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Preface

This volume contains the papers presented at the 20th DGLR/STAB-Symposium
held in Braunschweig, Germany (November 8–9, 2016), organized by the Institute
of Fluid Mechanics of the Technische Universität Braunschweig. STAB is the
German Aerospace Aerodynamics Association (Deutsche Strömungsmechanische
Arbeitsgemeinschaft) founded towards the end of the 1970s, whereas DGLR is the
German Society for Aeronautics and Astronautics (Deutsche Gesellschaft für Luft-
und Raumfahrt - Lilienthal Oberth e.V.).

The mission of STAB is to foster aerodynamics research and its appreciation in
Germany. This is accomplished by creating vivid forums for scientific discussions
and by disseminating most recent research results, thereby enhancing scientific
progress and avoiding unnecessary duplication in research work. Particularly today,
this is more crucial than ever. Thanks to the experience and methodologies gained
in the past, it is now easier to obtain new knowledge for solving today’s and
tomorrow’s problems. STAB unites German scientists and engineers from uni-
versities, research establishments and the industry, involved in research and project
work in the field of numerical and experimental fluid mechanics and aerodynamics
for aerospace, ground transportation and other applications. This is a solid basis for
numerous common research activities sponsored by different funding agencies.

Since 1986, the symposium has taken place at different locations in Germany
every two years. In between, STAB workshops have been held regularly at the DLR
in Göttingen. The various symposia locations across Germany represent focal
points in Germany’s Aerospace Fluid Mechanics Community. The STAB symposia
and workshops provide excellent forums where new research activities can be
presented, often resulting in new jointly organized research and technology
projects.

It is the eleventh time that the contributions to the symposium are published after
being subjected to a peer review. The present contributions highlight the current
key area of integrated research and development based on the fruitful collaboration
of industry, research establishments and universities. The research areas include
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airplane and ground vehicle aerodynamics, multidisciplinary optimization and new
configurations, turbulence research and modelling, laminar flow control and tran-
sition, rotorcraft aerodynamics, aeroelasticity and structural dynamics, numerical
and experimental simulation including test techniques, aeroacoustics as well as
biomedical and convective flows.

From some 77 lectures presented at the symposium, 67 are included in this book.
The review board, partly identical with the programme committee, consisted of:

K. Backhaus (Braunschweig), P. Bahavar (Göttingen), G. Bangga (Stuttgart),
S. Bansmer (Braunschweig), H. Barth (Göttingen), C. Bauer (Göttingen),
A. Bauknecht (Göttingen), T. Berkefeld (Göttingen), P. Bernicke (Braunschweig),
A. Berthold (Berlin), J. Braukmann (Göttingen), M. Braune (Göttingen), C. Bre-
itsamter (München), D. Burzynski (Braunschweig), A. Buzica (München),
L. Capsada (Braunschweig), J. Delfs (Braunschweig), F. Edzards (Göttingen),
T. Eggers (Braunschweig), K. Ehrenfried (Göttingen), R. Ewert (Braunschweig),
N. Fehn (München), M. Fehrs (Göttingen), A. Feldhusen-Hoffmann (Aachen),
D. Feldmann (Göttingen), U. Fey (Göttingen), A. Fischer (Stuttgart), H. Foysi
(Siegen), A. Gardner (Göttingen), R. Geisler (Göttingen), A. Goerttler (Göttingen),
J. Haff (Göttingen), F. Haucke (Berlin), S. Haxter (Göttingen), A. Heider
(Göttingen), S. Hein (Göttingen), R. Heinrich (Braunschweig), H. Heißelmann
(Oldenburg), C. Heister (Braunschweig), A. Henning (Göttingen), M. Herr
(Braunschweig), E. Jost (Stuttgart), T. Kächele (München), S. Keye (Braun-
schweig), C. Kiefer (Saarbrücken), M. Klaas (Aachen), C. Klein (Göttingen),
T. Knopp (Göttingen), F. Knoth (München), S. Koch (Göttingen), M. Konstantinov
(Göttingen), T. Köthe (Göttingen), M. Kronbichler (München), A. Krumbein
(Göttingen), M. Kruse (Braunschweig), A. Kümmel (München), K. Kutscher
(Braunschweig), T. Landa (Braunschweig), P. Lehmann (Braunschweig), J. Lohse
(Berlin), H. Lüdeke (Braunschweig), J. Lunte (Göttingen), T. Lutz (Stuttgart),
P. Marquardt (Aachen), J. Martinez Schramm (Göttingen), R. Meyer (Göttingen),
F. Muñoz (Braunschweig), J. Neumann (Göttingen), J. Piquee (München),
A. Probst (Göttingen), S. Probst (Göttingen), D. Puckert (Stuttgart), M. Raffel
(Göttingen), M. Rein (Göttingen), J. Reiss (Berlin), A. Rempke (Braunschweig),
M. Ripepi (Braunschweig), U. Rist (Stuttgart), H. Rosemann (Göttingen),
M. Rütten (Göttingen), L. Savoni (Braunschweig), D. Schiepel (Göttingen),
T. Schneider (München), C. Schnepf (Göttingen), G. Schrauf (Bremen),
A. Schröder (Göttingen), E. Schülein (Göttingen), D. Schütz (Siegen), D. Sch-
wamborn (Göttingen), R. Semaan (Braunschweig), A. Shishkin (Göttingen),
L. Siegel (Göttingen), M. Staats (Berlin), L. Stein (Berlin), C. Stemmer (München),
M. Stuhlpfarrer (München), C. Voß (Göttingen), C. Wagner (Göttingen),
A. Waldmann (Stuttgart), P. Weihing (Stuttgart), K. Weinman (Göttingen),
S. Weiss (Göttingen), A. Westhoff (Göttingen), T. Wetzel (Göttingen), S. Wiggen
(Göttingen), H. Wilhelmi (Göttingen), M. Winter (München), C. Wolf (Göttingen),
J. Zahn (Stuttgart).
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Nevertheless, the authors are responsible for the contents of their contributions.
The editors are grateful to Prof. Dr. W. Schröder as the General Editor of the

“Notes on Numerical Fluid Mechanics and Multidisciplinary Design” series and to
the Springer publishing house for the opportunity to publish the results of the
symposium.

Göttingen, Germany Andreas Dillmann
Bremen, Germany Gerd Heller
Stuttgart, Germany Ewald Krämer
Göttingen, Germany Claus Wagner
Braunschweig, Germany Rolf Radespiel
Braunschweig, Germany Stephan Bansmer
Braunschweig, Germany Richard Semaan
April 2017
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Numerical Investigation of Slot and
Configuration Impact on the Efficiency
of Tangential Blowing at a Vertical
Tailplane with Infinite Span

Anna Gebhardt and Jochen Kirz

Abstract On a swept vertical tailplane with infinite span tangential blowing over

the shoulder of a deflected rudder is applied. For large rudder deflection angles the

flow on the rudder is separated without blowing. A numerical study is conducted

with the aim to increase the side force coefficient which might be required for a

take-off condition if a one-sided engine failure occurs. With a continuous slot and

sufficient mass flow rate the separation on the rudder can be reduced or avoided.

It is shown that by using discrete slots this can be achieved for a similar side force

coefficient gain with a smaller momentum coefficient. In addition the sweep angle

of the incoming flow is varied showing a strong impact on the achievable side force

coefficient. This is also true for the curvature of the rudder shoulder over which the

jet is blown.

