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Preface

This special volume is dedicated to Gianni Gilardi on the occasion of his 70th birth-
day, in tribute to his important achievements in respect of several theoretical and
applied problems, especially in the fields of partial differential equations, variational
inequalities, optimal control, free boundary problems and phase transition models.

Gianni Gilardi was born in Milan in February 1947. He studied mathematics at
the University of Pavia, where he graduated with full marks in October 1970. During
that period, he was alumnus of the Collegio Ghislieri, a prestigious historical college
in Pavia founded by Pope St. Pius V in 1567. After being a teaching assistant at the
University of Pavia, Gianni became a full professor of mathematical analysis at the
Polytechnic University of Milan in November 1980. He moved back to Pavia in
1985, where he has been appreciated as a teacher and university professor for more
than 30 years. He has taught an impressive number of courses in the Schools of
Engineering, Physics and Mathematics at both undergraduate and graduate levels,
as well as for PhD students. He has been the advisor to a number of master and
PhD students, including some of us editors of the present volume. He has never
spared himself from helping colleagues, working for the community, or accepting
academic responsibilities. Thus he did not hesitate in accepting the invitation to
serve as chairman of the Department of Mathematics of the University of Pavia,
a position he held for 6 years, or, more recently, as coordinator of the teaching
programs in mathematics at the University of Pavia. In both these roles, he has been
appreciated not only by colleagues but also by the administrative staff.

Gianni has been an associate fellow in the academy Istituto Lombardo Accademia
di Scienze e Lettere since 2002. He is the author or coauthor of eight books and
of around 100 research papers published in prestigious international journals. He
has given numerous talks in Italy and abroad (Canada, Czech Republic, France,
Germany, Japan, Portugal, Romania, Spain, Switzerland, USA) and contributed to
the organization of a large number of conferences and courses.

Gianni’s research activity has been intense and varied, being mainly devoted
to the analysis of nonlinear PDEs, but with particular attention to the related
applications. He has primarily been interested in the study of free boundary
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vi Preface

problems and phase transition models. In more detail, we may mention among his
scientific interests:

– Well-posedness and regularity theory for second-order abstract evolution equa-
tions.

– Monotonicity, speed of propagation and regularity properties of the free boundary
for the dam problem, the time-dependent dam problem in a general unbounded
domain, and a regularity result for the time derivative of the solution.

– Error estimates for space-time discretizations of parabolic variational inequalities
and a class of noncoercive stationary variational inequalities.

– Phase field models with memory and more general nonlinear Volterraintegrodif-
ferential equations.

– Magnetostatic and electrostatic problems in inhomogeneous anisotropic media
with irregular boundary and mixed boundary conditions (this includes the most
cited paper coauthored by Gianni).

– Phase separation and phase segregation models including also mechanical
effects.

– General phase field systems: Caginalp and Penrose–Fife models, evolutions
based on the entropy balance, shape memory alloys, Cahn–Hilliard systems (also
nonlocal), and dynamic boundary conditions.

– Diffuse interface models describing tumor growth dynamics.
– Control problems for phase field systems: distributed and boundary optimal

control, sliding mode control, and feedback stabilization.

It is a great pleasure for us five editors of this volume to celebrate the 70th
birthday of our friend Gianni. In addition to being a teacher to some of us, he has
been a pleasant colleague who could always be approached with questions about
mathematics or the proof of a technical lemma, knowing that he would be prepared
to discuss and willing to solve problems. Gianni is very generous in providing
help to young mathematicians and less young colleagues requiring his advice when
checking whether “that solution” could be as regular as necessary.

His webpage contains a number of short notes, lecture notes of courses,
and exercises, with examples and counterexamples that he has generously made
available to students and colleagues. People who have had the chance to write papers
with him experienced his generosity when, during discussions at the blackboard,
they somehow began to see how the mathematical results were deduced, with Gianni
already declaring his personal willingness to write down the paper.

The appreciation that Gianni always received within the scientific community is
reflected in the enthusiasm with which many applied scientists and mathematicians
agreed to contribute to this special volume dedicated to him, as announced in the
beautiful Palazzone di Cortona during the INdAM conference “Optimal Control for
Evolutionary PDEs and Related Topics” in June 2016. We editors of the present
volume are warmly grateful to all the authors for their precious contributions,which
will surely be appreciated also by Gianni.

The volume gathers original and peer-reviewed research papers in the field of
partial differential equations, with special emphasis on mathematical models in



Preface vii

phase transitions, complex fluids, and thermomechanics. In particular, the following
thematic areas are developed: nonlinear dynamic and stationary equations, well-
posedness of initial and boundary value problems for systems of PDEs, regularity
properties for the solutions, optimal control problems and optimality conditions,
and feedback stabilization and stability results. Most of the papers are presented
in a self-contained manner; as a general strategy, the articles describe some new
achievements and/or the state of the art in their line of research, providing interested
readers with an overview of recent progress and future research items in PDEs.

In conclusion, we would like to join the large family of Gianni, including his
wife Ce, his two daughters Carla and Laura and their husbands, his five wonderful
grandchildren, his friends and the contributors to the present volume, in celebrating
his accomplishments and expressing the wish that he may continue his research
activity for many years to come. Let us conclude with a motto that Gianni will surely
appreciate: “Sapientia cum probitate morum coniuncta humanæ mentis perfectio”.

