Processing
for Android

Create Mobile, Sensor-Aware, and
VR Applications Using Processing

Andrés Colubri

ApPress’

Processing for
Android

Create Mobile, Sensor-Aware, and
VR Applications Using Processing

Andrés Colubri

Apress®

Processing for Android: Create Mobile, Sensor-Aware, and VR Applications
Using Processing

Andrés Colubri
Cambridge, Massachusetts, USA

ISBN-13 (pbk): 978-1-4842-2718-3 ISBN-13 (electronic): 978-1-4842-2719-0
https://doi.org/10.1007/978-1-4842-2719-0

Library of Congress Control Number: 2017958640
Copyright © 2017 by Andrés Colubri

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Technical Reviewer: Anthony Tripoldi
Coordinating Editor: Jessica Vakili
Copy Editor: April Rondeau
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in
this book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-2718-3. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2719-0
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2718-3
http://www.apress.com/source-code

To Jihyun, for her encouragement to take on new challenges.
To my family, for their support while being far away.

Contents at a Glance

About the AUthOrccccsmimmmssmmesmns s ————— xvii
About the Technical ReVIEWErScccussssssssmssssmssssssssssssssssssassnsnss Xix
Acknowledgmentsccccuuseemmmmssssnnmmsssssnnnmsssssnnsesssssnssesssssnnnsssssnnnnes XXi
- xxiii
Part I: First Steps with Processing for Android.............. 1
Chapter 1: Getting Started with Android Mode..........ccceursrnennrrnssanns 3
Chapter 2: The Processing Languagecccuusseensssssssnnssssssnnssssssnns 17
Chapter 3: From Sketch to Play Storecccuccmmismnmsssnnssssnnsssnnns 41
Part II: Drawing and Interaction............cccccrernnnnnnnnnsnnns 57
Chapter 4: Drawing Graphics and Textouneeemmmmmmmmmsssssssssnnnnns 59
Chapter 5: Touchscreen Interaction........c..ccccvremrnsenssssensssssnssssans 89
Chapter 6: Live Wallpapers....cccuussseessmmmmssssssssssssssssssssssssssnnnnnnnns 111
Part lll: SeNSOrS.......cccemmmsssnmnmmssssnnsnmsssssnsssssssnsnnsssssnnns 141
Chapter 7: Reading Sensor Data.......c..cccusmmmmsmmmsssnnsssssnsssssnssssas 143
Chapter 8: Driving Graphics and Sound with Sensor Data.......... 157
Chapter 9: Geolocationccccusssemnmmmssssnnnmssssssnnmssssssssssssssnsnnnas 181

CONTENTS AT A GLANCE

Part IV: Wearables and Watch Facesccouiueennnes 211
Chapter 10: Wearable DeViCeS......cccrurusssmmmmmssssnnnssssssnsnssssssnnnssssns 213
Chapter 11: Visualizing TiMe......c.cccrssemmmssansssssnsssssssssssssssssnssssnns 227
Chapter 12: Visualizing Physical Activity.......cccosrsssnnnsessssnnnsnsans 243
Part V: 3D and VRcusemmmmmssemnmmsssssssssssssasssnsssssnns 273
Chapter 13: 3D in Processingc..ccscussssesssnsssssnsssssnsssssnsssssnssssnns 275
Chapter 14: VR BaSiCSuuurmmmmmsmnmssnnmmmsssmssssssssssssssssssssssssssssssnss 303
Chapter 15: Drawing in VRccccccmmmmsnmmmmmsssssnsmsssssssssssssssssnnsns 331
Appendix A: Gradle and Android Studio Integration...........cc...... 357
Appendix B: Processing Libraries.......ccccuuseunmnssssnssssssssssssssssssnns 371
INA@X..iiieiiisrsmsssnsssss s s ——— 377

vi

Contents

About the AUthOrccccsmimmmssmmesmns s ————— xvii
About the Technical ReVIEWErScccussssssssmssssmssssssssssssssssssassnsnss Xix
Acknowledgmentsccccuuseemmmmssssnnmmsssssnnnmsssssnnsesssssnssesssssnnnsssssnnnnes XXi
- xxiii

Part I: First Steps with Processing for Android.............. 1

Chapter 1: Getting Started with Android Mode..........ccceursrnennrrnssanns 3
What Is the Processing Project?.........cccvvvvrvrnensnsessesses s ses s sessessnnns 3
The Processing LANQUAGEccccererrererenesesesesssessssessssesssses s ssssesssessssessssssssssnses 3
The Processing Development Environment...........ccccovceenccvenniesnsesessesssessesessesennes 4
Extending ProCeSsSiNg........cccverrerrerrersessessessesses s sessessessessessessesssssssssssnnns 7
The Contribution MANAGETccceurreerererieererer e s 7
Processing for ANAroidccvcevverrerversersensessesses s s s sessessessessessessssenns 8
Installing the Android MOME.........cceeveriererere e sre e sesnesaenens 9
Interface of ANAroid MOGEcccoeeeireererrrcrerer e 10
Running a SKEtCh 0N @ DEVICE.......cceveeerererereree e rerseresse e e seesessesessesessesassesasnenes 12
Running a Sketch in the EMUIALOFcccvevererererererereree e sae s 14
SUMMAIY ...t r s r s n e s n e s 16
Chapter 2: The Processing LanguUageccccussseensssssssnnssssssnsnssssnnns 17
A Programming Sketchbook for Artists and Designers.........ccocceeeeennene 17
The Setup/Draw Structure of a Processing Sketch..........ccccoevevvenrnnnen. 17

vii

CONTENTS

Drawing With COe........ccevvrerrrrrrrrrr e 20
Screen CoOrdinates ... —— 21
FOMM e —————— 23
COI0T ittt ————————————— 27
Geometric Transformations ... ————— 30