1 Introduction

The vertical tailplane (VTP) of a transport aircraft is needed for stability and control

of the aircraft about the yaw axis. One important sizing case of the VTP for modern

aircraft is an one engine inoperative (OEI) condition with the failure of the criti-

cal engine. In this situation an asymmetric thrust is created. The resulting moment

around the yaw axis must be counteracted by the VTP. Here take-off is a critical

flight segment where high thrust requirements lead to a high yawing moment which

necessitates large aerodynamic forces to be generated by the VTP. On the other hand

the flight speed is relatively low leading to relatively low aerodynamic forces pro-

duced by the VTP demanding a large size. However, in cruise flight at high aircraft

velocity, the VTP is larger than necessary to satisfy cruise stability requirements for
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modern transport aircraft with electronic flight control systems. It follows that the

VTP size is determined by a rarely occurring failure case. In this critical OEI case

the rudder is highly deflected to achieve maximum side force but this also leads to

partial separation on the rudder. If the size of the VTP could be reduced by applying

some means to increase the side force, drag and weight could be lowered which in

turn would lead to a reduction in fuel burn. One possibility is the use of active flow

control (AFC). With this the side force coefficient CY produced by the VTP can be

increased without increasing its size by delaying flow separation to higher sideslip

and/or rudder deflection angles.

In contrast to passive flow control using for example vortex generators, active

flow control has the possibility to be turned on just when needed. On the other hand

some source of energy is needed for the AFC system which is not the case for a

passive system. For this investigation, pressurized air is used as the energy source to

drive fluidic actuators. These are already used in a wide range of active flow control

applications. Among different kinds of blowing techniques tangential blowing over

the rudder is selected for the current study.

Sensitivities of different active flow control parameters were investigated in a pre-

vious study using a 2D VTP airfoil [5]. The results showed that the flow on the rudder

can remain attached on the rudder also at high deflection angles if the blowing veloc-

ity and mass flow rate are sufficiently high. This was accompanied by an increase of

the lift coefficient of the airfoil. Tangential blowing has already been investigated

experimentally and numerically in several studies, e.g. [1, 8], but mainly for the

use on wings. Due to the small aspect ratio and the large sweep angle of the VTP

the results obtained for the wing might not be directly transferable. Recently research

was done at NASA and Boeing with a VTP geometry using an experimental approach

[6] subsequently supported by numerical results. However, for these studies different

kinds of actuators were used, namely synthetic jets and sweeping jets, what might

lead to a different interaction with the flow field. In addition, no study was found

in which the underlying mechanism driving the variable efficiency of different slot

configurations along the VTP span was investigated.

In the frame of the current study the numerical investigation to increase the side

force coefficient by tangential blowing is extended to 3D. This allows examining

effects in spanwise direction. Here the width of discrete slots and the size of the gap

between them are varied as well as the blowing velocity. In this study, starting from a

continuous jet, the slot area is reduced in spanwise direction. Since a whole 3D VTP

would mean a large mesh resulting in excessive calculation time, a 2.5D geometry is

used. It has an infinite span and a constant chord length but incorporates the sweep

angle of the VTP. In addition to a variation of the slots the leading edge sweep angle

is also altered since it is expected to have an impact on the side force increase at a

constant momentum coefficient. In addition a variation of the curvature of the rudder

shoulder just behind the blowing slots is examined.
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Fig. 1 Overview of geometry: Left Top view of VTP section with periodic boundaries left and

right; middle bottom: side aft view of VTP section; right detail view of slots and rudder shoulder;

middle top slice through one slot and rudder shoulder

2 Geometry

The VTP section considered consists of a symmetrical airfoil which is constant over

the span. Selected is the NACA 63A010 which is a transonic airfoil suited for a con-

ventional transport aircraft. The hinge-line, separating the non-moving part fin and

the deflectable rudder, is situated at 67% chord length. Since this is a 2.5D approach,

the chord length is kept constant over the span. The sweep angle is about 44◦, which

is similar to the sweep angle of a VTP leading edge. It is varied for an investigation

of the sweep angle influence on the results. The rudder deflection angle of about 23◦
in direction of the incoming flow is selected due to the occurrence of notable flow

separation for these conditions. The side slip angle is zero for all investigations. The

geometry is scaled by about 1:11 to correspond to a wind tunnel scale and to make

the results more easily comparable with other studies.

