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Goals of this Book and Global Overview

Introduction and Management Summary

The first volume of Interest Rate Derivatives Explained, Kienitz (2014b), is
dedicated to introduce basic interest rate products and give an overview of the
corresponding markets. There, we outlined day count conventions, defined
different rates and considered products that can be priced using the current
yield curves and volatility surfaces, respectively cubes. This included Interest
Rate Swaps but also more involved products such as swaptions, caps and floors
or constant maturity swaps and the corresponding options referencing to
constant maturity swap rates such as CMS spread options.

In the current volume, we wish to extend the scope to modelling volatility
and the term structure of interest rates. Such methods are important for the
daily work of financial institutions since exposures need to be determined,
path-dependent contracts even with early exercise features but also products
including negative rates, deep in or out of the money options and alike need
to be valued, processed and risk managed. Take a constant maturity swap for
instance. In Interest Rate Derivatives Explained 1, Kienitz (2014b), we have
assumed the entire volatility smile given. Then, a static replication argument
was applied for pricing and risk management of such trades. In this volume,
we wish to show how the volatility smile is build and we wish to propose
methods that can be applied to a wide range of market scenarios and do not
stuck as some standard models that cannot safely be applied or even do not
work at all. For instance, take the SABR model, here either standard methods
generate too high volatilities for ITM or OTM options, lead to arbitrage or
simply the current observed rates do not fit into the models scope. We show
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how to adjust models and suggest other numerical approaches that are
applicable in challenges market scenarios.

Other trades and products need to address different issues. Consider
path-dependence for instance. For a sound risk management, a financial
institution has to be able to handle such features often embedded in interest
rate trades. This can materialize as an exercise right in a bond or swap
contract. Even standard products such as mortgages in Germany have built in
callability features. A mortgage loan can be called off after ten years at any day
with a notice period of half a year. Another aspect is accounting. With regard
to applying IFRS rules, the instruments held by a financial institution may
need to be accounted for by assigning a fair value. This of course can include
exotic rate products.

We have structured the book in three parts. The first part of the book deals
with interest rate products. We give important examples for products that
cannot be priced only taking into account the current yield curves and a
swaption volatility surface. The future evolution of the term structure is
necessary to determine the price and to apply an efficient hedge and risk
management. Products which we consider include path dependencies in
many ways. One important feature we consider is callability. Bermudan
swaptions are the most prominent representatives of this product class. Then,
we describe how volatility is modelled. Even for European options, it is
necessary to think about a sound volatility model since quotes are only
available for some maturities and strikes. If the maturity or the strike of an
option is not quoted, methods for inter- and extrapolation have to be con-
sidered. All strikes and maturities need to be available to apply the
before-mentioned replication technique to price CMS Caps, CMS Floors,
CMS Swaps or CMS Spread options. After summarizing the task of volatility
modelling, we consider two popular models in detail, namely the Heston
model and the SABR model. Furthermore, the models can also be used to
enhance term structure models with a stochastic volatility component. This
additional component helps to model observed market features and improves
the quality of fitting observed option prices.

The third part is concerned with term structure models. Such models are
used to evolve the current yield curve into the future. There exist several
methodologies for achieving this goal. We give an overview of term structure
models ranging from one factor short rates over infinite dimensional models
for the instantaneous forward rate to high dimensional market models. Often
the modeller has to achieve a trade off between model complexity, accuracy
and numerical tractability. In fact the latter might soon become a bottle neck
when we consider the current regulated markets where all kind of value
adjustments, see Kienitz (2014b), have to be calculated for large and diverse
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portfolios. The basis of such adjustments is the generation of the future
exposure. This is done by simulating risk factors for given future times called
view points. Therefore, the simulation of many thousands of scenarios is the
market standard method. This together with the valuation of complex options
including path dependencies is very challenging. It is not hard to guess that
the computational workload for fulfilling this task is immense. But once the
data are available, the adjustments and exposure measures are easy to
determine.

The current volume has three parts and an appendix with all together 12
chapters. Each part is dedicated to a single topic starting with products, then
considering volatility modelling and finally covering term structure models.
The appendix gives information on the numerical techniques that need to be
applied for implementing the models and methods considered in this book.
Summarizing we have:

• Part I

– Vanilla Bonds and Asset Swaps
– Callability Features
– Structured Finance
– More Exotic Features and Basis Risk Hedging
– Exposures

• Part II

– The Heston Model
– The SABR Model

• Part III

– Term Structure Models
– Short Rate Models
– A Gaussian Rates-Credit Pricing Framework
– Instantaneous Forward Rate Models and the Heath–Jarrow–Morton

Framework
– The Libor Market Model

• Appendix

– Numerical Techniques for Pricing and Exposure Modelling

Now, let us summarize some hot topics that are considered in the main
body of the book. Some of those even appear the first time in book format
since they were recently published and are part for ongoing research.
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First, we have a wide coverage of products including Bermudan style
derivatives with the Bermudan swaption as the most important one. Other
more exotic interest rate derivatives are also still in the trading and banking
books of financial institutions. We cover TaRN, floating rate notes or range
accruals. You find valuable information on these types of trades including
examples on how they work and the coupon mechanism works.

