

Example 1.2.1 Assume that a sampling set consists of four points:

xV'=(0,0), x? = (0, 1),
x® = (1,0), x® = (1, 1).

The XOR problem is to use a perceptron to classify these four points into two classes
such that points x, x® are assigned to a class, and points x®, x® are assigned to
another class. There is no possibility to solve the XOR problem using any single-layer
perceptron. In fact, assume that a following single-layer perceptron can solve it:

v =wix; + wyx; + b,
y=¢),

where w; (i = 1, 2) and b are synaptic weights and bias, respectively, and the ac-
tivation function ¢ is the Heaviside function. Since x(V = (0, 0) and x*¥ = (1, 1)
are assigned to Class 0, it is clear that » < 0 and w; + wy + b < 0. Adding them
together gives

w; +wy +2b < 0. (1.2.3)
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Fig. 1.5 Touretzky—Pomerleau perceptron

Since x» = (0, 1) and x® = (1, 0) are assigned to Class I, then

wy+b >0,
w; +b > 0.

Adding them together, we get
wy + wy +2b > 0.

This is contrary to (1.2.3). Thus, there is no possibility to solve the XOR problem
using a single-layer perceptron.

Touretzky—Pomerleau perceptron is a multilayer perceptron (see Fig. 1.5), where
each “o” represents a neuron and each neuron has Heaviside function as the activation
function. Touretzky—Pomerleau perceptron can solve the XOR problem given by
Example 1.2.1.

There are three neurons in Touretzky—Pomerleau perceptron, two of them are
hidden neurons in the hidden layer and the remainder one is the output neuron
in the output layer. For the top hidden neuron, the synaptic weights and bias are,

respectively,

wy =wp =1,
by = —3.
The straight line
3
I : X1+XZ—§=O.

is the decision boundary formed by the top hidden neuron. It is clear that the point
x@ lying above the line /; is assigned to Class 1, and points xV, x®, x® lying
below the line /; are assigned to Class 0.
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For the bottom hidden neuron, the synaptic weights and bias are, respectively,

wy = wp =1,
by = —3.
The straight line

I : X1+)C2—§=0

is the decision boundary formed by the bottom hidden neuron. The points x®, x®,
x® lying above the line I, are assigned to Class 1, and the point x’ lying below the
line [, is assigned to Class 0.

For the output neuron, the synaptic weights and bias are, respectively,

w3 = —2, wp =1,
—_1
by = —1.

The output neuron constructs a linear combination of decision boundaries formed
by two hidden neurons. The decision boundary formed by the output neuron is a
straight line: .
2y1+ 5= 0

where y; is the output from the top hidden neuron and y, is the output from the
bottom neuron. The decision rule for the classification is that a point that lies above
the line /; or below the line /; is assigned to Class 0 and a point that lies both below
the line /; and above the line /; is assigned to Class 1. Therefore, according to the
decision rule for the classification, the points xD x@ are assigned to Class 0 and
the points x®, x® are assigned to Class 1. So the XOR problem for four points x*)
is solved using the Touretzky—Pomerleau perceptron.

1.3 Linear Network and Bayes Classifier

Linear neural network distinguishes from Rosenblatt’s perceptron in that activation
function is a linear function. So the output of the linear network may be any value.
A linear network of a neuron can be described by a pair of equations:

m
v=> wx; +b,
i=1

y=9¢) =v
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or simply by an equation:

m

y—zwx,+b—zwxl,

where xo =1, x; = 1,...,m) are the input signals, w; ( =1, ...,m) are the
synaptic weights, wy = b is the bias, and y is the output signal of the neuron. Similar
to Rosenblatt’s perceptrons, linear neural network is used for classifying linearly
separable patterns. For example, a linear network of a neuron with two source nodes
is shown as in Fig. 1.6, where x;, x, are two input signals, y is the output signal,
wi, wyp are two synaptic weights, b is the bias, and o represents the neuron. This
network can be described by a pair of equations:
V= wix] + wixy + b,
it

or simply by an equation: y = wx; + wyx, + b.

The corresponding decision boundary is a straight line w;x; + wyx; + b = 0, and
the decision rule for classification is that all points that lie above the straight line are
assigned to one class and all points that lie below the straight line are assigned to
another class.

