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Introduction

Within series I we have focussed on the following two main topics: the de-
termination of the Cartan subalgebras and of the nilradical of the associated
Lie algebra A◦ based on a finite-dimensional associative unitary algebra A.
Both Lie substructures are maximal nilpotent in A◦: Cartan subalgebras
with respect to the subalgebra lattice and the nilradical with respect to the
ideal lattice of A◦. If the factor algebra by the nilradical of A is separable,
then – by using the theorem of Wedderburn-Malcev – a radical complement
T of rad(A) in A exists. Based on this radical complement we were able to
determine within series I the Cartan subalgebras and the nilradical of A◦

for several classes of algebras A. In particular, if A is solvable (which is the
case of A/rad(A) and T being commutative) we have proven that the cen-
tralizers of the radical complements – denoted by CA(T ) – are exactly the
Cartan subalgebras of A◦. This results was proven originally by Thorsten
Bauer within his dissertation [4]. In particular, all Cartan subalgebras of
A◦ are associative subalgebras of A. The theorem of Wedderburn-Malcev
is used to prove further that all Cartan subalgebras of A◦ are conjugated
under the group 1 + rad(A). If we focus on the central part of T in A –
which is Z(A)∩T – we have derived in series I additionally that this part is
separable and that the nilradical of A◦ is the inner direct sum of rad(A) and
Z(A)∩T . Cartan subalgebras are maximal Lie nilpotent subalgebras. If A is
solvable, then the nilradical of A◦ is a maximal Lie nilpotent subalgebra, too.

Within this series we will enhance this theory of maximal nilpotent sub-
algebras of A◦ in the solvable case of A further. The following questions
are the guidelines of this series related to the associated Lie algebra A◦ and
also to the group of units E(A) of A:

· In what way can we determine all maximal nilpotent Lie subalgebras of
A◦?

· Does a special or extremal position of the nilradical and the Cartan sub-
algebras exist among all maximal nilpotent Lie subalgebras of A◦?

· In what way can we determine the Carter subgroups and the Fitting sub-
group of E(A)? Is the Fitting subgroup a maximal nilpotent subgroup?

7
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· In what way can we determine all maximal nilpotent subgroups of E(A)?

· Does a special or extremal position of the Fitting subgroup and the Carter
subgroups exist among all maximal nilpotent subgroups of E(A)?

· Do structural connections exist between maximal nilpotent subalgebras of
A◦ and maximal nilpotent subgroups of E(A)?

The intention of chapter 1 is to summarize special structures like group al-
gebra, the Solomon algebra or the Solomon Tits algebra. These algebras are
used to visualize the results within this work and to guide the reader within
the exercises to a deeper insight of the proven results.

For the analysis of structural connections between maximal nilpotent sub-
groups and Lie subalgebras we will use the main result of chapter 2 frequently
in this work: the theorem of Xiankun Du proven in 1992 based on radical
algebras comprised that the upper central chain of the associated Lie algebra
coincide with the upper central chain of the quasi regular group – or also
called star or circle group (which is a generalization of the group of units)
– in every step. In particular, the class of nilpotency of both structures
is identical. This result was conjectured by Stephen Arthur Jennings 40
years ago and partly proven by Hartmut Laue in the eighties. Oftentimes,
it is simpler to do calculations in the Lie algebra and not within the circle
group. For example, radicals of associative algebras are radical algebras. In
the context of maximal nilpotent substructures we use the result to derive a
connection between the nilpotency classes of maximal nilpotent Lie subalge-
bras and maximal nilpotent subgroups. As an excursus at the end of chapter
2 we derive another application of the theorem of Xiankun Du. If we focus
on the upper central chain of the circle group of a radical algebra and here
on the factor groups of the (n + 1)-th modulo the n-th center, then these
factor groups are – by definition of the upper central chain – abelian groups.
In the case of a radical algebra based on a field of positive characteristic p
we can derive – by using the theorem of Xiankun Du – that these factor
groups are indeed of exponent p. Applied to the group algebra – for which
Adalbert Bovdi has published this result – the reader may prove this result
within the exercises and experience the transfer of group theoretic questions
to Lie theory.