Then, we consider the very important topic of exposures. As already
outlined in Kienitz (2014b), this is a very hot topic at the moment. The
exposure profile of trades and portfolios is the key to measure counterparty
credit risk either for regulatory or for accounting purposes. Exposure mea-
sures and examples for many common interest rate derivatives are considered.
This includes multi-callable swaps where a Bermudan swaption is embedded
into a swap-type contract. All is illustrated with pictures and graphs.

We give a broad overview of volatility modelling which is a very important
topic and there has been a great body of research. We point to the corre-
sponding literature and cover two of the models commonly applied in interest
rate markets, namely the Heston and the SABR models. The latter models
appeared most prominent in the quantitative finance literature. Foremost we
have to mention Hagan et al. (2015) and Antonov et al. (2015). We think the
reader will appreciate that we included the new developments here with new
approximation formulas, numerical schemes for achieving a no-arbitrage
representation of the probability density and even methods to use the newly
proposed Free Boundary SABR model. We do not know of any other book
covering this together with the new market paradigms of negative rates and
Bachelier volatilities.

When it comes to term structure modelling financial institutions can
choose from a variety of different models. To this end, we outline the main
approaches to term structure modelling including ways to account for a
stochastic basis. After laying out the different approaches we consider some
representatives of each model class, namely

• Short Rate models with a focus on the Gaussian Short Rate model class
• Cheyette models with unspanned stochastic volatility
• Libor Market models with many different correlation structures

The reader will appreciate that many of the concepts are illustrated using
spreadsheets that can be downloaded, see Section “Code”.

At the end of the book you find a round up of numerical methods that are
necessary to apply the models in practice. This extents the exposition from
volume 1 where we considered bootstrapping, yield curve calibration and
interpolation techniques. In Appendix A, we outline the application of
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transformation techniques which can be applied but are not only restricted to
the Heston model. In fact many jump models and stochastic volatility models
can be tackled with the described techniques. Then, we cover the PDE
approach using finite difference approximations of continuous quantities in
some detail. The method is often applied in financial mathematics and we use it
in our exposition to implement the SABR model. Finally, one of the most
important numerical methods called Monte Carlo simulation is described.
This technique is more important than ever. This is due to the fact that
exposure for large portfolios that depend on a large number of risk factors has to
be considered. Monte Carlo methods are the only tractable way of achieving
this.

Code

Some of the methods and models are illustrated using spreadsheets. For
instance, the different parsimonious approaches to model volatility and cor-
relation in the context of Libor Market models or some flavours of using
approximation formulae for the SABR model are illustrated in this way. All
the examples are for pedagogical use only. The sheets cannot be used for
sound modelling the interest rate markets but can serve as the basis for
creating proprietary implementations and generating ideas.

The material for this book and for the first volume are available via www.
jkienitz.de. There you also find additional material and further illustrations
on quantitative finance, mathematical modelling and related topics.

Many publicly available software libraries have term structure models
already implemented. We especially mention QuantLib (www.quantlib.org)
and ORE (www.opensourcerisk.org).

Further Reading

This book can of course not give all the nitty gritty details and cannot provide a
full account of all products, models and numerical techniques. To this end, we
put together a list of relevant literature the reader might consult after reading
this book. We decided to give hints on further reading with respect to the three
parts of the book. For the appendix on numerical methods, we place the
references for further reading directly below the last section of that chapter.

We also suggest further to the given references to do a search on the
well-known preprint services including SSRN, ResearchGate or arXiv.
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Part I
For the first part, we refer to Andersen and Piterbarg (2010a) and Andersen
and Piterbarg (2010c). Many of the products discussed in this first part are
also analysed and further explained in these books. Another standard refer-
ence is the compendium Brigo and Mercurio (2006). Also many products are
considered there and many closed form solutions for derivatives products as
well as intuition, hedging issues and further ideas are covered in a well written
and clear manner. If you are looking for an account on recent advances in
exposure modelling for rates consider to read Lichters et al. (2015). Many
approaches such as the CSA Floor at 0 or tackling derivatives in the multi
curve framework are reviewed and described in detail.

Some further books on valuation which are relevant for the first part are
Henrad (2014) and Kenyon and Stamm (2012). They cover the changes the
interest rate markets have undergone after August 2007 and how derivatives
and options are tackled in this new era. Finally, we mention Kienitz (2014a).
This book is the first part to the current one and has all the definitions for the
underlying quantities of the derivatives considered in the first
part. Furthermore, some basic derivatives have already been considered there.