Pavia, Italy Pierluigi Colli
Bologna, Italy Angelo Favini
Pavia, Italy Elisabetta Rocca
Pavia, Italy Giulio Schimperna
Berlin, Germany Jürgen Sprekels
July 2017



Contents

Rate of Convergence for Eigenfunctions of Aharonov-Bohm
Operators with a Moving Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Laura Abatangelo and Veronica Felli

Nondecreasing Solutions to Doubly Nonlinear Equations . . . . . . . . . . . . . . . . . . . 31
Goro Akagi and Ulisse Stefanelli

Identification Problems for Degenerate Integro-Differential Equations . . . 55
Mohammed Al Horani, Mauro Fabrizio, Angelo Favini,
and Hiroki Tanabe

A Phase Transition Model Describing Auxetic Materials. . . . . . . . . . . . . . . . . . . . 77
Elena Bonetti, Mauro Fabrizio, and Michel Frémond

Global Well-Posedness for a Phase Transition Model with
Irreversible Evolution and Acceleration Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Giovanna Bonfanti and Fabio Luterotti

Perimeter Symmetrization of Some Dynamic and Stationary
Equations Involving the Monge-Ampère Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Barbara Brandolini and Jesús Ildefonso Díaz

Optimal Boundary Control of a Nonstandard Cahn–Hilliard
System with Dynamic Boundary Condition and Double Obstacle
Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Pierluigi Colli and Jürgen Sprekels

Nontrivial Solutions of Quasilinear Elliptic Equations with Natural
Growth Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Marco Degiovanni and Alessandra Pluda

On a Diffuse Interface Model for Tumour Growth with Non-local
Interactions and Degenerate Mobilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Sergio Frigeri, Kei Fong Lam, and Elisabetta Rocca

ix



x Contents

A Boundary Control Problem for the Equation and Dynamic
Boundary Condition of Cahn–Hilliard Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Takeshi Fukao and Noriaki Yamazaki

New Class of Doubly Nonlinear Evolution Equations Governed
by Time-Dependent Subdifferentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Nobuyuki Kenmochi, Ken Shirakawa, and Noriaki Yamazaki

Boundedness of Solutions to a Degenerate Diffusion Equation . . . . . . . . . . . . . 305
Pavel Krejčí
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Rate of Convergence for Eigenfunctions
of Aharonov-Bohm Operators
with a Moving Pole

Laura Abatangelo and Veronica Felli

Abstract We study the behavior of eigenfunctions for magnetic Aharonov-Bohm
operators with half-integer circulation and Dirichlet boundary conditions in a planar
domain. We prove a sharp estimate for the rate of convergence of eigenfunctions as
the pole moves in the interior of the domain.

Keywords Aharonov-Bohm potential • Convergence of eigenfunctions • Mag-
netic Schrödinger operators

2010 AMS Classification 35J10, 35Q40, 35J75

1 Introduction

For every a D .a1; a2/ 2 R
2, we consider the Aharonov-Bohm vector potential with

pole a and circulation 1=2 defined as

Aa.x1; x2/ D A0.x1 � a1; x2 � a2/; .x1; x2/ 2 R
2 n fag;
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2 L. Abatangelo and V. Felli

where

A0.x1; x2/ D 1

2

� �x2
x21 C x22

;
x1

x21 C x22

�
; .x1; x2/ 2 R

2 n f.0; 0/g:

The Aharonov-Bohm vector potential Aa generates a ı-type magnetic field, which
is called Aharonov–Bohm field: this field is produced by an infinitely long thin
solenoid intersecting perpendicularly the plane .x1; x2/ at the point a, as the radius
of the solenoid tends to zero while the flux through the solenoid section remains
constantly equal to 1=2. Neglecting the irrelevant coordinate along the solenoid axis,
the problem becomes 2-dimensional.

Let˝ � R
2 be a bounded, open and simply connected domain. For every a 2 ˝ ,

we consider the eigenvalue problem

(
.ir C Aa/

2u D �u; in ˝;

u D 0; on @˝;
(Ea)

in a weak sense, where the magnetic Schrödinger operator with Aharonov-Bohm
potential .ir C Aa/

2 acts on functions u W R2 ! C as

.ir C Aa/
2u D ��u C 2iAa � ru C jAaj2u:

A suitable functional setting for stating a weak formulation of (Ea) can be introduced
as follows: for every a 2 ˝ , the functional space H1;a.˝;C/ is defined as the
completion of

fu 2 H1.˝;C/\ C1.˝;C/ W u vanishes in a neighborhood of ag

with respect to the norm

kukH1;a.˝;C/ D
�
k.ir C Aa/uk2L2.˝;C2/ C kuk2L2.˝;C/

�1=2
:

In view of the following Hardy type inequality proved in [12]

Z
R2

j.ir C Aa/uj2 dx � 1

4

Z
R2

ju.x/j2
jx � aj2 dx;

which holds for all a 2 R
2 and u 2 C1

c .R
2 n fag;C/, it is easy to verify that

H1;a.˝;C/ D ˚
u 2 H1.˝;C/ W u

jx�aj 2 L2.˝;C/
�
:

We also denote as H1;a
0 .˝;C/ the space obtained as the completion of

C1
c .˝ n fag;C/
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with respect to the norm k � kH1;a.˝;C/, so that

H1;a
0 .˝;C/ D ˚

u 2 H1
0.˝;C/ W u

jx � aj 2 L2.˝;C/
�
:

For every a 2 ˝ , we say that � 2 R is an eigenvalue of problem (Ea) in a weak
sense if there exists u 2 H1;a

0 .˝;C/ n f0g (called an eigenfunction) such that

Z
˝

.iru C Aau/ � .irv C Aav/ dx D �

Z
˝

uv dx for all v 2 H1;a
0 .˝;C/:

From classical spectral theory, the eigenvalue problem .Ea/ admits a sequence of
real diverging eigenvalues (repeated according to their finite multiplicity)

�a
1 � �a

2 � � � � � �a
j � : : : :