As aforementioned, the guidelines of this work are connected to solvable
associative algebras. The main focus will be to analyze structural proper-
ties of and connections between the associative and the associated Lie as
well as the derived group structure in form of the group of units concerning
maximal nilpotency. For the solvability itself a connection between these
three structures is existing: we will prove within chapter 3 that the solv-
ability for the associative algebra, its associated Lie algebra and its group of
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units based on a finite-dimensional associative unitary K-algebra (for a field
K possessing at least 5 elements and char(K) �= 2) are equivalent. This
result was one incentive for our guidelines. As an excursus we focus at the
end of chapter 3 on a connection between maximal solvable Lie subalgebras
and maximal solvable subgroups: the so-called Borel subalgebras of A◦ –
which are maximal solvable Lie subalgebras – are indeed associative unital
subalgebras of A based for fields of characteristic zero. For proving this, we
need a theorem of Sophus Lie and a result of Hartmut Laue concerning the
associative algebra span. The group of units of the Borel subalgebras are
solvable groups. Unfortunately, the proof that they are maximal solvable
subgroups – which are so-called Borel subgroups – was not possible to per-
form. But we could prove that each Borel subalgebra leads to a new group of
units. The reason is that the K-space generated by the group of units is the
whole algebra. This approach – creating the group of units and the K-space
generated by them – will often be useful within this work for describing and
analyzing the connections between subalgebras and subgroups.

Thorsten Bauer has already analyzed one guideline of this work within his
dissertation [4]: the determination of the Carter subgroups of the group of
units of an unital finite-dimensional associative solvable algebra possessing
a separable factor algebra by its nilradical. He has proven that the Carter
subgroups – for a field possessing at least three elements – are exactly the
group of units of the Cartan subalgebras of the associated Lie algebra. The
assumption for the field is necessary to ensure that the algebra is generated
by its group of units. Thus, the result of Thorsten Bauer can be reformulated
as follows: the K-space generated by the Carter subgroups are exactly the
Cartan subalgebras. Again, the concept of creating the group of units
and creating the K-space generated by the group of units arise.
Within the article [5] of Thorsten Bauer and Salvatore Siciliano concerning
the determination of the Carter subgroups a result is proven which will be
of significant importance later on in this work, too: the K-space generated
of a nilpotent subgroup based on a finite-dimensional associative solvable
K-algebra is Lie nilpotent.

The phenomenon of connecting Cartan subalgebras and Carter subgroups
arise for the nilradical and the Fitting subgroup, too. We will prove within
chapter 5 that both structures are connected via creating the group of units
and the creating the K-space based on the group of units. The result of
Thorsten Bauer and Salvatore Siciliano concerning the K-space generated
by a nilpotent subgroup will be of significant importance for proving this
connection.