Below, we discuss the Bayes classifier. Consider a two-class problem repre-
sented by classes B; in the subspace R; (i = 1, 2), where R = R + R,. Denote by
pxX]|B;) (i =1, 2) the conditional probability density function of a random vec-
tor X, given that the observation vector x is drawn from subspace R;. In the Bayes
classifier, Van Trees defined an average risk (AR) of the two-class problem by

AR = ¢ pi f pxX[B)dX + ¢ p2 f px(X|B)dX
+cpi f PX(X|Bl)dX+612P2 fPX(Xllgz)dX

where c;; is the cost of deciding in favor of class B; and p; is the prior probability of
the observation vector x, and p; + p, = 1. Note that

R =R+ Ro.
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The equivalent form of the average risk is

AR =ciipr [ pxXIBDAX + cnp, [ px(XIB)dX
Rl 7‘?:77?,1
+eaupr [ pxXIBNAX + ciops [ px(X1B2))dX
R-Ry R
=cnpr [ pxXIB)AX + enpy [ px(XIB)dX — cnpsy [ px(X|B2)dX
R[ R RI

R
+caupr [ px(XIBDAX — co1p1 [ pxXIB)dX +ciapy [ px(X|By))dX.
7% Rl Rl

From this and
J7 pxX|BdX =1,
J7 pxX|By)dX = 1,

it follows that the average risk is

AR = co1p1 + cnp2 +/ [p2(c12 — ) pxX|By) — pi(c21 — c11) px(X|B))]dX,
R

where ) p1 + ¢22 p» represents a fixed cost. The Bayes classifier requires that the
integrand of the last integral is greater than zero, i.e., pa(c12 — cn)px(X|By) —

pi(car — c1)px(X[By) > 0 or

pa(ciz —cn)  pxX|By)
pi(ca —cn) ~ pxX|By)'

The quantities
_ px(X|By) _ palenn — )

AX) = , = .
*X) rx(X|Bs) pi(car — cir)

are called likelihood ratio and threshold of the test, respectively. The likelihood ratio
A (x) and the threshold & are both positive. Taking the logarithm of A(x),

log A(X) = log px(X|B)) — log px(X|B>). (1.3.1)

The quantity log A (X) is called log —likelihood ratio. Since the logarithm function
is a monotonic function, it is more convenient to compute the log —likelihood ratio
than the likelihood ratio.

Consider a special two-class problem:

Class B;: E[X] = p1,
ElX—pu)X—u)'1=C;

Class B,: E[X] = pa, (1.3.2)
E[X—pu)X—pu)'1=C,
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where X is a random vector. In the two-class problem, the mean values of the ran-
dom vector are different but their covariance matrix of the random vector is the
same. Denote by C —1 the inverse matrix of the covariance matrix C. Then, the
conditional probability density function may be represented as the multivariate
Gaussian distribution:

1
pxX|B;) =

———————Texp (—1(x — ) €N x — m)) (i=12),
(2)% (det(C))? 2

where m is the dimensionality of the observation vector x and det(C) represents the
determinant of the matrix C. Assume further in the average risk that

1
pr=p2=3. c=c cii =cn=0.

Note that

log px(X|B)) = —5(x = )" €' (x — 1) — log((27) % (det(C)?),
log px(X|By) = —1(x — 112)" €~ (x — 1) — log((2m) ¥ (det(C))?).

By (1.3.1), the log —likelihood ratio is

log A(X) = log px(X|B;) — log px(X|B2)
= (—dx—unTCT x = ) — log(@m) ¥ (det(C)))
— (—3x = )€ (x = 12) — log(@m)% (@et(€))D))

A direct computation shows that

log AX) = —3(x" — u[)C'(x — 1) + 5" = puf)HC (x = p2)
= —%XTC_IX + %MITC_IX + %XTC_l,ul — %MITC_IM
+3xTCIx =l Cx = XTC oy + Al €y
= 3 (=) C7Ix + X" C (=) + 3 (WS €'y = €M)
= — ) CIx+ 3 o —ul ).