Responding 1o USer INPUL.........cceeeeeeeceeceeces e 32

Creating a Vine-Drawing APpccecveerrerrerrersersesses s ses e e s e e sesesenns 34

31111 1P 7S 40

Chapter 3: From Sketch to Play Storecccenmsssemmnnssssnnnnnsssnnns 41

Sketching and Debuggingccccverververrrrenrenser s 4
Getting Information from the CONSOIEcceeeereveriererrerr e A
Getting More Information with logcat..........cccoeevvevrcerrcerere e 43
Using the Integrated DEDUQQET.......ceoeeueeerererrererrerer e serse st se s e e se e sae e sae e saenes 44
Reporting ProcesSing BUGScccceererererererieresseressessesessesesesessessssessssessssessssessenes 45

Preparing a Sketch for Release.........ccccccvvevrvreeerensscssesessess e 45
Adjusting for DeViCe’s DPL..........ccccerieriiiiesinesrress e eenas 45
UsSing the EMUIALOT ..ot 48
Setting Icons and Package Name.........ccovvevrnnescnnnnnscsesess e sesesenns 51
Setting Package Name and VErsion..........c.cccccvnenennnnsscsenenns s sesesssssesesenns 51
Exporting as a Signed PaCKagecccucrerrrniererenniesesssse s sesessssssesesssssseessnns 52

1111 112 SRS 55

Part II: Drawing and Interactionccccceisnssssssscnnnnnnnnns 97

Chapter 4: Drawing Graphics and Textcccccennmmsssesnssssssnsssesssss 39

Renderers in ProCeSSINgccueeereerrressesssssssssssssssssessessessessessssssssennes 59
Drawing SRaPEScccceverrrrrrrr s 60
MOFE SHAPE TYPES ... s 60
CUPVE SNAPES ..ottt e 62

viii

CONTENTS

Shape AHMDULEScoviccccce e n e 70
SNAPE STYIES.....eeeeeereeerer s 72
ShAPE CONTOULS ...t r e s r e e se e nn e 73
The PShape Class.......c.ccvvrrerrernersensensisses s sesses s ssssss e e ssssesssssssssssnns 74
Creating PSNAPESccoveererereeresre s nnsns 75
Loading Shapes from SVGcceveererernenesersssesesss s sssessssssssessssns 78
Drawing IMAgesccocerrerrernerrerierrerses s se s se e sasses s snssssssssnsnes 80
TEXTUFING SNAPES ...cveeceerererer et rae e sa s ae e sae e sae e sa e e e e aenennen 81
Drawing TeXL.......cccvoiirirrer e 82
Loading and Creating FONTS..........ccorrriieicrirceesesiee e 83
TEXE ATFIDULES. ... 85
SCANG TEXL ...t 86
SUMMAIY ...t r s 87
Chapter 5: Touchscreen Interaction.........ccccuusseenmmssssnnnmsssssnnnsssssnns 89
Touch Events in ANAroidccooeerrernnmssesensesessssessessssesss s sssssssessessnsens 89
BasSiC TOUCH EVENTSc.cocecccecceeceee e 89
MUIEI-TOUCK EVENTS ... 96
Touch-based INEraction..........c.cccerrrererererereserese e 100
S 1 0TI =T 0 o 101
ST (0] 7T 102
LT o= T o o T 105
Using the Keyboardcoceeeeeeenenenesessesse e sse e sss s sss s s snssnsnnas 108
SUMMAIY ...t sa s re e nnn s nnas 109
Chapter 6: Live Wallpapers......uuuseeeesmmmmessssssssssssnssssssssssssssssnnssnss 111
Live WallPApErScoeverereererereesserse e sse e ssesse s s sssssssssssssasssssssssnsens 111
Writing and Installing Live Wallpapers...........ccovveerereresresesessssssesessssssssesesssssssnens 11
Using Multiple HOME SCIEENS.........ccovurerererrrrenesesisrsesesesssse s sesssesesessssenes 113
Handling PErmiSSIONS........ccccvrerreiererrrnesesessssese e s sessssssesesssssssssssssssenes 116

ix

CONTENTS

Particle SYSTEMSccccvvvverrrrrr e 120
AUTONOMOUS AQENTS.....cceiieriririr st 121
g Vo T (0 (o 126

An Image-flow Wallpapercccceeereereesssessessessesses s ses s sessessesnenns 128
Loading, Resizing, and Cropping IMages........c.ccevrrnrerenennnesesessesesesssssesssessenes 128
Putting Everything TOGEther..........ccoveenccerrresre s 130
USING TRIEAUScccereeerecrre et n e nas 134
Controlling the HUE. ...ttt s 136
Wrapping the ProjeCt Up.......occreenierrsces e ss s sss e sesnens 138

SUMMANY ... e 139

s Ll | YT E 1] : 3 |

Chapter 7: Reading Sensor Data........c.ccccnmmnsssmnnnnssssnsnssssssnsnsnnsss 143

Sensors in Android DEVICES........co i 143
ACCEIBIOMETEN ... s 143
(€301 o PR 144
MagnEtomMEter ... ——————— 144
LOCALION ... 144

Accessing Sensors from ProCesSing........ccccveeveersersessessessessessessessensenas 145
Creating @ SenSOr MANAQETccveeeerererienererinesesese s neseens 145
Adding @ SENSOr LISTENET.......ccoeeeeerircscerise e 146
Reading Data from the SENSOr ... 147
Reading from Other SENSOIScccorrererireresesesises e 149

The Ketai LIDrarycccocvvnierieniennnnenessessessessessesses s e sessessessenns 150
LTSy 1T N (] T 150
0T =] = TR 151
Event Handlers in Ketai ... 153