The previous chapters have focussed on special and prominent examples
of maximal nilpotent substructures within the group of units and the as-
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sociated Lie algebra. In this chapter we analyze more generally the con-
struction, determination and characterization of all maximal nilpotent Lie
subalgebras. In a first step we prove – in analogy to the Borel subalge-
bras stated earlier (but based on a completely different argumentation) –
that maximal Lie nilpotent subalgebras are unital associative subalgebras.
Thus, we are able to use results of series I concerning these special associa-
tive subalgebras: the inner structure of these associative subalgebras M of
A is presentable as the inner direct sum of its nilradical rad(M) (which is
contained in rad(A) by using the solvability of A) and the unique and cen-
tral radical complement V SEP (M) consisting of fully separable elements:
M = rad(M) ⊕ V SEP (M). The theorem of Wedderburn-Malcev lets us
derive that V SEP (M) is contained in a radical complement T of rad(A) in
A. Based on the inner structure of M and the radical complement T we can
prove that a Lie nilpotent associative subalgebra M is maximal Lie nilpotent
if and only if the centralizer conditions Crad(A)(V SEP (M)) = rad(M) and
CT (rad(M)) = V SEP (M) are valid. A simple but remarkable consequence
is that maximal nilpotent Lie subalgebras satisfy the double-centralizer con-
ditions Crad(A)(CT (rad(M))) = rad(M) and CT (Crad(A)(V SEP (M))) =
V SEP (M). For determining all maximal Lie nilpotent subalgebras we use
these centralizer and double-centralizer properties: we start with an unital
subalgebra C of T and calculate the double-centralizer CT (Crad(A)(C)). We
proceed by calculating the double-centralizer of the double-centralizer again
and again. This process must be stable of finite many steps because of the
finite dimension of A. If the process is stable, then the resulting subalgebra
Ĉ in T combined with the direct summand Crad(A)(Ĉ) is maximal Lie nilpo-
tent. The dual process – beginning with a subalgebra of rad(A) – leads also
to maximal Lie nilpotent subalgebras, but not to new ones. A natural ques-
tion is to determine the number of steps after which the double-centralizing
is stable. The answer is simple: not from the beginning but after the first
double-centralizing. Thus, we have to use the double-centralizing on the
lattice of unital subalgebras of T resp. the lattice of subalgebras of rad(A)
once and construct as already described all maximal Lie nilpotent subalge-
bras. The nilradical and the Cartan subalgebras have an extremal position
among all maximal Lie nilpotent subalgebras. The component of the nilrad-
ical resp. Cartan subalgebras in T is central in A resp. the whole radical
complement. Within the nilradical its extremely large resp. small (and
therefore dual). For all other maximal nilpotent subalgebras the part in T
resp. rad(A) is situated between these two values. By using another radical
complement only isomorphic copies of maximal nilpotent Lie subalgebras
arise (based on the theorem of Wedderburn-Malcev). Hence, all isomorphic
classes of maximal nilpotent subalgebras can be bounded by the number of
unital subalgebras of a fixed radical complement T . This number is finite
because T is separable and commutative: T is a so-called futile algebra.
We prove this statement within a separate section and estimate this num-
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ber by the upper bound B(dimK(T )) – which are the so-called Bell numbers.

In chapter 7 we present a bijective connection between maximal nilpotent Lie
subalgebras and maximal nilpotent subgroups. It becomes apparent that –
as already stated for the Cartan subalgebras and the Carter subgroups resp.
the nilradical and the Fitting subgroup – there is a general connection be-
tween maximal nilpotent substructures: the group of units of maximal Lie
nilpotent subalgebra (which is indeed an unital associative subalgebra) is a
maximal nilpotent subgroup and the K-space generated by a maximal nilpo-
tent subgroup is a maximal nilpotent Lie subalgebra (Here we will use the
already mentioned result of T. Bauer and S. Siciliano again.). In addition,
this connection is bijective: the functions E(·) – creating the group of units
– and 〈·〉K – creating the K-space generated by the group of units – are
inverse to each other. By using the theorem of Xiankun Du we derive the
more deeper insight that the classes of nilpotency of two connected maxi-
mal nilpotent substructures are identical. The results presented in chapter 6
can be transferred by using this connection to maximal nilpotent subgroups
which is the content of chapter 8.

Thus, in analogy to chapter 6 we describe within chapter 8:

· the inner structure of the maximal nilpotent subgroups as direct products
of unipotent and central, fully separable elements,

· the characterization of maximal nilpotent subgroups by manifold central-
izers,

· the determination of all maximal nilpotent subgroups by double-centralizing
all subgroups of E(T ) and combining the centralized unipotent part to it,

· the dual determination of all maximal nilpotent subgroups by double-
centralizing all subgroups of 1 + rad(A) and combining the centralized
fully-separable part to it,

· the extremal position of the Carter subgroups and the Fitting subgroup
among all maximal nilpotent subgroups of E(A),

· the behavior of the maximal nilpotent subgroups by changing the radical
complement and

· the finiteness of the number of isomorphic classes of maximal nilpotent
subgroups which can be bonded by Bell numbers.

