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Preface to the Second Edition

It has been almost exactly ten years since the first edition of this book was pub-
lished. Many things that we stated in the preface to the first edition of this book have
remained constant. Increasing automation has continued to provide the machine vi-
sion industry with above-average growth rates. Computers have continued to become
more powerful and have opened up new application areas.

On the other hand, many things have changed in the decade since the first edition
was published. Efforts to standardize camera—computer interfaces have increased
significantly, leading to several new and highly relevant standards. MVTec has par-
ticipated in the development of many of these standards. Furthermore, sensors that
acquire 3D data have become readily available in the machine vision industry. Con-
sequently, 3D machine vision algorithms play an increasingly important role in ma-
chine vision applications, especially in the field of robotics. Machine learning (clas-
sification) is another technology that has become increasingly important.

The second edition of this book has been extended to reflect these changes. In
Chapter 2, we have added a discussion of the latest camera—computer interface and
image acquisition standards. Furthermore, we have included a discussion of 3D im-
age acquisition devices. Since many of these sensors use Scheimpflug optics, we
have also added a discussion of this important principle. In Chapter 3, we have
extended the description of the algorithms that are used in 3D image acquisition de-
vices to perform the 3D reconstruction. Furthermore, we describe camera models
and calibration algorithms for cameras that use Scheimpflug optics. The growing
importance of 3D processing is reflected by new sections on hand—eye calibration
and 3D object recognition. Furthermore, the section on classification has been ex-
tended by algorithms that have become increasingly important (in particular, novelty
detection and convolutional neural networks). In Chapter 4, we have added two new
application examples that show how the 3D algorithms can be used to solve typical
3D applications. Overall, the book has grown by more than 35%.

The applications we present in this book are based on the machine vision soft-
ware HALCON, developed by MVTec Software GmbH. To make it possible to
also publish an electronic version of this book, we have changed the way by which
HALCON licenses can be obtained. MVTec now provides the HALCON Stu-
dent Edition for selected universities and academic research institutes. Please con-
tact your lecturer or local distributor to find out whether you are entitled to par-
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ticipate in this program. Note that the student version of HALCON 8.0 is no
longer available. To download the applications discussed in Chapter 4, please visit
www.machine-vision-book.com.

The first edition of this book has been used extensively in the lectures “Image un-
derstanding I: Machine vision algorithms” given by Carsten Steger at the Department
of Informatics of the Technical University of Munich, “Industrial Photogrammetry”
given by Markus Ulrich at the Department of Civil, Geo, and Environmental Engi-
neering of the Technical University of Munich, and “Industrielle Bildverarbeitung
und Machine Vision” given by Markus Ulrich at the Institute of Photogrammetry
and Remote Sensing of the Karlsruhe Institute of Technology. We have integrated
the feedback we have received from the students into this edition of the book. A
substantial part of the new material is based on the lecture “Image understanding II:
Robot vision” given by Carsten Steger since 2011 at the Department of Informatics
of the Technical University of Munich.

We would like to express our gratitude to several of our colleagues who have helped
us in the writing of the second edition of this book. Jean-Marc Nivet provided the
images in Figures 3.129-3.131 and proof-read Sections 2.5 and 3.10. Julian Beitzel
supported us by preparing the pick and place example described in Section 4.14.
We are also grateful to the following colleagues for proof-reading various sections
of this book: Thomas Hopfner (Section 2.4), Christoph Zierl (Section 2.4), An-
dreas Hofhauser (Section 3.12.1), Bertram Drost (Section 3.12.3), Tobias Bottger
(Section 3.13), Patrick Follmann (Sections 3.13 and 3.15.3.4), and David Sattlegger
(Section 3.15.3.4). Finally, we would like to thank Martin Preufl and Stefanie Volk
of Wiley-VCH who were responsible for the production of this edition of the book.

We invite you to send us suggestions on how to improve this book. You can reach
us at authors@machine-vision-book.com.

Miinchen, July 2017 Carsten Steger, Markus Ulrich, Christian Wiedemann
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Preface to the First Edition

The machine vision industry has enjoyed a growth rate well above the industry aver-
age for many years. Machine vision systems currently form an integral part of many
machines and production lines. Furthermore, machine vision systems are continu-
ously deployed in new application fields, in part because computers get faster all the
time and thus enable applications to be solved that were out of reach just a few years
ago.