In the geometry a slot is integrated at the end of the fin as shown in Fig. 1 to

allow for tangential blowing. The slot height is 0.06% of the chord length leading to a

relatively thin slot. This height was also used for the preceding 2D investigations [5].

A part of the slot is modelled for numerical reasons [3]. The slot length corresponds

to 20 times the slot height and is chosen so that a developed pipe flow is established

at the outlet. A small step is located aft of the slot towards the rudder shoulder, which

would be expected for a realistic 3D design as well, if only due to material thickness.

At first a geometry with a continuous slot is used. In a next step several discrete

slots are introduced in spanwise direction. The span is kept constant for the investiga-

tion and the width of the actuators is selected to fit this span. Just a limited spanwise

section is calculated. The left and right boundaries of this section are set as periodic

boundaries, resulting in a simulation of an infinite swept wing-type geometry.
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Fig. 2 Slice of the mesh showing the hexahedron blocks used for field refinement

3 Mesh Generation

Hybrid grids are created with the commercial mesh generation package CENTAUR

from CentaurSoft [2]. The mesh consists in the near wall region of hexahedrons on

most parts of the rudder and on the remaining parts of prisms. For the field refinement

above and behind the rudder hexahedrons are used as well. These are directly con-

nected to the near wall mesh above the rudder and at its trailing edge. This approach

should lead to improved capturing and preservation of the flow quantities compared

to a mesh using prisms and/or tetrahedra instead. The slot is meshed as far as possible

in a structured way. The remainder of the flow field is filled with tetrahedrons. Some

aspects of mesh dependence were studied in a preliminary investigation described

in [5] for a 2D case. The farfield extends 100 times the VTP chord length in x- and

y-direction. The overall number of points is about 7 million by using 50 prism layers

and a target y+ = 0.5. An overview of the mesh in the vicinity of the geometry is

presented in Fig. 2.

4 Flow Simulation

The flow computations were carried out with the flow solver TAU, release 2015.1.0,

developed by DLR (Deutsches Zentrum für Luft- und Raumfahrt, German Aerospace

Center) [4]. The TAU software solves the Reynolds-averaged Navier-Stokes (RANS)

equations using numerical methods in two or three dimensions on unstructured and

hybrid grids. For the spatial discretization a finite volume method is applied.

The temporal discretization is realized by a semi-implicit Backward-Euler scheme

with the linear LUSGS (Lower-Upper Symmetric Gauss-Seidel) solver. A matrix

dissipation scheme is employed for low numerical dissipation. The Reynolds number
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is Re = 2.24 ⋅ 106 for the VTP chord length in direction of the incoming flow at a

Mach number of M∞ = 0.2 or a flow velocity of v∞ = 69m∕s.
The steady, viscous, fully turbulent RANS calculations were performed using

the turbulence model of Spalart and Allmaras [10] enhanced with a vortical and

rotational flow correction (SARC) based on the approach of Spalart-Shur [9]. For

circulation control airfoils it was shown that this turbulence model leads to good

results for flows with high streamline curvature [7].

For the calculations with blowing activated, an actuation boundary condition is

specified at the upstream wall of the slot to inject the jet flow into the flow domain.

For this boundary condition a specification of jet velocity and density is necessary,

with the latter assumed to be identical to the value of the flow in the farfield.

When comparing the results of the flow simulations, the dimensionless momen-

tum coefficient C
𝜇

is used. It is defined as:

C
𝜇

=
ṁj ⋅ vj

1
2
⋅ 𝜌∞ ⋅ v2∞ ⋅ A

ref

=
v2j ⋅ 𝜌j ⋅ Aj

1
2
⋅ 𝜌∞ ⋅ v2∞ ⋅ A

ref

(1)

where ṁj is the mass flow rate of the jet through the actuator slot with the jet velocity

vj and the jet density 𝜌j. The variables 𝜌∞ and v∞ are the density and velocity of the

onset flow in the farfield, Aj is the accumulated area of the slot exit and A
ref

is the

reference area of the model used, which is the chord length times the span.