The last chapter is dedicated to other prominent maximal nilpotent sub-
groups which are the so-called nilpotent injectors, nilpotent projectors and
the Fischer subgroups. We will prove that they coincide with the Carter
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subgroups resp. the Fitting subgroup. Afterwards these prominent maxi-
mal nilpotent substructures are also defined for Lie algebras (nilpotent Lie
injectors, nilpotent Lie projectors and Fischer subalgebras), and we will
prove that they coincide with the Cartan subalgebras and the Lie nilradi-
cal. Posthumous, we derive the result that the group of units of the Fischer
subalgebras, the nilpotent Lie projectors and the nilpotent Lie injectors are
exactly the Fischer subgroups, the nilpotent projectors and injectors. Vice
versa, the K-space generated by them is exactly the Fischer subalgebras,
the nilpotent Lie projectors and the nilpotent Lie injectors.

As stated earlier we illustrate our results by using standard examples. These
are mainly group algebras, the algebras of upper and lower triangular matri-
ces over a field, the Solomon algebra in characteristic zero and the Solomon-
Tits algebra. Within the first chapters these examples are investigated on a
high detailed level, but within the last four chapters we use them only ex-
emplary. A detailed analysis needs a deeper insight, and the author decided
not to disconnect the reader from the general theory too far, but to do this
analysis in series III.

Some applications are also transferred to the exercises at the end of each
section or chapter. There are some exercises included enhancing the theory
presented so far such that the reader can experience a deeper insight. In
addition, at the beginning of each exercise series some open-ended topics
are included which can be used by the reader – and also by the author – to
do additional researches within this theory. The author has included some
manually created graphics – mostly so called Hasse diagrams – to visualize
the main results of this work.

Excercise 1 What are the answers for the guidelines of this work?



Chapter 1

Standard examples, symbols
and notations

This chapter has a preliminary function by summarizing those monoids,
groups, associative and Lie algebras which will arise frequently in this work.
They will be used as examples for the proven theorems as well as for the
exercises in which the reader shall apply the general results to them. In
addition, we list the symbols and notations used in this series.

Sets and numbers

Let A,B, T be sets and i, n, k ∈ N0. We use the following symbols linked to
set and number theoretical topics:

· ∅ - the empty set

· A ∩B - intersection of A,B

· A ∪B - union of A,B

· A \B - difference of A,B

· A×B - cartesian product of A,B

· P (A) - power set of A

· n - the first n natural numbers

· n0 - the first n natural numbers including zero

· p(n) - the number of partitions of n

· n! - factorial of n
· | A | - number of elements of A

13
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· S(n, k) - the kth-Stirling number of n

· B(n) - the nth-Bell number

· (
n
k

)
- n choose k

· (
T
i

)
- the set of subsets of order i of T

· ≡ - equivalent

· mod - modulo.

Groups and monoids

Let p ∈ P, n ∈ N, N be a set, M a monoid, G a group, N a normal subgroup
of G, a, b ∈ G, U, V ≤ G, A an associative unitary K-algebra, c ∈ K and
q a prime power number. The following monoids, groups and symbols are
used:

· st(G) - solvable class of G

· cl(G) - nilpotency class of G

· (Zn(G))n∈N - ascending central chain of G

· (G(n))n∈N - descending central chain of G

· (γn(G))n∈N, (G[n])n∈N - commutator or derived series of G

· �, �c - star or circle composition

· [a, b] - commutator of a, b

· [U, V ] - commutator of U, V

· a−1 - inverse element of a

· ab - conjugate element of a with b

· 1 + rad(A) - normalized units

· CU (V ) - centralizer of V in U

· NU (V ) - normalizer of V in U

· G - class of groups

· G′
- derived subgroup of G

· (Fn(G))n∈N -Fitting series of G