Despite its importance, there are few books that describe in sufficient detail the
technology that is important for machine vision. While there are numerous books
on image processing and computer vision, very few of them describe the hardware
components that are used in machine vision systems to acquire images (illuminations,
lenses, cameras, and camera—computer interfaces). Furthermore, these books often
only describe the theory, but not its use in real-world applications. Machine vision
books, on the other hand, often do not describe the relevant theory in sufficient detail.
Therefore, we feel that a book that provides a thorough theoretical foundation of all
the machine vision components and machine vision algorithms, and that gives non-
trivial practical examples of how they can be used in real applications, is highly
overdue.

The applications we present in this book are based on the machine vision software
HALCON, developed by MVTec Software GmbH. To enable you to get a hands-on
experience with the machine vision algorithms and applications that we discuss, this
book contains a registration code that enables you to download, free of charge, a
student version of HALCON as well as all the applications we discuss. For details,
please visit www.machine-vision-book.com.

While the focus of this book is on machine vision applications, we would like to
emphasize that the principles we will present can also be used in other application
fields, e.g., photogrammetry or medical image processing.

We have tried to make this book accessible to students as well as practitioners
(OEMs, system integrators, and end-users) of machine vision. The text requires only
a small amount of mathematical background. We assume that the reader has a ba-
sic knowledge of linear algebra (in particular, linear transformations between vector
spaces expressed in matrix algebra), calculus (in particular, sums and differentiation
and integration of one- and two-dimensional functions), Boolean algebra, and set
theory.
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This book is based on a lecture and lab course entitled “Machine vision algorithms”
that Carsten Steger has given annually since 2001 at the Department of Informatics
of the Technical University of Munich. Parts of the material have also been used
by Markus Ulrich in a lecture entitled “Close-range photogrammetry” given annu-
ally since 2005 at the Institute of Photogrammetry and Cartography of the Technical
University of Munich. These lectures typically draw an audience from various disci-
plines, e.g., computer science, photogrammetry, mechanical engineering, mathemat-
ics, and physics, which serves to emphasize the interdisciplinary nature of machine
vision.

We would like to express our gratitude to several of our colleagues who have helped
us in the writing of this book. Wolfgang Eckstein, Juan Pablo de la Cruz Gutiérrez,
and Jens Heyder designed or wrote several of the application examples in Chapter 4.
Many thanks also go to Gerhard Blahusch, Alexa Zierl, and Christoph Zierl for proof-
reading the manuscript. Finally, we would like to express our gratitude to Andreas
Thof and Ulrike Werner of Wiley-VCH for having the confidence that we would be
able to write this book during the time HALCON 8.0 was completed.

We invite you to send us suggestions on how to improve this book. You can reach
us at authors@machine-vision-book.com.

Miinchen, May 2007 Carsten Steger, Markus Ulrich, Christian Wiedemann
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1
Introduction

Machine vision is one of the key technologies in manufacturing because of increas-
ing demands on the documentation of quality and the traceability of products. It is
concerned with engineering systems, such as machines or production lines, that can
perform quality inspections in order to remove defective products from production
or that control machines in other ways, e.g., by guiding a robot during the assembly
of a product.

Some of the common tasks that must be solved in machine vision systems are as
follows (Fraunhofer Allianz Vision, 2003):

e Object identification is used to discern different kinds of objects, e.g., to control
the flow of material or to decide which inspections to perform. This can be based
on special identification symbols, e.g., character strings or bar codes, or on specific
characteristics of the objects themselves, such as their shape.

e Position detection is used, for example, to control a robot that assembles a product
by mounting the components of the product at the correct positions, such as in a
pick-and-place machine that places electronic components onto a printed circuit
board (PCB). Position detection can be performed in two or three dimensions,
depending on the requirements of the application.

e Completeness checking is typically performed after a certain stage of the assembly
of a product has been completed, e.g., after the components have been placed onto
a PCB, to ensure that the product has been assembled correctly, i.e., that the right
components are in the right place.

e Shape and dimensional inspection is used to check the geometric parameters of a
product to ensure that they lie within the required tolerances. This can be used
during the production process but also after a product has been in use for some
time to ensure that the product still meets the requirements despite wear and tear.

e Surface inspection is used to check the surface of a finished product for imperfec-
tions such as scratches, indentations, protrusions, etc.

