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Preface

Statistics is the language of science; however, the semantics of probabilistic reason-
ing is still a matter of discourse. In this book, I provide a frequentist semantics for
conditionalization on partially known events. The resulting frequentist partial (F.P.)
conditionalization generalizes Jeffrey conditionalization from partitions to arbitrary
collections of events. Furthermore, the postulate of Jeffrey’s probability kinemat-
ics, which is rooted in Ramsey’s subjectivism, turns out to be a consequence in our
frequentist semantics.

I think the book appeals to researchers that are involved in any kind of knowl-
edge processing systems. F.P. conditionalization is a straightforward, fundamental
concept that fits our intuition. Furthermore, it creates a clear link from the Kol-
mogorov system of probability to one of the important Bayesian frameworks. This
way, I think it is interesting for anybody who investigates semantics of reasoning
systems. The list of these mutually overlapping theories, methods and tools in-
cludes, without preference, multivariate data analysis, Bayesian frameworks, fuzzy
logic, many-valued logics, conditional logic, Nilsson probabilistic logic, probabilis-
tic model checking and also current efforts in unifying probability theory and logics
such as the current rational programming.

Tallinn, August 2017 Dirk Draheim
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Chapter 1

Introduction

This book provides a frequentist semantics for conditionalization on partially known
events which is given as a straightforward generalization of classical conditional
probability via so-called probability testbeds. For this purpose, we compare it with
an operational semantics of classical conditional probability that is made precise
in terms of sequences of so-called conditional events and accompanied by a cor-
responding instance of the strong law of large numbers. We analyze the resulting
partial conditionalization, that we call frequentist partial (F.P.) conditionalization,
from different angles, i.e., with respect to partitions, segmentation, independence,
and chaining. It turns out that F.P. conditionalization generalizes Jeffrey condition-
alization from partitions to arbitrary collections of events, this way opening it for re-
assessment and a range of potential applications. A counterpart of Jeffrey’s rule for
the case of independence holds in our frequentist semantics. We compare this result
to Jeffrey’s commutative chaining of independent updates and the corresponding
possible worlds’ belief function. Furthermore, the postulate of Jeffrey’s probabil-
ity kinematics, which is rooted in Ramsey’s subjectivism and which can be shown
analytically equivalent to Donkin’s principle, turns out to be a consequence in our
frequentist semantics. This way, the book bridges between the Kolmogorov system
of probability and one of the important Bayesian frameworks. Then, we will see
that an alternative preservation result, i.e., for conditional probabilities under all up-
dated events, holds in our frequentist semantics and exploit it to discuss a possible
redesign of the axiomatic basis of probability kinematics. Furthermore, the book
looks at desirabilities, which are again a central concept in Ramsey’s subjectivism
and Jeffrey’s logic of decision, and proposes a more fine-grained analysis of desir-
abilities a posteriori.

The book takes probabilistic reasoning as the subject of investigation. In the past
decades, we have seen immense interest in probabilistic reasoning techniques, just
think of the artificial intelligence and the data mining community. The book aims
to build a path of mitigation between the Bayesian world view and the frequentist
world view by giving a frequentist semantics to partial conditionalization. Our ap-
proach is reductionist. We take a single, important Bayesian notion as our starting
point, i.e., Jeffrey conditionalization by Richard C. Jeffrey [79, 81–87, 89, 92].

1© The Author(s) 2017
D. Draheim, Generalized Jeffrey Conditionalization, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-319-69868-7_1



2 1 Introduction

1.1 From Conditional Probability to Partial Conditionalization

We give a frequentist semantics of conditionalization on arbitrary many partially
known events. It turns out that in the special case of non-overlapping events our se-
mantics meets Jeffrey conditionalization. It could be said that we achieve two things,
i.e., a generalization of Jeffrey conditionalization plus a pure frequentist interpreta-
tion of partial conditionalization. To get the point, first consider the classical notion
of conditional probability. Given events A and B, we know that the conditional prob-
ability P(A|B) is defined as

P(A|B) = P(AB)/P(B) (1.1)

The value P(A|B) is called the conditional probability of A under condition B [95].
Now, what is P(A|B) intended to mean? One way to understand it is as follows. The
event B has actually occurred, i.e., we have actually observed the event B. Now,
P(A|B) expresses the probability that event A has also occurred.

Now, we could say that P(A|B) expresses the idea that the probability of B
changes from an old probability P(B), which is, in general different to 100%, into a
new probability of 100%. Here, the old probabilities P(AB), P(AB), P(AB), P(AB)
etc. can be called a priori probabilities, whereas the new 100%-probability of B and
the new P(A|B)-probability of A can be called a posteriori probabilities.

Now, why allowing the a priori probability of the condition B of a conditional
probability P(A|B) to be changed into a 100% probability only? Why not allowing
it to change into an arbitrary new probability b? Allowing this is exactly what a non-
classical conditional probability might be about and what we want to call a partial
conditionalization in the sequel. Given a list of events B1, . . . ,Bm and a list of a pos-
teriori probabilities b1, . . . ,bm, we introduce the notion of probability of event A
conditional on the a posteriori probability specifications B1 ≡ b1, . . . ,Bm ≡ bm and
introduce the following notation for it:

P(A |B1 ≡ b1, . . . ,Bm ≡ bm) (1.2)

It is Richard C. Jeffrey who investigates conditional probabilities of the form in
Eqn. (1.2) and gives concrete probability values to them, albeit he uses a different
notation for them that we will discuss later. He considers those situations, in which
the events B1, . . . ,Bm form a partition of the outcome space. In these cases, Jeffrey
gives the following value to partial conditionalizations:

P(A |B1 ≡ b1, . . . ,Bm ≡ bm)J =
m

∑
i = 1

P(Bi) �= 0

bi ·P(A |Bi) (1.3)

The semantics for partial conditionalization expressed by Eqn. (1.3) is known as
Jeffrey conditionalization and often also called Jeffrey’s rule. We have marked the
conditionalization in Eqn. (1.3) with a J as index to distinguish it from the our gen-
eral notion of partial conditionalization in Eqn. (1.2). Actually, we want to exploit