SUMMANY ...t s sr s n e e nn s enan 156

CONTENTS

Chapter 8: Driving Graphics and Sound with Sensor Data.......... 157
Using Ketai to Read Sensor Data...........ccccceeeeeeerccesecesee e 157
Measuring Acceleration...........cccvcvverrerrenrensensen s 157
Shake DEteCtion ... ————— 158
B3 (] B 000) 159
Audio-Visual Mapping of Step Data..........ccoceeevrvererererere s sese e 160
Playing AUCI0coveoeeeeereererererereerereesersesersesessesessesassessesessesessesassesassessssessenessssnaes 165
Using the Magnetic SENSOrcccvceeeieencsesseresc e 169
Creating @ COMPASS APP....cerrrrerrererererrerersersserssersssessesessessssessssessssessessssessssssssses 170
THE GYFOSCOPE......cecerererersersessessessesses e s e s e s e s e s snssns e s snssnssnssnesnssnennans 174
Controlling Navigation with the GYroSCOPE........c.coeeeerrereiescrirreerereeee s 177
1111 1P S 180
Chapter 9: Geolocationccccusseemnmnssssnnnmsssssnnsmssssssnssssssnnsnsnsss 181
Location Data in ANAroidccocerenmnmresesenssesesssese s 181
Using Location API in ProCesSingcceeeeerrerrersessessessesssssessssssssnssnses 182
Location PErMISSIONS ..o s 183
Event Threads and CONCUITENCYcceererrererieresersesersssessesessessssessssessesessssessensnses 186
Location with Ketai........c.covnnnnnnnninsssss 190
Using Additional Location Data..........cccceeevevernninnnnse s sss e e 192
A Street View Collageccceeeeeeeereeseerereessesse e ses s sne s snssnssnsnnnns 193
Using Google Street View IMmage APL.........co e 195
Voronoi TESSEIIAtIONS ..o 197
Using an Offscreen Drawing SUIface..........ccoceeeerereiercreneeserire e 202
Putting Everything TOGELNer ..o 204
1111 1P S 210

xi

CONTENTS

Part IV: Wearables and Watch Faces.........ccorseennnennnnes 211

Chapter 10: Wearable DeViCeS......cccrurusssmmmmmssssnnnssssssnsnssssssnnnssssns 213
From Activity Trackers to Smartwatches..........ccccocvvrvrrrcrrrserserennen, 213
SMAWALCHES ...cocvvciir i ————— 214
Running Watch-Face SKetChesccccveeriernicriecnicns s 215
USING @WALCH ..o 215
Using the EMUIALOT ..o nas 218
DiSPlaying TiMEcovceeiiereirre s s enas 220
COUNTING STEPS «..vivecirirc e e e e 221
Designing for Smartwatches...........ccocvervrercrcrcrce e 222
Screen Shape and INSELS.........cccecerevercrerne e 223
Watch Face PrevieW ICONS.........cccoceerereneserinesesesesss e sese s sesesesssenens 225
31111 4P 226
Chapter 11: Visualizing Time........cccrmmmsssnnnmmssssssnssssssssnssssssnsssessss 227
From Sundials to Smartwatches............cccoernienrnnennniesssesereneens 227
Using Time to Control MOtONcccceeecereerere e sere st se s saeeenas 228
Square Versus Round WatCh FACESccovveverrereererererererereseressessesessesessesessenes 231
Working with a Watch Face Concept..........ccovvvecrccnncnesenscsscennens 235
Elapsed/Remaining TIMEcccoccreeeeeneneensesesesesss e 235
Adding INTEractionccovceeeirresiners e 237
Loading/Displaying IMAJESccceereeerererenssnenessnssssesesese s ss s s s s ssens 239
1141] 4P S 241
Chapter 12: Visualizing Physical ActiVity.....c..ccossmresssnsssssnnssnns 243
BOAY SENSOISooveceereresie e 243
STEP COUNTE ...ttt 243
HEArt RALE......eceecceieeeeci et e 244

xii

CONTENTS

Visualizing Physical Activity in Real-time.........cccocevevvvvvrvnsensensennnnns 245
Simple StEP COUNTEN........ceceeeceere st sa e e 245
Accessing the Heart-rate SENSOI.........ccoveververerrererere e ree e ssesesaesassens 246
Visualizing Step-count Dataccceceeererererierricree e res e e se e nanaens 249
A Beating HEAI.........ccoeeeereece e as e e e sa e e e sae e sne e saenannens 250
SeNSOr DEDUGGING ...cveeeeeereeere et s a s s ae e ae e e e sae e s 253

Growing a Tree @s YOU EXEICISE......c.ccvvrererersersesesesssessesessesessessssensens 257
Generating a Tree with a Particle System.........cccovivvninicnrnrrr s 258
Incorporating Step-count Datacccceevricinnnie s 260
Tweaking the Watch Face........c.cccovcevecrecrecn e 263
BIoOMING the TrEe......cceeeeeeetr e 264

SUMMANY ...ttt sr s sn e sn e sn e sn e nn e r e nn e n e nn s n s 272

Part V: 3D and VRccormeimmmnsnemnsnnmmsnsnnssnnsssnnnnsnnnssnes 279

Chapter 13: 3D in Processingccosuussssnnsssssssnsssssssssssssssssssssssss 219

The P3D RENAEIEXcccvermiiririinrsess s 275
A 3D HEllo WOKd ... sssesenes 275
L 111 277
Immediate Versus Retained Rendering........c.coovvnnnnnnnnnnnnnnssssns 279

3D Transformationsccoceerennneressssesssrse s 281
Combining Transformations...........cccceeveriernienncerrsre e 282

B] DS 1T 1013 284
LTS3 (0] TS 1 T T 286
PShAPE ODJECLS ..veueeveereeererererte e ree e sere e res e sas e se e sesessesassesassesaesesessesasnenas 288
Loading OBJ SNAPES.......cceerererrrereererrerersesessesesesssessesessesessesessessssessssessenssssnenaes 291