Figure 1.1 displays an example of a typical machine vision system. The object (1)
is transported mechanically, e.g., on a conveyor belt. In machine vision applications,
we would often like to image the object in a defined position. This requires mechani-
cal handling of the object and often also a trigger that triggers the image acquisition,
e.g., a photoelectric sensor (4). The object is illuminated by a suitably chosen or

Machine Vision Algorithms and Applications, Second Edition. Carsten Steger, Markus Ulrich, and Christian Wiedemann.
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Figure 1.1 The components of a typical machine vision system. An image of the object to
be inspected (1) is acquired by a camera (2). The object is illuminated by the illumination
(3). A photoelectric sensor (4) triggers the image acquisition. A computer (5) acquires the
image through a camera—computer interface (6), in this case a frame grabber. The
photoelectric sensor is connected to the frame grabber. The frame grabber triggers the
strobe illumination. A device driver assembles the image (7) in the memory of the
computer. The machine vision software (8) inspects the objects and returns an evaluation
of the objects (9). The result of the evaluation is communicated to a PLC (11) via a digital
I/O interface (10). The PLC controls an actuator (13) through a fieldbus interface (12).
The actuator, e.g., an electric motor, moves a diverter that is used to remove defective
objects from the production line.

specially designed illumination (3). Often, screens (not shown) are used to prevent
ambient light from falling onto the object and thereby lowering the image quality.
The object is imaged with a camera (2) that uses a lens that has been suitably se-
lected or specially designed for the application. The camera delivers the image to a
computer (5) through a camera—computer interface (6), e.g., a frame grabber. The de-
vice driver of the camera—computer interface assembles the image (7) in the memory
of the computer. If the image is acquired through a frame grabber, the illumination
may be controlled by the frame grabber, e.g., through strobe signals. If the camera—
computer interface is not a frame grabber but a standard interface, such as IEEE 1394,
USB, or Ethernet, the trigger will typically be connected to the camera and illumina-
tion directly or through a programmable logic controller (PLC). The computer can
be a standard industrial PC or a specially designed computer that is directly built into
the camera. The latter configuration is often called a smart camera. The computer
may use a standard processor, a digital signal processor (DSP), a field-programmable
gate array (FPGA), or a combination of the above. The machine vision software (8)
inspects the objects and returns an evaluation of the objects (9). The result of the
evaluation is communicated to a controller (11), e.g., a PLC or a distributed control



system (DCS). Often, this communication is performed by digital input/output (I/O)
interfaces (10). The PLC, in turn, typically controls an actuator (13) through a com-
munication interface (12), e.g., a fieldbus or serial interface. The actuator, e.g., an
electric motor, then moves a diverter that is used to remove defective objects from
the production line.

As can be seen from the large number of components involved, machine vision
is inherently multidisciplinary. A team that develops a machine vision system will
require expertise in mechanical engineering, electrical engineering, optical engineer-
ing, and software engineering.

To maintain the focus of this book, we have made a conscious decision to focus
on the aspects of a machine vision system that are pertinent to the system until the
relevant information has been extracted from the image. Therefore, we will forgo
a discussion of the communication components of a machine vision system that are
used after the machine vision software has determined its evaluation. For more infor-
mation on these aspects, please consult Caro (2003); Berge (2004); Mahalik (2003).

In this book, we will try to give you a solid background on everything that is re-
quired to extract the relevant information from images in a machine vision system.
We include the information that we wish someone had taught us when we started
working in the field. In particular, we mention several idiosyncrasies of the hard-
ware components that are highly relevant in applications, which we had to learn the
hard way.

The hardware components that are required to obtain high-quality images are de-
scribed in Chapter 2: illumination, lenses, cameras, and camera—computer interfaces.
We hope that, after reading this chapter, you will be able to make informed decisions
about which components and setups to use in your application.

Chapter 3 discusses the most important algorithms that are commonly used in ma-
chine vision applications. It is our goal to provide you with a solid theoretical foun-
dation that will help you in designing and developing a solution for your particular
machine vision task.