The mathematical interest in Aharonov-Bohm operators with half-integer circu-
lation can be motivated by a strong relation between spectral minimal partitions
of the Dirichlet Laplacian with points of odd multiplicity and nodal domains of
eigenfunctions of these operators. Indeed, a magnetic characterization of minimal
partitions was given in [10] (see also [5–7, 14]): partitions with points of odd
multiplicity can be obtained as nodal domains by minimizing a certain eigenvalue
of an Aharonov-Bohm Hamiltonian with respect to the number and the position of
poles. From this, a natural interest in the study of the properties of the map a 7! �a

j
(associating eigenvalues of magnetic operators to the position of poles) arises. In
[1, 2, 4, 8, 13, 15] the behaviour of the function a 7! �a

j in a neighborhood of a

fixed point b 2 ˝ has been investigated, both in the cases b 2 ˝ and b 2 @˝ .
In particular, the analysis carried out in [1, 2, 4, 8, 15] shows that, as the pole
moves towards a fixed limit pole b 2 ˝ , the rate of convergence of �a

j to �b
j is

related to the number of nodal lines of the limit eigenfunction meeting at b. In the
present paper we aim at deepening this analysis describing also the behaviour of the
corresponding eigenfunctions; in particular, we will derive a sharp estimate for the
rate of convergence of eigenfunctions associated to moving poles, in terms of the
number of nodal lines of the limit eigenfunction.

Without loss of generality, we can assume that

b D 0 2 ˝:
Let us assume that there exists n0 � 1 such that

�0n0 is simple; (1)

and denote �0 D �0n0 and, for any a 2 ˝ , �a D �a
n0 . From [13, Theorem 1.3] it

follows that the map a 7! �a is analytic in a neighborhood of 0; in particular we
have that

�a ! �0; as a ! 0: (2)
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Let '0 2 H1;0
0 .˝;C/nf0g be a L2.˝;C/-normalized eigenfunction of problem .E0/

associated to the eigenvalue �0 D �0n0 , i.e. satisfying

8̂̂
<
ˆ̂:
.ir C A0/2'0 D �0'0; in ˝;

'0 D 0; on @˝;R
˝

j'0.x/j2 dx D 1:

(3)

From [9, Theorem 1.3] (see also [14, Theorem 1.5]) it is known that '0 has at 0 a
zero of order k

2
for some odd k 2 N, i.e. there exist k 2 N odd and ˇ1; ˇ2 2 C such

that .ˇ1; ˇ2/ ¤ .0; 0/ and

r�k=2'0.r.cos t; sin t// ! ei t
2

�
ˇ1 cos

� k

2
t
�

C ˇ2 sin
� k

2
t
��

in C1;� .Œ0; 2��;C/

(4)

as r ! 0C for any � 2 .0; 1/. The asymptotics (4) (together with the fact that
the right hand side of (4) is a complex multiple of a real-valued function, see [11])
implies that '0 has exactly k nodal lines meeting at 0 and dividing the whole angle
into k equal parts; such nodal lines are tangent to the k half-lines

��
t; tan

�
˛0 C j

2�

k

�
t

�
W t > 0

�
; j D 0; 1; : : : ; k � 1;

for some angle ˛0 2 Œ0; 2�k /.
In [1, 2] it has been proved that, under assumption (1) and being k as in (4),

�0 � �a

jajk
! C0 cos

	
k.˛ � ˛0/



as a ! 0 with a D jaj.cos˛; sin ˛/; (5)

where C0 > 0 is a positive constant depending only on k, ˇ1, and ˇ2. More precisely,
in [1, 2] it has been proved that

C0 D �4.jˇ1j2 C jˇ2j2/mk

where

mk D min
u2D1;2

s .R2
C
/

"
1

2

Z
R
2
C

jru.x/j2 dx � k

2

Z 1

0

t
k
2�1u.t; 0/ dt

#
< 0: (6)

In (6), s denotes the half-line s WD f.x1; x2/ 2 R
2 W x2 D 0 and x1 � 1g and

D1;2
s .R2C/ is the completion of C1

c .R
2C n s/ under the norm .

R
R
2
C

jruj2 dx/1=2.
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Let us now consider a suitable family of eigenfunctions relative to the approxi-
mating eigenvalue �a. In order to choose eigenfunctions with a suitably normalized
phase, let us introduce the following notations.

For every ˛ 2 Œ0; 2�/ and b D .b1; b2/ D jbj.cos˛; sin ˛/ 2 R
2 n f0g, we define

�b W R2 n fbg ! Œ˛; ˛ C 2�/ and �b
0 W R2 n f0g ! Œ˛; ˛ C 2�/

such that

�b.b C r.cos t; sin t// D t and �b
0 .r.cos t; sin t// D t;

for all r > 0 and t 2 Œ˛; ˛ C 2�/:

We also define

�0 W R2 n f0g ! Œ0; 2�/

such that

�0.r cos t; r sin t/ D t for all r > 0 and t 2 Œ0; 2�/:

For all a 2 ˝ , let 'a 2 H1;a
0 .˝;C/ n f0g be an eigenfunction of problem (Ea)

associated to the eigenvalue �a, i.e. solving

(
.ir C Aa/

2'a D �a'a; in ˝;

'a D 0; on @˝;
(7)

such that its modulus and phase are normalized in such a way that

Z
˝

j'a.x/j2 dx D 1 and
Z
˝

e
i
2 .�

a
0��a/.x/'a.x/'0.x/ dx is a positive real number;

(8)

where '0 is as in (3). From (1), (2), (3), (7), (8), and standard elliptic estimates, it
follows that 'a ! '0 in H1.˝;C/ and in C2

loc.˝ n f0g;C/ and

.ir C Aa/'a ! .ir C A0/'0 in L2.˝;C/: (9)

The main result of the present paper establishes the sharp rate of the convergence (9).