Lighting and TeXtUING.........cccereeerererereresresse e sne e s seenas 293
Light Sources and Material Propertiesccvrrrerrnnsesesensnssesesssssesessssssenes 294
Texture MapPing ..o r e e re e nne e 298

SUMMANY ...t sn e sn e sn e sr e sn e nn e r e nr e n e nn e n s 302

CONTENTS

Chapter 14: VR BaSiCSc.cccumssunmmssanssssanssssansssssnsssssnsssssnsesssnssssnns 303
GOOGIB VR ...ttt e 303
Cardboard and Daydream............coeeeeererrnerenenne et 303
Hardware RequUIremMeNts.........ccorecrmnreiccnineese st e 304
VR iN PrOCESSING ...covevvererrerriererres s sessessessessessessssssssssssssnssssssssssssssssnsns 304
] G =10 I ST 1 (=T o o 306
Mon0SCOPIC RENAEIINGcceeereeerereriererserreserseseraesesesesesessessesessesessesessesessesssnenees 308
VR Interaction..........ccvevnninnnnnns s 309
Eye and World Coordinates.........cuouccernnerenennissesenssssesessss e s sesessssssessssssenes 310
The Line Of SIgN......ccccveiereriresire s s s sese e s e se s e s e e sse e sae e ssessssessesesssnsnaens 312
Selecting a Shape with Screen Coordinates...........ccvvvrereriernreressesesere e sesens 315
Bounding BoX SEIECHON........cccoeeerereriererierre s s s ssesesse e ssesesse e ssesessesaeneses 318
Movement in VR ... 322
Automatic MOVEMENL..........coveveriririiiii s 324
Free-range MOVEMENT ..o s 326
1111] 4P 329
Chapter 15: Drawing in VRccoccccmmmnmmmmmmmsssssnmmssssssnssssssssssnssns 331
Creating a Successful VR EXPErENCe.........cccvververrerrersersessersessessessenaes 331
Drawing iN VRcoocoeeereecre s s s s seres e e ssesesse e ssesessessssessesessssesassessssessessnnesaes 332
Initial SKEICHEScvviriiitr s ———— 333
ASIMPIE VR Ul.....eeeeererr s s sn s 334
Drawing in 3D......oceoeeeeeecee s 339
FIVING ArOUNG ...t sn s 347
Final Tweaks and Packaging..........cccceeeeeerersrrsmssessnssessessessessessessessensens 352
INEFO TEXE . ——————— 353
Icons and Package EXPOrt ... 354
SUMMANY ... 356

Xiv

CONTENTS

Appendix A: Gradle and Android Studio Integration.........c..cceuue. 357
Google’s Tools for Android Development...........cccoceeeeeeesesesesseesennnns 357
Exporting a Sketch as a Gradle Projectccoereeenrnciescrsseeseseseeseseseeenes 359
Importing into ANAroid STUI0........ccceurueeeerrceeer s 361
Adding a Processing Sketch t0 @ Layoutccoeoeeerereeicnncecrerseesereseeeens 366
Appendix B: Processing Libraries.......cuueeeeemmmmrsssssssssssssnsssssssssnns 371
Extending Processing with Libraries.........ccccocvevvrcscssscssessessencennens 371
DALA ... s 373
L SRS 373
HardWare/SENSOIS ..o s 374
GEOMETrY/ULIIEIES ...t s 374
SOUNA AN VIHBO....c.cveeeeeeirieeeres e 374
Writing New LiDraries.......c.ccvvvrvrrnsennensensesses s ses s ssssesssssessssenns 375
INA@X..eiiiiisnnnnnissnnnnmsssssnnnmsssssnnnessssnnnnssssssnnnessssnnnnessssnnnnsssssnnnnssssnnns 377

XV

About the Author

Andrés Colubri is a programmer, scientist, and artist, and long-time contributor to

the Processing project. He originally obtained a doctoral degree in mathematics at the
Universidad Nacional del Sur in Bahia Blanca, Argentina, and was a Burroughs Wellcome
postdoctoral fellow at the University of Chicago, where he studied the protein folding
problem. Later on, he completed an MFA from the Design Media Arts department at the
University of California, Los Angeles. Andrés uses Processing to carry out research at the
intersection between interaction, visualization, and computing. He currently works at the
Broad Institute of Harvard and MIT, developing new methods and tools for analysis of
biomedical data. http://andrescolubri.net/

xvii

http://andrescolubri.net/

About the Technical
Reviewers

Jose Luis Garcia del Castillo is an architect, computational designer, and educator.

He advocates for a future where programming and code are tools as natural to designers
as paper and pencil. In his work, he explores creative opportunities at the intersection
of design, technology, fabrication, data and art. His current research focuses on the
development of digital frameworks that help democratize access to robotic technologies
for designers and artists.

Jose Luis is a registered architect, and holds a Master in Architectural Technological
Innovation from Universidad de Sevilla and a Master of Design Studies in Technology
from the Harvard University Graduate School of Design. He has worked as a structural
consultant for several international firms, such as OMA, Mecanoo, and Cesar Pelli,
as well as data visualization architect at Fathom Information Design. He is also the
co-founder of ParametricCamp, an international organization whose mission is to spread
the knowledge of computational design among designers and architects.

Jose Luis currently pursues his Doctor of Design degree at the Material Processing
and Systems group at the Harvard Graduate School of Design, works as Research
Engineer in the Generative Design Team at Autodesk Inc., and teaches computational
creativity in the Arts+Design Department at Northeastern University.

Anthony Tripaldi started programming in 2004, with a background in design and
animation. By 2007 he went all in on Flash as the future of the web. Once realizing his
devastating mistake, he pivoted, making Android apps and interactive installations with
Processing for clients of all types. Once the ad industry had taken its toll, he found his way
into Google Creative Lab, where he helped lead the creation of Android Experiments, a
platform for artists and engineers alike to celebrate creativity on Android.