5 Results

This section begins with the presentation of the results of the slot variations. There-

after the results of the variation of the sweep angle are shown followed by the vari-

ation of the rudder shoulder curvature.

5.1 Variations of Slot Width and Gap Size

First, calculations are done using a continuous slot extending over the whole span.

Without blowing activated the rudder is separated. Increasing the jet velocity or

momentum coefficient the separation over the rudder is reduced. This leads, as shown

in Fig. 3, to an increase of the side force coefficient which is here given as an incre-

ment to the case without blowing. The force coefficients are obtained by integra-

tion of the surface pressure and friction drag excluding the jet boundary plane. The

jet adds energy close to the rudder surface. Due to this the flow can better sustain

the adverse pressure gradient further downstream on the rudder. Beyond C
𝜇

= 1%
the flow is fully attached up to the rudder trailing edge. CY , which is defined as
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Fig. 3 CY increment versus

C
𝜇

for different slot width w
and gap size g for a number

of slots of 4 compared to the

continuous slot, each row

shows results for 3 different

jet velocities

CY = Y∕1
2 ⋅𝜌∞⋅v2∞⋅A

ref
with Y being the side force, increases further but the efficiency of

the blowing reduces. For the same amount of C
𝜇

a smaller increase in CY is obtained.

In a next step the continuous slot is replaced by four discrete slots. Their width

and gap size is varied. The effect on CY is shown in Fig. 3. For each data row being

a gap/width combination three different jet velocities are calculated. The three jet

velocities vj are: 169m∕s, 207m∕s, and 239m∕s. The smallest jet velocity leads

thereby to the smallest C
𝜇

in a data row. For the continuous slot the dashed line

gives additional results.

As can be seen, side force coefficients similar to the lowest of the three points of

the continuous slot can be obtained for some of the discrete slot configurations at

a lower C
𝜇

. For the geometry with w = 9.6mm this would correspond to the third

point in its row which is obtained using the highest jet velocity of 239m∕s. The jet

velocity is increased compared to the continuous slot but the jet exit area is greatly

reduced leading to the reduction in C
𝜇

of 50% and a reduction in the mass flow rate

of about 65% for nearly the same side force coefficient.

This can be explained by the vortex system which develops over the rudder when

using the discrete slots. An example is shown in Fig. 4. Two effects are responsible

for this. Due to the finite length of the discrete slots the jets have edges left and right.

In addition, the incoming flow has an angle to the blowing direction of the jets which

is at the slot exit perpendicular to the hinge-line. The shearing of the incoming flow

with the jets leads to the generation of a counter-rotating vortex pair at each jet. When

looking from behind at the rudder the right vortex of each pair is rotating clockwise

having a negative 𝜔x which is the sense of rotation in x-direction. The left vortex is

rotating counter-clockwise. In the middle of a vortex pair an upwind region is created

which is locally disadvantageous since it transports fluid away from the surface. At

the other sides of the vortex pair the vortices are rotating downwards to the surface

enhancing the mixing of the outer flow with the boundary layer. This has a favorable

impact helping to attach the flow to the rudder in the areas between the jets. The
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Fig. 4 Rear view onto the

rudder: field stream traces

and vortices generated by 4

discrete slots (w = 9.6mm,

vj = 207m∕s)

generation of the vortices and their efficiency is dependend on the slot width and

gap size as well as on the jet velocity. With increasing jet velocity the energy added

to the flow is increased and the jet blowing direction becomes more dominant further

downstream on the rudder while for low jet velocities the incoming flow turns the

jet in its direction.

For the smallest slot width w = 4.8mm in Fig. 3 the slot area is quite small as is

thus the momentum coefficient. So altogether not enough energy is added to the flow

over the rudder to attach it up to the trailing edge. Increasing C
𝜇

by increasing the

slot width extends the areas of attached flow on the rudder and thus the side force

coefficient. The largest slot width of the discrete slots tends towards the results of

the continuous slots. However, since the slot area and C
𝜇

is still smaller only the

continuous slot can reach the maximum side force calculated.