Theorem 1 For ˛ 2 R, p D .cos˛; sin ˛/ and a D jajp 2 ˝ , let 'a 2 H1;a
0 .˝;C/

solve Eqs. (7)–(8) and '0 2 H1;0
0 .˝;C/ be a solution to (3) satisfying (1) and (4).

Then there exists Lp > 0 such that

jaj�k
���.ir C Aa/'a � e

i
2 .�a��a

0 /.ir C A0/'0
���2

L2.˝;C/
! .jˇ1j2 C jˇ2j2/Lp (10)
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as a D jajp ! 0. Moreover the function ˛ 7! L.cos ˛;sin˛/ is continuous, even, and
periodic with period 2�

k .
The constant Lp in Theorem 1 can be characterized as the energy of the solution of
an elliptic problem with cracks (see (22)), where jumping conditions are prescribed
on the segment connecting 0 and p and on the tangent to a nodal line of '0, see
Sect. 3.

For every ˛ 2 R, let us denote as s˛ D ft.cos˛; sin ˛/ W t � 0g the half-line with
slope ˛. We notice that, if a D jaj.cos˛; sin ˛/, then r	 �a

2


 D Aa, r	 �a
0

2


 D A0, and

e� i
2 �a and e� i

2 �
a
0 are smooth in ˝ n s˛ . Thus

ir˝ns˛ .e
� i
2 �a'a/ D e� i

2 �a.ir C Aa/'a; ir˝ns˛ .e
� i
2 �

a
0 '0/ D e� i

2 �
a
0 .ir C A0/'0;

where r˝ns˛ is the distributional gradient in ˝ n s˛ . Hence (10) can be rewritten as

jaj�k
���r˝ns˛ .e

� i
2 �a'a � e� i

2 �
a
0 '0/

���2
L2.˝;C/

! .jˇ1j2 C jˇ2j2/Lp

as a D jajp ! 0; thus it can be interpreted as a sharp asymptotics of the rate of
convergence of the approximating eigenfunction to the limit eigenfunction in the
space fu 2 H1.˝ n s˛/ W u D 0 on @˝g.

The paper is organized as follows. In Sect. 2 we fix some notation and recall some
known facts. In Sect. 3 we give a variational characterization of the limit profile of
scaled eigenfunctions, which is used to study the properties (positivity, evenness,
periodicity) of the function p 7! Lp. Finally, in Sect. 4 we prove Theorem 1,
providing estimates of the energy variation first inside disks with radius Rjaj
and then outside such disks; this latter outer estimate is performed exploiting the
invertibility of an operator associated to the limit eigenvalue problem. We mention
that this strategy was first developed in [3] in the context of spectral stability for
varying domains, obtained by adding thin handles to a fixed limit domain.

2 Preliminaries and Some Known Facts

Through a rotation, we can easily choose a coordinate system in such a way that one
nodal line of '0 is tangent to the x1-axis, i.e. ˛0 D 0. In this coordinate system, we
have that, letting ˇ1; ˇ2 be as in (4),

ˇ1 D 0: (11)

The asymptotics of eigenvalues established in [1, 2], as well as the estimates for
eigenfunctions we are going to achieve in the present paper, are based on a blow-up
analysis for scaled eigenfunctions performed in [1, 2], whose main results are briefly
recalled below for the sake of completeness.
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For every p 2 R
2 and r > 0, we denote as Dr. p/ the disk of center p and radius r

and as Dr D Dr.0/ the disk of center 0 and radius r. Moreover we denote, for every
r > 0, DC

r D f.x1; x2/ 2 Dr W x2 > 0g and D�
r D f.x1; x2/ 2 Dr W x2 < 0g.

First of all, we observe that (4) completely describes the behaviour of '0 after
scaling; indeed, letting

Wa.x/ WD '0.jajx/
jajk=2

;

from [9, Theorem 1.3 and Lemma 6.1] we have that, under condition (11),

Wa ! ˇ2e
i
2 �0 as jaj ! 0 (12)

in H1;0.DR;C/ for every R > 1, where  W R2 ! R is the k
2
-homogeneous function

(which is harmonic on R
2 n f.r; 0/ W r � 0g)

 .r cos t; r sin t/ D rk=2 sin

�
k

2
t

�
; r � 0; t 2 Œ0; 2��: (13)

For every p 2 R
2, we denote by D1;2

p .R2;C/ the completion of C1
c .R

N n f pg;C/
with respect to the magnetic Dirichlet norm

kuk
D1;2

p .R2;C/
WD
�Z

R2

ˇ̌
.ir C Ap/u.x/

ˇ̌2
dx

�1=2
: (14)

Proposition 1 ([2, Proposition 4]) Let ˛ 2 Œ0; 2�/ and p D .cos˛; sin ˛/. There
exists a unique function �p 2 H1;p

loc .R
2;C/ such that

.ir C Ap/
2�p D 0 in R

2 in a weak H1;p-sense; (15)

and
Z
R2nDr

ˇ̌
.ir C Ap/.�p � e

i
2 .�p��p

0 /e
i
2 �0 /

ˇ̌2
dx < C1; for any r > 1; (16)

where  is defined in (13). Furthermore (see [9, Theorem 1.5])

�p � e
i
2 .�p��p

0 /e
i
2 �0 D O.jxj�1=2/; as jxj ! C1:
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Theorem 2 ([2, Theorem 11 and Remark 12]) For ˛ 2 Œ0; 2�/,

p D .cos˛; sin ˛/

and a D jajp 2 ˝ , let 'a 2 H1;a
0 .˝;C/ solve (7)–(8) and '0 2 H1;0

0 .˝;C/ be a
solution to (3) satisfying (1), (4), and (11). Let �p be as in Proposition 1. Then