(1.3.3)
Bycp=ca,c11 =cpnp=0,and p; = pp = %, the threshold of the test is
_ paen—cen) (12— 0) _ 1
pi(ca1 —c11) %(021 -0) '
In (1.3.3), let
y = log A(X),
WT = (u — u2)’C™, (1.3.4)

b=3(udC uy —pul C ' uy).
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Then, Bayes classifier for multivariate Gaussian distribution, or simply,
Gaussian-distribution classifier, is

y=WT'x+b. (1.3.5)

This equation shows that the Gaussian-distribution classifier is a linear network with
the synaptic weight W and the bias b. Itis seen from (1.3.5) that the decision boundary
of the special two classes B, B, is the hyperplane:

Wix+b=0.

In the Gaussian-distribution classifier, assume that the covariance matrix C is
given by C = al, where a > 0 is a positive constant and [ is the identity matrix.
We will find the synaptic-weight vector and bias as well as the representation of the
Gaussian-distribution classifier.

Note that C~! = (al)™! = 1171 = 1. By (1.3.4), the weight vector is equal to

_ 1 1
W=C'(u —po) = ;I(Ml — W) = ;(,U«l — K2)
and the bias is equal to
1 T ~—1 T ~—1 1 T T
b=-(uy C o = C7 ) = —(pp Mo — [y (1 )-
2 2a
By (1.3.5), the Gaussian-distribution classifier becomes
T L7 T I T
y=W'x+b= Z(“l —Mz)X‘i‘Z(MzMz—MMI)

Example 1.3.1 In the one-dimensional case, consider the following two-class prob-

lem:
Class By: E[X] = 1,

E[(X —u)*=C,
Class B;: E[X] = ua,
E[(X — 2?1 =C,

(1.3.6)

where X is a random variable and u;, wo, C are all real numbers. So /L]T = Ui,
nd = pa, and C~' = L. By (1.3.4), the synaptic weight and the bias are all real
numbers and

— -1 _ =
w —1C T(Mll— M2) = ’“Cl’”, o,
b= Q(Mz Clup = C ) = T(Mz — Ky)-

By (1.3.5), the univariate Gaussian-distribution classifier is
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M1 — [ 1
y:WTx—i-b:%x—i-%(M%—ﬂ%)

and the decision boundary of the two-class problem (1.3.6) is a point:

x*__%(ﬂg_ﬂ%) _ it

MEM 2
Assume that £; = —10, up = 10, and C = 1. For the two-class problem (1.3.6), the
synaptic weight W = —20 and the bias b = 0, the univariate Gaussian-distribution
classifier is y = —20x, and the decision boundary is x = 0. The point x(x > 0) and

the point x(x < 0) are assigned to Class B, and B,, respectively.

Example 1.3.2 In the two-dimensional case, the means 1, u,, and the inverse ma-
trix of the covariance matrix are denoted by

wi = (i, mi2)", o = (pars wa2)’,
C—l — C11 C12
orcen )’

By (1.3.4), the synaptic weight W = (W, W) is

W =cC-! . _ C11 C12 K11 — M21
(1 = p2) (621 cn ) \ i — puxn
_ ((enn(uar = p21) + o — pa2)
car(pr — p21) + (i —un) ) -

Let x = (x, x2)7. Then,

X
WIx = (cri(pin — pa1) + cr2(riz — u22), a1 (it — pa1) + c22 (i1 — f122)) (x;)

= ci1(pi1 — m20)x1 + cr2(i2 — u22)x1 + ca1 (i1 — u21)x2 + c2(p12 — U22)x2
= (11 — p21)(cnixy + c21x2) + (w12 — n22)(C12x1 + €22x2).

By (1.3.4), the bias is
1
b= C o = C ).

Two terms ;J.ZT C~'u, and ;LlTC ~! 1, are computed, respectively, as follows:
T ~—1 C11 €12 K21
C = ,
1% w2 = (421, U22) <021 sz) (Mzz)
21
= (Ha1€011 + U2C21, M21C12 + H22€22) Mzz)

= (ua1c11 + pmaca) a1 + (2112 + (122€22) 22
= p3 c11 + a1 oCa1 + Rt haaCin + U3,c0.
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T ~—1 C11 C12 M11
C = ,
131 M1 (K11, H12) (021 sz) (Mlz)

= (unen + mi2ca, micn + 1) (Zi;)

= (uricn + pca)prr + (Uirc2 + m12¢22) (12
= puf e + mipaci + piipiac + whhen.