Gottfried Haider, born 1985 in Vienna, works as an artist, educator and software
tool-maker. He received a degree in Digital Arts at University of Applied Arts Vienna in
2009. After receiving a Fulbright Scholarship in 2010, he pursued a MFA in Design Media
Arts at University of California Los Angeles, which he finished in 2013. His artwork has
been displayed in various venues and publications internationally.

Xix

Acknowledgments

During the past few months, I have learned that writing a book demands a significant
personal effort, but, at the same time, it is the unequivocal confluence of the work, ideas,
dreams, and passions of countless individuals. Since it would be impossible to track all
the threads coming into the junction represented by this book, I will acknowledge the
invaluable contributions of those who are most directly related to this project, knowing I
will leave out many others.

I'would like to start by extending my most earnest gratitude to Ben Fry, Casey Reas,
and Daniel Shiffman, without whom this book would not have been possible. Their
tireless work with Processing has enabled people from all over the world to use code in
art and design, and made it possible for those coming from the sciences and engineering
(like myself) to discover the possibilities of visual literacy within technology. Very special
recognition goes to Jonathan Feinberg, who together with Ben, wrote the initial version of
the Android mode the book is based upon, as well as to Pardis Sabeti, for supporting and
encouraging my Processing work with her tireless enthusiasm. I also want to thank all the
members of the Processing Foundation for putting forward a framework that promotes
learning, diversity, and inclusion in the creative coding community and that empowers
work such as mine.

Daniel Sauter and Jesus Duran made very important contributions to the Processing
for Android project early on with their Ketai library, and also by organizing the Mobile
Processing Conference at the School of Art and Design at the University of Illinois at
Chicago, to which I was invited as speaker and workshop instructor in all editions from
2011 to 2013. These events were key to sustaining the initial momentum of the project
into the present, and so my deepest recognition goes to them.

I'would like to make a very special mention of all the Google Summer of Code
students who worked on various Processing for Android projects during the past
years: Sara Di Bartolomeo and Rupak Daas (GSoC 2017), Mohammad Umair (GSoC
2015), and Imil Ziyaztdinov (2014). Their contributions were absolutely crucial to the
continued improvement and growth of Processing for Android. I am also very grateful
for the existence of the GSoC program, which allowed these extraordinary coding and
mentorship experiences with students of diverse backgrounds and origins.

Many thanks to Daniel Murphy, Shayan Amir-hosseini, Richard The, and Jen
Kurtzman from Google Creative Lab in New York, who supported the renewed efforts
behind the Processing for Android project during 2016, which led to this book.

AsImentioned at the beginning, a book like this is the result of the work of many
people, but among them the technical reviewers played a critical role in ensuring that
the book is correct, well structured, and easy to understand by its final audience. My
reviewers, to whom I am deeply indebted, are Anthony Tripaldi, Kate Hollenbach, Jose
Luis Garcia del Castillo y Lépez, and Gottfried Haider.

xxi

ACKNOWLEDGMENTS

Likewise, I am very grateful to the Apress editors, Natalie Pao, Jessica Vakili, and
James Markham, who, with their hard work and professionalism (and their patience with
a novice writer), accompanied me along the way from draft idea to published book.

I'would like to acknowledge Neil Zhao and Dean Kessey (on behalf of her late
mother, Dr. Masumi Hayashi) for graciously allowing me to use reproductions of their
work in the book.

Last, but not least, I thank the entire Processing community for their endless
creativity, enthusiasm, and appreciation, which has been one of my most important
motivations over the years.

xxii

Preface

By Ben Fry

The Android version of Processing got its start when I received an email from Andy
Rubin back in February 2009. He was interested in having Processing be more tightly
integrated with Android. The discussion led to initial funding, which helped us work on
building an Android version of the project during the year or two that followed. For one
of the test applications, used some code developed by Casey Reas (the co-founder of the
Processing project), and we were elated to see the first version of it up and running on the
G1, the very first widely available Android device.

I was especially excited, and still am, about the Android platform as an incredible
canvas to work from. You have mobile devices with a range of ways to communicate
with the outside world (mobile network, wi-fi, Bluetooth, etc.), higher-performance
CPUs than even the desktop machines we first used to develop Processing in 2001 (not
to mention GPU performance better than the SGI workstations we were using around
the same time), and a broad range of sensors—accelerometer, magnetometer, GPS, and
gyroscope—that opened an amazing number of possibilities for applications and ideas.
It's the platform I wish we’d had when we first started the project, with its focus on all the
interesting use cases that come from openness and having the right set of tools and APIs
to go along with it.

I'm especially excited, for instance, about possibilities like completely reinventing
the mobile phone interface, because all those pieces are available to be customized,
and you're just a few activities or fragments away from an entirely different end-user
experience. Since the Handspring (later Palm) Treo, mobile phone interfaces really
haven’t changed much—a grid of applications as a home screen, and a phone “app”
that essentially emulates the interface of a touch-tone phone. The Treo’s interface dates
to 2008 and built on the Palm Pilot interface from 1997, which itself referenced other
organizer tools and too many icon-driven interfaces to mention from decades prior. The
touch-tone phone, meanwhile, dates to at least 1968. Suffice to say, we're still working
with a set of forms, interactions, and metaphors that have been heavily repurposed over
the years, and I'm drawn to the idea of people experimenting with alternative interfaces
and having the ability to rethink how those elements might work. Innovation comes from
getting people the right tools to play with ideas, and while a new phone interface may not
necessarily be around the corner, there’s so much to be learned during the process itself.