'a.jajx/
jajk=2

! ˇ2�p as a D jajp ! 0;

in H1;p.DR;C/ for every R > 1 and in C2
loc.R

2 n f pg;C/.
In the sequel, we will denote

Q'a.x/ D 'a.jajx/
jajk=2

:

Sharp estimates of the energy variation under moving of poles will be derived by
approximating the eigenfunction 'a by H1;0-functions in the less expensive way
from the energetic point of view. For every R > 2 and jaj sufficiently small, we
define these approximating functions vR;a as follows:

vR;a D
(
vext

R;a; in ˝ n DRjaj;
vint

R;a; in DRjaj;

where

vext
R;a WD e

i
2 .�

a
0��a/'a in ˝ n DRjaj

solves

(
.ir C A0/2vext

R;a D �av
ext
R;a; in ˝ n DRjaj;

vext
R;a D e

i
2 .�

a
0��a/'a on @.˝ n DRjaj/;

whereas vint
R;a is the unique solution to the problem

(
.ir C A0/2vint

R;a D 0; in DRjaj;
vint

R;a D e
i
2 .�

a
0��a/'a; on @DRjaj:

We notice that vR;a 2 H1;0
0 .˝;C/ for all R > 2 and a sufficiently small. For all

R > 2 and a D jajp 2 ˝ with jaj small, we define

ZR
a .x/ WD vint

R;a.jajx/
jajk=2

: (17)
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For all R > 2 and p D .cos˛; sin ˛/, we also define zp;R as the unique solution to

(
.ir C A0/2zp;R D 0; in DR;

zp;R D e
i
2 .�

p
0��p/�p; on @DR;

(18)

with �p as in Proposition 1.

Lemma 1 ([2, Remark 12]; [1, Lemma 8.3]) For R > 2, ˛ 2 Œ0; 2�/,

p D .cos˛; sin ˛/

and a D jajp 2 ˝ small, let 'a 2 H1;a
0 .˝;C/ solve (7)–(8), '0 2 H1;0

0 .˝;C/ be a
solution to (3) satisfying (1), (4), and (11), and ZR

a be as in (17). Then

ZR
a ! ˇ2zp;R as a D jajp ! 0 in H1;0.DR;C/ for every R > 2;

with zp;R being as in (18).

3 Variational Characterization of the Limit Profile �p

In [1], the limit profile �p was constructed by solving a minimization problem
in the case p D .1; 0/ (i.e. for poles moving tangentially to a nodal line of the
limit eigenfunction); in that case the limit profile was null on a half-line. In the
spirit of [4] (where poles moving towards the boundary were considered), we
extend this variational construction for poles moving along a generic direction
p D .cos˛; sin ˛/ and construct the limit profile by solving an elliptic crack problem
prescribing the jump of the solution along the segment joining 0 and p.

Let us fix ˛ 2 	0; 2�
 and p D .cos˛; sin˛/ 2 S
1. We denote by 	p the segment

joining 0 to p, that is to say

	p D f.r cos˛; r sin˛/ W r 2 .0; 1/g:

Let s0 D f.x1; 0/ W x1 � 0g. We introduce the trace operators


˙ W
\
R>0

H1.DṘ n 	p/ �! H1=2
loc .s0/:

We also define H as the completion of

D D ˚
u 2 H1.R2 n s0/ W 
C.u/C 
�.u/ D 0 on s0 and u D 0

in neighborhoods of 0 and 1g
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with respect to the Dirichlet norm
	 R

R2ns0
jruj2
1=2. In the following lemma we

prove that a Hardy-type inequality can be recovered even in dimension 2, under the
jump condition 
C.u/C 
�.u/ D 0 forced for H -functions.

Lemma 2 The functions in D satisfy the following Hardy-type inequality:

Z
R2ns0

jr'.x/j2 dx � 1

4

Z
R2

j'.x/j2
jxj2 dx for all u 2 D :

Proof This is a consequence of a suitable change of gauge combined with the
Hardy-type inequality for magnetic Sobolev spaces proved in [12]. For any ' 2 D ,
the function u WD e

i
2 �0' 2 D1;2

0 .R2;C/ according to the definition of the spaces
D1;2

p .R2;C/ given in Sect. 2 (see (14)). From the Hardy-type inequality proved in
[12], it follows that

Z
R2

j.ir C A0/u.x/j2 dx � 1

4

Z
R2

ju.x/j2
jxj2 dx:

Since r	 �0
2


 D A0 and .ir C A0/u D ie
i
2 �0r' in R

2 n s0, we have that

Z
R2

j.ir C A0/u.x/j2 dx D
Z
R2ns0

jr'.x/j2 dx and
Z
R2

ju.x/j2
jxj2 dx D

Z
R2

j'.x/j2
jxj2 dx;

thus the proof is complete.
As a direct consequence of Lemma 2, H can be characterized as

H D
n
u 2 L1loc.R

2/ W rR2ns0u 2 L2.R2/; u
jxj 2 L2.R2/; and 
C.u/C 
�.u/ D 0 on s0

o
;

where r
R
2
C

ns0
u denotes the distributional gradient of u in R

2 n s0.