So the bias is

b= %(M%lcn + Ko paaca1 + U1 p2ci2 + M%gczz)
— (e + mi e + it piacz + whea)
= %((Mgl — pipen + (a1 — i) (Car + i) + (13, — uh)en)

By (1.3.5), the bivariate Gaussian-distribution classifier is

y=WIx+b
= ((11 — pan)(crxr + c21x2) + (w12 — w22)(CraX1 + €22x2)
+%(M%1 —uien + %(leﬂzz — mipi2)(cr +ci2) + %(M%z — ut)exn.

1.4 Radial Basis Function Network

Radial basis function network is derived from the theory of function approximation
and interpolation. It uses radial basis functions as activation functions.

1.4.1 Radial Basis Function

For a given set of distinct points Xy, ..., Xy € R™, the radial basis function technique
is to find a function F'(x) that has the form:

N N
Fo) =D wio(lx—x; ) =D w;px,x)), (14.1)
j=1 Jj=1

where w;(j =1, ..., N) are components of the weight vector w, {¢(x, X;)};=1,..~
is a set of radial basis functions, and X; is the center of the radial basis function
o(x,X;) = (|l x —x; |); here, || - || is the Euclidean distance.

The radial basis functions used widely are as follows.

(a) Gaussian function:

2

@(x) = exp _ for some o > 0 and x € R,
202
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where o is the width of the Gaussian funcltion.
(b) Multiquadric function: ¢(x) = (x2 4+ ¢?)2 for some ¢ > O and x € R.
1
(c) Inverse multiquadric function: ¢(x) = (x> 4+ ¢?)~ for some ¢ > 0 and x € R.

1.4.2 Interpolation

The interpolation technique is used for finding the weight vector w.

Given a set of distinct points X, ..., Xy € R” and a corresponding set of real
numbers di, ..., dy € R. The interpolation problem is to seek a function F : R" —
R satisfying the interpolation condition:

F(Xl):d, (lzl,,N), (142)

where F(x) is called the interpolation surface (or the interpolation function). The
interpolation surface F(x) is constrained to pass through all the training data points
{xi,d;}i=1,..n, where N is called the size of the training sample. The combination
of (1.4.1) and (1.4.2) gives

N
di =Y wipxi.x;) (=1,...N).
j=1

In more detail,

N
dy = 2 wip(xi, X)),
j=1

N
dy = D wip(x2, X;),
j=1 (1.4.3)

N
dy = 2 wip(Xy, X;).
j=1

This is a system of N equations with N unknown weights w;(j =1,..., N).
Letg;j = ¢(x;,Xx;) (i, j =1, ..., N). Then, the system (1.4.3) with N unknown
w; can be rewritten in the matrix form

Y11 P12 PIN wi d
©21 90 - PaN wo dy
ON1 PN2 *** ONN wy dy

where N is the size of the training sample.
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Let
Y11 P12 - PIN wi d;
021 P20 - PaN wy dy
= . . . ) W= , d=
ON1 N2 - ONN wy dy

Then, the system (1.4.3) has the compact form
dw =d, (1.4.4)

where the matrix @ is called the interpolation matrix and the vectors w and d are the
linear weight vector and desired response vector, respectively. Micchlli Interpolation
Theorem (see Chap.2) shows that the interpolation matrix ® is non-singular when
{X;}i=1....n is a set of distinct points in R™, Therefore, its inverse matrix ®~! exists.
So the weight vector w is given by w = ®~'d.

The architecture of radial basis function network is a feedforward network with
layered structure. For example, the architecture of a radial basis function network
with an input layer, a single hidden layer, and an output layer consisting of a single
unit is described as follows.

Given a set of N distinct points Xy, ..., Xy € R", i.e., the size of the input layer
is m. The single hidden layer consists of N computation units. Each computational
unit is described by a radial basis function:

px.xj) =l x=x; ) (G =1.....N),

where the jth input data point x; is the center of the radial basis function and x is
the signal applied to the input layer. The connections between the source nodes and
hidden units are direct connections with no weights. The output layer consists of a
single computational unit. The size of the output layer is 1. It is characterized by the
weight vector w = (wy, ..., wy), and the approximating function is

N
F(x) = w;p(x.X;).
j=1

However, in practice, since the training sample {X;, d;};=1.. n is often noisy, it could
be wasteful of computational resources to have a hidden layer of the same size as
the input layer. The size K of the hidden layer is required to be less than N, and
then the corresponding approximating function is the sum of K weighted radial basis
functions.
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