This idea of experimentation and exploration is at the core of the Processing project.
Projects are called “sketches” to keep people in the mindset of writing a small amount
of code to get started, not overthinking it too much until they understand their problem
better. This is not unlike scribbling something in a sketchbook and flipping to a new
page—perhaps even tearing out the previous page and throwing it out. This approach is a
little backward, as typical software engineering practice encourages figuring out structure

xxiii

PREFACE

first and filling in the details over time. However, we found that our iterative approach
was helpful not just for our professional work, but also for teaching beginners how to get
started. We built Processing in a way that allowed people to write a few lines of code that
would make something happen—no knowledge of classes, threads, animation loops,

or double-buffering necessary. Over time, as the user’s experience grew and their ideas
became more ambitious, they could learn the details of these more complex concepts.
Interestingly, this mirrored things that we, as more seasoned developers, also wanted:
why write a lot of the same boilerplate to do the same things? Why get RSI retyping the
same handler and utility functions? Could we give people a toolbox that was useful
enough on its own that starting a project didn’t mean collecting the initial set of libraries
that were required just to get things done?

A related idea was simply how one gets started. Most integrated development
environments (IDEs) require a lot of background—even training—to use. Even though
I'had 20 years of coding experience, a friend had to sit me down to explain how to use
Eclipse to set up a project. With Processing, it’s a matter of downloading the software,
writing a single line of code, and hitting the Run button. This gets even more important
with a platform like Android, and we set out to make the Android version of Processing
just as simple. We wanted users to be able to download the software, write a little code (or
open an example), plug in their phone (or tablet, or who-knows-what), and hit the Run
button to see something show up on the device. Once that works, it should be all set, and
hopefully you're having enough fun that you lose the rest of the afternoon hacking away
atyour idea.

This book covers a wide range of ideas on how the Android platform can be used and
how Processing can be a helpful bridge to creating everything from quick experiments to
professionally developed applications. It’s exciting to have Andrés writing it, as we want
to see even more people building and playing with the platform, and also because you
couldn’t have a better expert in how Processing itself works. Andrés first started working
as a core committer to the Processing project when we folded his popular OpenGL and
Video libraries into the main project, which over the years led to his overseeing the 3D
and Video portions of Processing. His experience with 3D got him deeply involved in
the internals of how OpenGL works on Android, and his work there was the basis for his
rebuilding the desktop version to move from the old-style fixed-function pipeline used
in GL to the brave new world of shaders and highly multicore GPUs. It was through this
experience, combined with his being an avid Android user, that Andrés became a core
maintainer for the Android portion of the Processing project. He has helped shepherd
it ever since, including everything from ongoing development to mentoring Google
Summer of Code projects to, finally, writing this book. Suffice to say, you're in good
hands.

I hope you'll enjoy this book, and we can’t wait to see what you build with
Processing!

XXiv

PART I

First Steps with
Processing for Android

CHAPTER 1

Getting Started with
Android Mode

In this chapter, we will introduce the Processing software and Android mode, the
community project behind them, and how we can begin using the mode to create apps
for Android devices.

What Is the Processing Project?

The Processing project is a community initiative focused on sharing knowledge, fostering
education, and promoting diversity in code-based art and design. The Processing
software is a central part of this initiative, now guided by the Processing Foundation
(https://processingfoundation.org/). The Processing software was created in 2001

by Casey Reas and Ben Fry at the MIT Media Lab as a teaching and production tool in
computational arts and design, and has been evolving continuously since then. It is
available for download at https://processing.org/, and its source code is released
under free software licenses (GPL and LGPL). From now on, I will simply refer to
Processing when talking about the Processing software.

Processing consists of two complementary pieces: the language and the development
environment. Together, they form a “software sketchbook” designed to allow the expression
of visual ideas quickly with code, while also providing enough room to let those ideas develop
into full-blown projects. Processing has been used to create many beautiful and inspiring
works in generative art, data visualization, and interactive installations, some of which are
included in a curated list on the Processing site (https://processing.org/exhibition/).

The Processing Language

The Processing language comprises a set of functions for handling screen drawing, data
input/output, and user interaction. A small team of volunteers behind the Processing
project (https://processing.org/people/) has carefully constructed this set of
functions, technically called an Application Program Interface or API, to simplify

the development of graphical and interactive applications by means of a simple and
consistent naming convention, unambiguous behavior, and a well-defined scope.

© Andrés Colubri 2017 3
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-2719-0_1

https://doi.org/10.1007/978-1-4842-2719-0_1
https://processingfoundation.org/
https://processing.org/
https://processing.org/exhibition/
https://processing.org/people/

CHAPTER 1 " GETTING STARTED WITH ANDROID MODE

While originally implemented in Java, the Processing API is currently available in many
programming languages, including Python, JavaScript, and R. However, it is the Java
implementation of this API, together with some simplifications to the Java language, what
defines the Processing language. Despite this distinction, throughout the book I will use
the terms Processing language and API interchangeably, since in the context of Android,
we will essentially be using the Java implementation of the Processing API.

In active development since 2001, the Processing language now encompasses around
300 items between not only functions, but also classes and constants (https://processing.
org/reference/). One defining feature of this language is that it offers the possibility to
create a program capable of displaying interactive graphics using very little code. As I
mentioned, it also includes a number of simplifications with respect to the Java language,
with the purpose of making it easier to teach to people who are not familiar with computer
code. The following program exemplifies these features of the Processing language:

color bg = 150;

void setup() {
size(200, 200);

}

void draw() {
background(bg);
ellipse(mouseX, mouseY, 100, 100);

}

The output of this program is a window of 200 by 200 pixels that contains a white
circle that follows the movement of the mouse; the window has a gray background. The
functions setup() and draw() are present in almost any Processing program and drive its
“drawing loop.” All the initialization of the program should take place in setup(), which is
executed just once when the program starts up. The draw() function, which contains all
the drawing instructions, is then called continuously several times per second (by default,
60 times) so that the graphical output of the program can be animated through time.