For p ¤ e with e D .1; 0/, we also define the space Hp as the completion of

Dp D ˚
u 2 H1.R2 n .s0 [ 	p// W 
C.u/C 
�.u/ D 0 on s0 and u D 0

in neighborhoods of 0 and 1g

with respect to the Dirichlet norm

kukHp WD krukL2.R2n.s0[	p//: (19)

In order to prove that the space Hp defined above is a concrete functional space,
the argument performed in Lemma 2 is no more suitable, since Hp-functions do
not satisfy a Hardy inequality in the whole R2. We need the following two lemmas,
which establish a Hardy inequality in external domains and a Poincaré inequality in
D1 for Hp-functions.
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Lemma 3 The functions in Hp satisfy the following Hardy inequality in R
2 n D1:

k'k2Hp
� 1

4

Z
R2nD1

j'.x/j2
jxj2 dx; for all ' 2 Hp:

Proof The proof follows via a change of gauge as in the proof of Lemma 2. More
precisely, we notice that, for any ' 2 Dp, the function u defined as u D e

i
2 �0' in

R
2 n D1 and as u.x/ D u.x=jxj2/ in D1 belongs to D1;2

0 .R2;C/. From the invariance
of Dirichlet magnetic norms and Hardy norms by Kelvin transform and the Hardy-
type inequality of [12], it follows that

k'k2Hp
�
Z
R2n.D1[s0/

jr'.x/j2 dx D 1

2

Z
R2

j.ir C A0/u.x/j2 dx

� 1

8

Z
R2

ju.x/j2
jxj2 dx D 1

4

Z
R2nD1

j'.x/j2
jxj2 dx:

The conclusion follows by density of Dp in Hp.

Lemma 4 The functions in Hp satisfy the following Poincaré inequality in D1:

k'k2Hp
� 1

6

Z
D1

j'.x/j2 dx; for all ' 2 Hp:

Proof From the Divergence Theorem, the Schwarz inequality and the diamagnetic
inequality, it follows that, for every u 2 H1;0.D1 n 	p/,

2

Z
D1

juj2 dx D
Z

D1n	p

�
div.juj2x/� 2jujrjuj � x

�
dx

�
Z
@D1

juj2 ds C
Z

D1n	p

juj2 dx C
Z

D1n	p

jrjujj2 dx

�
Z
@D1

juj2 ds C
Z

D1

juj2 dx C
Z

D1n	p

j.ir C A0/uj2 dx

where, when applying the Divergence Theorem, we have use the fact that x � � D 0

on both sides of 	p. If ' 2 Dp, then u WD e
i
2 �0' 2 H1;0.D1 n 	p/ and

.ir C A0/u D ie
i
2 �0r' in D1 n .s0 [ 	p/;

hence the previous inequality yields

Z
D1

j'j2 dx �
Z
@D1

j'j2 ds C
Z

D1n.s0[	p/

jr'j2 dx:
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On the other hand, via the Divergence Theorem,

Z
@D1

j'j2 D
Z
@D1

'2
x

jxj2 � � D �
Z
R2n.D1[s0/

div

�
'2

x

jxj2
�

C
Z C1

0


C.'2/
.s; 0/

s2
� .0;�1/ ds

C
Z C1

0


�.'2/
.s; 0/

s2
� .0; 1/ ds

D �
Z
R2n.D1[s0/

div

�
'2

x

jxj2
�

D �2
Z
R2n.D1[s0/

'r' � x

jxj2

�
Z
R2n.D1[s0/

jr'j2 C
Z
R2nD1

j'j2
jxj2 � 5k'k2Hp

;

where the last inequality is obtained by Lemma 3. The proof is thus complete.
As a straightforward consequence of Lemmas 3 and 4, we can characterize the space
Hp as

n
u 2 L1loc.R

2/ W rR2n.s0[	p/u 2 L2.R2/; u
jxj 2 L2.R2 n D1/; u 2 L2.D1/; and


C.u/C 
�.u/ D 0 on s0
o
:

The functions in Hp may clearly be discontinuous on 	p. For this reason, we
introduce two trace operators. Let us consider the sets

UC
p D f.x1; x2/ 2 R

2 W cos˛ x2 > sin ˛ x1g \ .D1 n s0/

and

U�
p D f.x1; x2/ 2 R

2 W cos˛ x2 < sin˛ x1g \ .D1 n s0/:

First, for any function u defined in a neighborhood of UC
p , respectively U�

p , we
define the restriction

RC
p .u/ D uj

UC
p
; respectively R�

p .u/ D ujU�
p
:

We observe that, since Rṗ maps Hp into H1.Uṗ / continuously, the trace operators


ṗ W Hp �! H1=2.	p/; u 7�! 
ṗ .u/ WD Rṗ .u/j	p

are well defined and continuous from Hp to H1=2.	p/. Furthermore, by Sobolev
trace inequalities and the Poincaré inequality of Lemma 4, it is easy to verify that
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the operator norm of 
ṗ is bounded uniformly with respect to p 2 S
1, in the sense

that there exists a constant L > 0 independent of p such that, recalling (19),

k
ṗ .u/kH1=2.	p/
� LkukHp for all u 2 Hp: (20)

Clearly, for a continuous function u, 
C
p .u/ D 
�

p .u/.
Furthermore, let �C D .0;�1/ and �� D .0; 1/ be the normal unit vectors to s0,

whereas

�C
p D .sin˛;� cos˛/ and ��

p D ��C
p

be the normal unit vectors to 	p.
For every u 2 C1.D1 n .	p [ s0// with

RC
p .u/ 2 C1.UC

p n s0/ and R�
p .u/ 2 C1.U�

p n s0/;

we define the normal derivatives @˙u
@�˙

p
on 	p respectively as

@Cu

@�C
p

WD rRC
p .u/ � �C

p

ˇ̌̌
ˇ
	p

; and
@�u

@��
p

WD rR�
p .u/ � ��

p

ˇ̌̌
ˇ
	p

:

Analogous definitions hold for normal derivatives on s0 (which will be denoted just

as @˙u
@�˙

).
For p ¤ e, where e D .1; 0/, we consider the minimization problem for the

functional Jp W Hp ! R defined as

Jp.u/ D 1

2

Z
R2n.s0[	p/

jruj2 dx C
Z
	p

@C 
@�C

p


C
p .u/ ds C

Z
	p

@� 
@��

p


�
p .u/ ds

D 1

2

Z
R2n.s0[	p/

jruj2 dx C
Z
	p

@C 
@�C

p

.
C
p .u/� 
�

p .u// ds (21)

on the set

Kp WD fu 2 Hp W 
C
p .u C  /C 
�

p .u C  / D 0g:

The set Kp is nonempty, convex and closed, the functional Jp is coercive (see (34)),
so that the problem admits a unique minimum wp 2 Kp which is a weak solution to
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the problem

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

��wp D 0; in R
2 n fs0 [ 	pg;


C.wp/C 
�.wp/ D 0; on s0;


C
p .wp C  /C 
�

p .wp C  / D 0; on 	p;

@Cwp

@�C D @�wp

@�� ; on s0;

@C.wp C  /

@�C
p

D @�.wp C  /

@��
p

; on 	p:

(22)

Remark 1 We note that the trivial function is not a solution to the problem (22),
since the two jump conditions for the solution and its normal derivative on 	p cannot
be satisfied simultaneously by the trivial function if p ¤ e, hence wp 6� 0 for all
p ¤ e.
One can easily see that the function e

i
2 .�p��p

0 /e
i
2 �0.wp C  / satisfies (15) and (16),

hence by the uniqueness stated in Proposition 1 we conclude that necessarily

�p D e
i
2 .�p��p

0 /e
i
2 �0.wp C  /: (23)

On the other hand, for p D e, we consider the function wk 2 D1;2
s .R2C/ defined as

the unique minimizer in (6). The function we defined as

we.x1; x2/ D
(

wk.x1; x2/; if x2 � 0;

wk.x1;�x2/; if x2 � 0;
(24)

satisfies

we 2 He

and
8̂
ˆ̂<
ˆ̂̂:

��.we C  / D 0; in R
2 n s;


C.we/C 
�.we/ D 0; on s;
@Cwe

@�C D @�we

@�� ; on s;

(25)

where s D f.x1; 0/ W x1 � 1g and He is defined as the completion of

De D ˚
u 2 H1.R2 n s/ W 
C.u/C 
�.u/ D 0 on s and u D 0

in neighborhoods of 0 and 1g
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with respect to the Dirichlet norm krukL2.R2ns/. One can easily see that the function

e
i
2 �e.we C  / satisfies (15) and (16) wit p D e (notice that � e

0 D �0), hence by the
uniqueness stated in Proposition 1 we conclude that necessarily

�e D e
i
2 �e.we C  /: (26)

In [2, Proposition 14] it was proved that

lim
aDjajp!0

�0 � �a

jajk
D jˇ2j2k

Z 2�

0

wp.cos t; sin t/ sin

�
k

2
t

�
dt;

which, combined with (5), yields

� 4mk cos.k˛/ D k
Z 2�

0

wp.cos t; sin t/ sin

�
k

2
t

�
dt: (27)

The right hand side of (27) can be related to Jp.wp/ as follows.

Lemma 5 For every p ¤ e

Z 2�

0

wp.cos t; sin t/ sin

�
k

2
t

�
dt D �2

k
Jp.wp/:

Proof Throughout this proof, let us denote

!p.r/ WD
Z 2�

0

wp.r cos t; r sin t/ sin

�
k

2
t

�
dt:

Then we have to prove that k!p.1/ D �2Jp.wp/. Since ��wp D 0 in R
2 nfs0[	pg,


C.wp/ C 
�.wp/ D 0 on s0, and @Cwp

@�C D @�wp

@�� on s0, by direct calculations !p

satisfies

�.r1Ck.r�k=2!p.r//
0/0 D 0; in .1;C1/:

Hence there exists a constant C 2 R such that

r�k=2!p.r/ D !p.1/C C

k

�
1 � 1

rk

�
; for all r � 1:

From (23) and Proposition 1, it follows that !p.r/ D O.r�1=2/ as r ! C1. Hence,
letting r ! C1 in the previous relation, we find C D �k!p.1/, so that

!p.r/ D !p.1/r
�k=2
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for all r � 1. By taking the derivative in this relation and in the definition of !p, we
obtain

� k

2
!p.1/ D

Z
@D1

@wp

@�
 ds:

Multiplying Eq. (22) by  and integrating by parts over D1 n fs0 [ 	pg, we obtain

Z
D1nfs0[	pg

rwp � r dx D
Z
@D1

@wp

@�
 ds C

Z
	p

 
@Cwp

@�C
p

C @�wp

@��
p

!
 ds

D � k

2
!p.1/C

Z
	p

 
@Cwp

@�C
p

C @�wp

@��
p

!
 ds: (28)

Testing the equation �� D 0 by wp and integrating by parts in D1 n fs0 [	pg, we
arrive at

Z
D1nfs0[	pg

rwp � r dx D
Z
@D1

@ 

@�
wp ds C

Z
	p

@C 
@�C

p

.
C
p .wp/ � 
�

p .wp// ds

D k

2
!p.1/C

Z
	p

@C 
@�C

p

.
C
p .wp/� 
�

p .wp// ds; (29)

where in the last step we used the fact that @ 
@�

D k
2
 on @D1. Combining (28) and

(29), we obtain

k!p.1/ D
Z
	p

 
@Cwp

@�C
p

C @�wp

@��
p

!
 ds �

Z
	p

@C 
@�C

p

.
C
p .wp/� 
�

p .wp// ds: (30)

On the other hand, multiplying (22) by wp and integrating by parts overR2nfs0[	pg,
we obtain