To emphasize the engineering aspect of machine vision, Chapter 4 contains a
wealth of examples and exercises that show how the machine vision algorithms dis-
cussed in Chapter 3 can be combined in non-trivial ways to solve typical machine
vision applications.






2
Image Acquisition

In this chapter, we will take a look at the hardware components that are involved in
obtaining an image of the scene we want to analyze with the algorithms presented
in Chapter 3. Illumination makes the essential features of an object visible. Lenses
produce a sharp image on the sensor. The sensor converts the image into a video
signal. Finally, camera—computer interfaces (frame grabbers, bus systems like USB,
or network interfaces like Ethernet) accept the video signal and convert it into an
image in the computer’s memory.

2.1
lllumination

The goal of illumination in machine vision is to make the important features of the
object visible and to suppress undesired features of the object. To do so, we must
consider how the light interacts with the object. One important aspect is the spectral
composition of the light and the object. We can use, for example, monochromatic
light on colored objects to enhance the contrast of the desired object features. Fur-
thermore, the direction from which we illuminate the object can be used to enhance
the visibility of features. We will examine these aspects in this section.

2141
Electromagnetic Radiation

Light is electromagnetic radiation of a certain range of wavelengths, as shown in Ta-
ble 2.1. The range of wavelengths visible for humans is 380-780 nm. Electromag-
netic radiation with shorter wavelengths is called ultraviolet (UV) radiation. Electro-
magnetic radiation with even shorter wavelengths consists of X-rays and gamma rays.
Electromagnetic radiation with longer wavelengths than the visible range is called in-
frared (IR) radiation. Electromagnetic radiation with even longer wavelengths con-
sists of microwaves and radio waves.

Monochromatic light is characterized by its wavelength A. If light is composed of
a range of wavelengths, it is often compared to the spectrum of light emitted by a
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Table 2.1 The electromagnetic spectrum relevant for optics and photonics. The names of

the ranges for IR and UV radiation correspond to ISO 20473:2007. The names of the
colors for visible radiation (light) are due to Lee (2005).

Range Name Abbreviation Wavelength 4
Extreme UV - 1 nm-100 nm
Vacuum UV UV-C 100 nm-190 nm
Ultraviolet Deep UV 190 nm-280 nm
Mid UV UV-B 280nm-315nm
Near UV UV-A 315 nm-380 nm
Blue-purple 380nm—430nm
Blue 430 nm-480 nm
Green-blue 480 nm—490 nm
Blue-green 490 nm-510 nm
Visible Green 510nm-530 nm
Yellow-green 530 nm-570 nm
Yellow 570 nm-580 nm
Orange 580 nm-600 nm
Red 600 nm-720 nm
Red-purple 720 nm-780 nm
Near IR IR-A 780 nm-1.4 um
Infrared IR-B 1.4 pm-3 um
Mid IR R-C 3 um-50 um
Far IR 50 um-1 mm

black body. A black body is an object that absorbs all electromagnetic radiation that
falls onto it and thus serves as an ideal source of purely thermal radiation. Therefore,
the light spectrum of a black body is directly related to its temperature. The spectral
radiance of a black body is given by Planck’s law (Planck, 1901; Wyszecki and Stiles,
1982):

2hc? 1

IAT) = = Sam -1

2.1

Here, ¢ = 2.997 92458 x 108 ms~! is the speed of light, & = 6.626 0693 x 1073*J s
is the Planck constant, and k = 1.380 6505 x 10723 J K~! is the Boltzmann constant.
The spectral radiance is the energy radiated per unit wavelength by an infinitesimal
patch of the black body into an infinitesimal solid angle of space. Hence, its unit is
Wsr ' m™2nm™!.

Figure 2.1 displays the spectral radiance for different temperatures 7. It can be
seen that black bodies at 300 K radiate primarily in the middle and far IR range. This
is the radiation range that is perceived as heat. Therefore, this range of wavelengths
is also called thermal IR. The radiation of an object at 1000 K just starts to enter the
visible range. This is the red glow that can be seen first when objects are heated. For
T = 3000K, the spectrum is that of an incandescent lamp (see Section 2.1.2). Note
that it has a strong red component. The spectrum for 7" = 6500 K is used to represent