However, if you are familiar with Java, you have probably noticed that this code
is not a valid Java program. For example, there is no explicit definition of a main class
encapsulating all the code, nor additional instructions required in Java to initialize
the “windowing toolkit” that handles the display and the user input. This program, as
itis, needs to be run inside the Processing development environment, which applies
a “preprocessing” step to the Processing code in order to convert it into a valid Java
program. However, this transformation occurs behind the scenes, and the Processing user
does not need to worry about it at all.

The Processing Development Environment

The Processing development environment (PDE) is the application that provides us with
a simplified code editor to write, debug, and run Processing programs, called sketches
(Figure 1-1). The PDE also incorporates an uncluttered user interface to handle all the
sketches created with it and to add libraries and other external components that extend
the core functionality of the PDE, such as p5.js, Python, or Android modes.

https://processing.org/reference/
https://processing.org/reference/

CHAPTER 1 © GETTING STARTED WITH ANDROID MODE

1 bg = 158;

3 setup() {

4 size(200, 208);

5

7 draw() {

8 background(bg);

9 ellipse(. , 188, 188);
10 |

@ circle

Figure 1-1. The Processing development environment showing a running sketch in
Java mode

The simplicity and ease of use of the PDE and the Processing language are the
key elements of this “code sketchbook.” A stumbling block for many people wanting to
start working with code is the complexity of a modern development environment, like
Eclipse or Intelli], in terms of a lengthy installation and an overwhelming user interface.
In contrast, the PDE addresses these issues by providing an easy install process and a
minimal interface, while the simple structure of a Processing sketch enables users to
obtain visual feedback rapidly. Processing’s aim is to support an iterative development
process analogous to sketching with pen and paper, where one can start with a simple
idea and refine it through successive sketches.

CHAPTER 1 " GETTING STARTED WITH ANDROID MODE

Note The Processing API can be used outside of the PDE; for example, in a more
advanced integrated development environment, or IDE, such as Eclipse, NetBeans, or IntelliJ.
All of Processing’s drawing, data, and interaction APIs are available when writing a program
with any of these IDEs; however, the simplifications that the Processing language has with
respect to Java will be lost.

We can download the latest version of Processing from the main website (https://
processing.org/download). As pointed out in the previous paragraph, installation is fairly
straightforward, only requiring the unpacking of the .zip (on Windows and Mac) or .tgz (on Linux)
package that contains the PDE and all other core files. We should be able to then run the PDE
without any additional steps from any location inside the Home or Applications folders.

The PDE organizes user sketches in a sketchbook folder. Each sketch is stored in a
subfolder inside the sketchbook, which in turn contains one or more source-code files
with the .pde extension. By default, Processing creates the sketchbook folder inside the
Documents folder located in the user’s account (for instance, /Users/andres/Documents/
Processing on Mac), but this location can be changed by selecting the desired sketchbook
folder in the Preferences window, available under the Processing menu on Mac and File
menu on Windows and Linux (Figure 1-2). Notice the sketchbook location at the top.

@ Preferences

Sketchbook location:

/Users /andres /Documents/Processing Browse
Language: English ﬁ (requires restart of Processing)

Editor and Console font: Monospaced ﬂ

Editor font size: 12 v Console font size: 12 v

Background color when Presenting: # A2A2A2 J
Use smooth text in editor window
Enable complex text input (i.e. Japanese, requires restart of Processing)
Continuously check for errors Show warnings
Code completion with Ctrl-space
Suggest import statements
Increase maximum available memory to: 256 MB
Delete previous folder on export
Allow update checking (see FAQ for information shared)

Run sketches on display: 1(1920 x 1080) u
{Users/andres /Library/Processing/preferences.txt
edit only when Processing is not running

GROKNY Cancel

Figure 1-2. The Preferences window on Mac

https://processing.org/download
https://processing.org/download

CHAPTER 1 © GETTING STARTED WITH ANDROID MODE

Extending Processing

AsImentioned at the beginning, the Processing project is not only the PDE or the
language, but also, and very importantly, the community built around the use of the
software and the goals of sharing, teaching, and inclusiveness. Thanks to Processing’s
open nature and modular architecture, many people have contributed improvements
and extensions to the “core” software. These contributions fall within one of the following
four categories:

Libraries: Modules (comprising one or more Java code

files built into a jar package, and additional documentation
and example files) that make it possible to access new
functionality in the sketches. E.g., OpenCV library for
computer vision (which is PC/Mac only), or Ketai for Android
sensors (covered in Chapters 7 and 8).

Programming Modes: Alternative code editors and related
PDE customizations that allow the use of an entire different
language within the PDE. E.g., Android mode. We will see in
the next sections of this chapter how to install Android mode.

Tools: Applications that can only run from Processing
and provide specific functionality to aid in writing code,
debugging, and testing the sketch. E.g., the color picker
(discussed in Chapter 2).

Examples: Packages of contributed code sketches that can be
used as learning material or reference. E.g., the sketches from
the book Learning Processing by Daniel Shiffman (http://
learningprocessing.com/).

The extension of Processing through contributed libraries, modes, tools, and
examples has enabled its growth into application domains that were not part of the
original software, such as mobile apps, computer vision, and physical computing, while
keeping the core functionality simple and accessible for new programmers.

The Contribution Manager

By default, Processing includes one default mode, Java, where we can write and run
sketches on Windows, Mac, and Linux computers using the Java implementation of the
Processing language. Processing also bundles several “core” libraries, some of which
are OpenGL (for drawing hardware-accelerated 2D and 3D scenes), pdf (to export
graphics as pdffiles), and data (which allows the handling of data files in formats such
as CSV and JSON).