Z
R2nfs0[	pg

jrwpj2 dx D
Z
	p

@Cwp

@�C
p


C
p .wp/ ds C

Z
	p

@�wp

@��
p


�
p .wp/ ds:

At the same time, recalling the definition of Jp (21) and taking into account the latter
equation we have

2Jp.wp/ D
Z
R2nfs0[	pg

jrwpj2 dx C 2

Z
	p

@C 
@�C

p


C
p .wp/ ds C 2

Z
	p

@� 
@��

p


�
p .wp/ ds

D
Z
	p

@Cwp

@�C
p


C
p .wp/ ds C

Z
	p

@�wp

@��
p


�
p .wp/ ds
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C 2

Z
	p

@C 
@�C

p


C
p .wp/ ds C 2

Z
	p

@� 
@��

p


�
p .wp/ ds

D
Z
	p

@C.wp C  /

@�C
p


C
p .wp/ ds C

Z
	p

@�.wp C  /

@��
p


�
p .wp/ ds

C
Z
	p

@C 
@�C

p


C
p .wp/ ds C

Z
	p

@� 
@��

p


�
p .wp/ ds

D
Z
	p

@C.wp C  /

@�C
p


C
p .wp C  / ds C

Z
	p

@�.wp C  /

@��
p


�
p .wp C  / ds

C
Z
	p

@C 
@�C

p


C
p .wp/ ds C

Z
	p

@� 
@��

p


�
p .wp/ ds

�
Z
	p

@C.wp C  /

@�C
p


C
p . / ds �

Z
	p

@�.wp C  /

@��
p


�
p . / ds

from which the thesis follows by comparison with (30) recalling that in the last
equivalence the first term is zero by (22) and  is regular on 	p.
From the fact that wk attains the minimum in (6) and (24) it follows easily that

mk D 1

2

�
1

2

Z
R2ns0

jrwej2 dx C
Z
	e

@C 
@�C 


C.we/ dsC
Z
	e

@� 
@�� 


�.we/ ds



: (31)

Combining (27), Lemma 5, and (31) we conclude that, for

1

2

Z
R2n.s0[	p/

jrwpj2 dx C
Z
	p

@C 
@�C

p


C
p .wp/ ds C

Z
	p

@� 
@��

p


�
p .wp/ ds

D cos.k˛/

�
1

2

Z
R2ns0

jrwej2 dx C
Z
	e

@C 
@�C 


C.we/ ds C
Z
	e

@� 
@�� 


�.we/ ds



:

(32)

every p D .cos˛; sin ˛/ 2 S
1 n feg.

Lemma 6

(i) There exists C > 0 (independent of p 2 S
1) such that, for all p 2 S

1,

Z
R2n	p

ˇ̌
.ir C Ap/�p � e

i
2 .�p��p

0 /e
i
2 �0 ir ˇ̌2 dx � C: (33)

(ii) If pn; p 2 S
1 and pn ! p in S

1, then �pn ! �p weakly in H1.DR;C/ for every
R > 1, a.e., and in C0;˛

loc .R
2 n f pg/.
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Proof Let us fix q > 2. From the continuity of the embedding H1=2.	p/ ,! Lq.	p/

and (20), we have that there exists some const > 0 independent of p 2 S
1 such that,

for all u 2 Hp,

ˇ̌
ˇ̌̌Z
	p

@˙ 
@�ṗ


ṗ .u/ ds

ˇ̌
ˇ̌̌ D

ˇ̌
ˇ̌̌ k
2

cos

�
k

2
˛

�Z
	p

jxj k
2�1
ṗ .u/ ds

ˇ̌
ˇ̌̌

� k

2
kjxj k

2�1kLq0
.	p/

k
ṗ .u/kLq.	p/ � const k
ṗ .u/kH1=2.	p/

� const LkukHp

and then, from the elementary inequality ab � a2

4"
C "b2, we deduce that, for every

" > 0, there exists a constant C" > 0 (depending on " but independent of p) such
that, for every u 2 Hp,

ˇ̌
ˇ̌̌Z
	p

@˙ 
@�ṗ


ṗ .u/ ds

ˇ̌
ˇ̌̌ � "kuk2Hp

C C": (34)

From (34) and the fact that the right hand side of (32) is bounded uniformly with
respect to p 2 S

1, we deduce that for any p D .cos˛; sin ˛/ 2 S
1

Z
R2n.s0[	p/

jrwpj2 � M (35)

for a constant M > 0 independent of p. Replacing (23) ((26) for p D e) into (35) we
obtain (33).

We have that (33) together with the Hardy-type inequality of [12] implies that
f�pgp2S1 is bounded in H1.DR/ and fAp�pgp2S1 is bounded in L2.DR/ for every
R > 1. Hence, by a diagonal process, for every sequence pn ! p in S

1, there exist
a subsequence (still denoted as pn) and some � 2 H1

loc.R
2/ such that �pn converges

to � weakly in H1.DR/ and a.e. and Apn�pn converges to Ap� weakly in L2.DR/ for
every R > 1. In particular this implies that � 2 H1;p

loc .R
2;C/. Passing to the limit in

the equation .ir C Apn/
2�pn D 0, we obtain that .ir C Ap/

2� D 0. Furthermore,
by weak convergences r�pn * r� , Apn�pn * Ap� in L2.DR/ and (33), we have
that, for every R > 1,

Z
DRnD1

ˇ̌
.ir C Ap/� � e

i
2 .�p��p

0 /e
i
2 �0 ir ˇ̌2 dx

� lim inf
n!1

Z
DRnD1

ˇ̌
.ir C Apn/�pn � e

i
2 .�pn ��pn

0 /e
i
2 �0 ir ˇ̌2 dx � C