Part II
Since the concept of volatility is of course not only relevant for modelling
interest rates, there are many papers either devoted to volatility or covering
volatility modelling for other asset classes. For volatility modelling a standard
reference is Gatheral (2006). That book gives a great overview of many
techniques and gives hints to further reading. The ground breaking articles for
local volatility are Dupire (1994) and Derman and Kani (1994). These ref-
erences are cited in many papers and books covering volatility modelling.
Another good source of information and worth for building your intuition is
Rebonato (2004). Here, different approaches with many illustrations and
outlining their practical relevance are covered.

A very recent book that is written by a market practitioner is Bergomi
(2016). This book covers the instruments that have volatility as well as the
dynamics of the volatility as risk factors. For instance, forward starting options
are covered, volatility index futures and options, the dynamics of local
volatility, uncertain volatility and its usage and many more facts are consid-
ered in great detail.

Now, for the special case of the Heston Stochastic Volatility model which
was introduced in Heston (1993) many papers and even a book dedicated to
the model do exist. The book is Rouah (2015) and covers the standard but also
many variants of the Heston model and numerical methods. Since then many
researchers and practitioners used this model and contributed in terms of
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applications or numerical methods. Relevant literature for implementing the
Heston model and applications to calibration are Lord and Kahl (2005),
Albrecher et al. (2006), Forde et al. (2012), Antonov et al. (2008), for sim-
ulation Andersen (2008), Staunton (2007) and Chan and Joshi (2010), for
long stepping schemes (Bin 2007). The Heston model is also applied for
enhancing existing models with a stochastic volatility component such as
market models or for considering hybrid models. For enhancing market
models, see Piterbarg (2003), Kiesel and Lutz (2010) and for an example of a
hybrid model we recommend Kammeyer and Kienitz (2012a, b, c).

The other popular model is the SABR model. There is also a large body of
literature available. The main reference for the SABR model is Hagan et al.
(2002) but there have been research papers and books thereafter. For instance
Hagan et al. (2005) propose an expression for the density which is often
necessary when dealing with CMS derivatives.

After the events in 2007 and 2008 we saw that the standard method of
applying SABR namely using the approximation technique was not valid
anymore and methods had to be considered to remove arbitrage and cover
with low rates and high volatility. We refer to Doust (2012), Hagan et al.
(2015), Hagan et al. (2016), Antonov and Spector (2012), Antonov and
Spector (2013), Kienitz (2015), Kienitz et al. (2017). Other methods to
account for the negative rates include Antonov et al. (2015). The authors
introduce a new local volatility function to the standard SABR model that
changes the model behaviour and leading to a new way of modelling rates.

For considering the SABR model together with term structure models, we
refer to Mercurio and Morini (2009) or Rebonato et al. (2009). The latter
covers all the aspects necessary to use a market model with SABR-type
stochastic volatility.

If you are interested in implementing the models we suggest to consult
Kienitz and Wetterau (2012). This reference covers most of the techniques
described in the above references. It also provides working Matlab source
code and the reader can see how the models work and can play around with
parameters, run simulations and calibration.

Part III
Term structure models are covered in a three volume compendium Andersen
and Piterbarg (2010a, b, c). Another standard reference has already been
mentioned for the products covered in Part I of this book. It is Brigo and
Mercurio (2006). Both books have a wealth of information, tips and tricks
from practitioners and well-known researchers.

If you are interested in short rate modelling you can work through several
research papers but the above-cited references have all the stuff you need to
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successfully apply short rate models. From pricing basic instruments as well as
numerical methods to tackle exotic products are covered in the cited books.
Furthermore, the references there point to the original papers if you wish to
consider reading the original articles.

For the instantaneous forward rate models, we are not aware of a book that
has a broad coverage of the models and the numerical techniques which are
applied here. We suggest to take Andreasen (2005), Cheyette (1994) or
Trolle and Schwartz (2009) as a starting point. A nice summary was written
by a student of J. Kienitz from UCT, see Schumann (2016).

The case of the LGM model is considered in many papers by P. Hagan.
For a detailed description, you can also consult Lichters et al. (2015). They
treat the case of multi-currency LGM and combining it with different mar-
kets by using for instance foreign exchange extensions.

If you consider to work with a Libor market model we suggest to take
Rebonato (2002) as a reference. Modern extensions with stochastic volatility
are covered in Piterbarg (2003), Kiesel and Lutz (2010), Antonov et al.
(2008) and Rebonato et al. (2009).

Another very useful reference is the homepage of John Schoenmakers at
WIAS Berlin (http://www.wias-berlin.de/people/schoenma/). There you find
many papers on different aspects of Libor Modelling. Furthermore, his book
Schoenmakers (2005) covers the basics as well as advanced and very technical
aspects of modelling Libor rates.

For the modern aspects of multi curve models and stochastic basis
approaches, we suggest to consider Grbac et al. (2015), Mercurio and Xie
(2012) and Mercurio (2010).
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