To install additional contributions, we can use the Contribution Manager (CM),
which makes the process seamless. A screenshot of the CM is shown in Figure 1-3. The
CM has five tabs, the first four for each type of contribution—libraries, modes, tools, and
examples—and the fifth for updates. All the contributions that are registered by their
authors in a central repository are accessible through the CM and can also be updated
through the CM when new versions become available.

http://dx.doi.org/10.1007/978-1-4842-2719-0_7
http://dx.doi.org/10.1007/978-1-4842-2719-0_8
http://dx.doi.org/10.1007/978-1-4842-2719-0_2
http://learningprocessing.com/
http://learningprocessing.com/

CHAPTER 1 " GETTING STARTED WITH ANDROID MODE

0 e Contribution Manager
Libraries Modes Tools Examples Updates
Filter

Status Name Author
Android Mode | Create projects with Processing for Andro... P The Processing Foundation
p5.js Mode | Adds a simple editor for p5.js code Fathom Information Design
Python Mode for Processing 3 | Write Processing sketches ... Jonathan Feinberg
REPL Mode | Adds an REPL Console to view the output of ... Joel Moniz

1) Android Mode 3.0.1 4 Install

The Processing Foundation
3.0.1 available
Create projects with Processing for Android devices

Figure 1-3. The Contribution Manager in Processing, showing the Modes tab

Note Contributions that were not registered by their authors and hence are not
available through the CM, can still be installed manually. We would need to download the
package containing the library, mode, tool, or examples, typically in zip format, and extract
it into the sketchbook folder. There are separate subfolders for libraries, modes, tools, and
examples. See https://processing.org/reference/libraries/ for more info.

Processing for Android

Processing for Android, not unlike the Processing software itself, is several things. Primarily,
it is a community effort that started in 2009 with the purpose of supporting the development
of Android apps using Processing, as well as translating some of the concepts of the project
to the context of mobile apps: iterative sketching, simplicity, and accessibility.

From a software point of view, Processing for Android is composed of the
processing-android library and the custom PDE programming mode itself. The library
is the package that contains all the functions of the Processing API, but reimplemented
for the Android platform. Android mode provides a customized version of the PDE that
allows us to write Processing code and run it on an Android device or in the emulator.
Android mode includes the processing-android library, which we need for our Processing
code to run without errors. However, these distinctions are not critical at this point, since
Processing will let us install and use Android mode without our having to worry about the
processing-android library. This library would become more important for those among
you who may be planning to use Processing for Android in more advanced applications.

https://processing.org/reference/libraries/

CHAPTER 1 © GETTING STARTED WITH ANDROID MODE

Note The processing-android library can be imported from an IDE like Android Studio,
allowing the use of all the Processing functionality in a regular Android app. This advanced
use is covered in Appendix A.

Installing the Android mode

Once we have installed Processing on our computer, we should be able to open the
PDE by running the Processing application, and then we can install the most recent
release of Android mode through the CM. The mode also requires the Android Software
Development Kit (SDK) in order to work. The Android SDK is the set of libraries, tools,
documentation, and other supporting files provided by Google to develop and debug
Android apps. So, to install Android mode and, if needed, the SDK, follow these steps:

1. Openthe CM by clicking the “Add Mode...” option that
appears in the drop-down menu in the upper-right corner of
the PDE (Figure 1-4).

® @ sketch_161025a | Processing 3.3.4

Add Mode...

Figure 1-4. Opening the Contribution Manager to add a new mode

2. Select the entry for Android mode in the Modes tab, then click
the Install button.

3. After installation is complete, close the CM and switch
to Android mode using the same drop-down menu from
Figure 1-4.

If a valid SDK is detected on the computer, Processing will
ask if we want to use it or download a new one (Figure 1-5).
Because the SDK is very large (up to several GBs), it can be

a good idea to use the one that is already installed to save
disk space. However, if that SDK is also used by another
development tool, such as Android Studio, it may get updated
outside Processing, which may lead to incompatibilities with
the mode.

If no valid Android SDK is detected, Processing will ask to
either manually locate an SDK or automatically download one
(Figure 1-5).

CHAPTER 1 " GETTING STARTED WITH ANDROID MODE

@ Found an Android SDK!

Processing found a valid Android SDK that seems to be in use
already. Processing could use this SDK too, or download a new one.
Sharing the same SDK across different development tools, like
Processing and Android Studio, will save space (the SDK may use up
to several GBs), but when one tool updates the SDK, it can create

problems in the other. If Processing downloads a new SDK, it will
keep it separate from the one it just found.

What do you want to do?

Download new ok ([USXiSHinGISOKIN

@ Cannot find an Android SDK...
Processing did not find an Android SDK on this computer. If there is
one, and you know where it is, click "Locate SDK path” to select it, or
“Download SDK" to let Processing download the SDK automatically.

If you want to download the SDK manually, you can get the command
line tools from here, Make sure to install the SDK platform for API 25.

Locate SDK path manually

Figure 1-5. Choosing between using an existing SDK or downloading a new one
automatically (top), and between locating an SDK manually or downloading one
automatically (bottom)

Note Version 4.0 of Android mode requires Android version 8.0 (Oreo), corresponding
to API level 26 (https://source.android.com/source/build-numbers). The mode’s
automatic SDK download will retrieve this version from the Google servers.

Pre-releases of Android mode, as well as older, unsupported versions, are no longer
available through the CM, but rather are deposited on the GitHub releases page
(https://github.com/processing/processing-android/releases)and can be installed
manually by downloading the corresponding file and extracting it into the Modes folder in
Processing’s sketchbook.

Interface of Android Mode

The editor in Android mode is very similar to that of Java mode. The toolbar contains the

Play and Stop buttons to launch a sketch and to stop its execution (on the device or in the
emulator). Code autocompletion in the editor is available as well. However, version 4.0 of
Android mode does not offer an integrated debugger. The main menu contains a number

10

https://source.android.com/source/build-numbers
https://github.com/processing/processing-android/releases