5.2 Variation of the Sweep Angle

In this study an infinite section with constant chord and constant sweep angle for

the leading and trailing edge and the hinge-line is used. For the real 3D VTP the

planform is tapered with a large chord length at the root and a smaller one at the

tip. This leads usually to a hinge-line sweep angle which is smaller than that of the

leading edge. This makes the investigation of the effect of the leading edge sweep

angle on the side force coefficient for the investigated 2.5D configuration of great

interest.

When changing the sweep angle, the airfoil geometry in direction of the incom-

ing flow is kept constant. The geometry perpendicular to the hinge-line or leading

edge changes therefore between the configurations with differing sweep angle. In

this direction the geometry is scaled by the cosine of the sweep angle. This means

that the chord length perpendicular to the hinge-line increases with reduced sweep
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Fig. 5 Top view on the VTP

section (stretched span) for

two different sweep angles

angle and is the largest without any sweep. An example is shown in Fig. 5. Due to

this, the area of the VTP section changes since the span is kept constant. Because of

this, the respective area of the configuration A
ref

is used when calculating the side

force coefficient CY .

The leading edge sweep angle 𝜙
LE

is varied from 0◦ to 40◦ in 10◦-steps. An addi-

tional result is the one of the configuration considered up to now with the 44◦ sweep

angle. The slot configuration used is the one withw = 9.6mm. For each leading edge

sweep angle again the three blowing velocities are calculated as before.

Since the blowing direction of the jets is perpendicular to the hinge-line, the angle

between them and the incoming flow is reduced with decreasing sweep angle. This

has an influence on the vortex system generated over the rudder.

In Fig. 6 the increment of CY is shown which is the side force coefficient with the

blowing jets activated from which the result of the same sweep angle configuration

without blowing is subtracted. On the horizontal axis the momentum coefficient is

depicted which varies with the sweep angle for the same blowing velocity due to the

change in the reference area.

With increasing jet velocity at a constant sweep angle the side force coefficient is

increased. The convergence of CY is without oscillations except for two cases with a

sweep angle of 20◦ with jet velocities of 207m∕s and 239m∕s. Here the mean value

and the amplitude are constant and the mean value is taken.

From the results it can be concluded that the sweep angle has a large effect on

the side force increment which can be obtained by tangential blowing. One result is

that a sweep angle of 30◦ leads to the highest increase in the side force coefficient

as depicted in Fig. 6. Increasing the sweep angle reduces CY but reducing the sweep

angle by the same amount leads to an even larger reduction in CY . Hence, the angle

of the incoming flow to the blowing direction of the jets is quite important when

designing such a tangential blowing AFC system.
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Fig. 6 CY increment versus

C
𝜇

for different sweep angle

with each row showing

results for three different jet

velocities

To understand the results better, regions with negative skin friction coefficient

C
fx

are examined which give an indication of reversed and separated flow. This is

done here exemplarily for the middle jet velocity of 207m∕s. Results are presented in

Fig. 7. For the highest sweep angle of 44◦ the flow on the rudder can be attached up to

the trailing edge. Just close to the rudder shoulder areas of reversed flow can be found.

Here the vortices are not yet developed between the jets. For the other jet velocities

the results are in principle similar. With decreased jet velocity of 169m∕s the sep-

aration areas increase while they decrease for the higher jet velocity of 239m∕s. A

regular pattern of vortices for each slot similar to that in Fig. 4 is produced as is indi-

cated by the regular running streamtraces in Fig. 7. The behavior for all adjacent jets

is the same being deflected in the same direction. For the sweep angle of 40◦ and

30◦ the results are comparable.

The flow field on the rudder changes when decreasing the sweep angle further to

20◦. Here also the decrease in CY could be observed before. Areas of separated flow

from the rudder shoulder down to the trailing edge exist between the jets, although

each individual jet can create a narrow band of attached flow up to the trailing edge.

However, the area of separated flow on the rudder is quite large. It can be observed

that with the angle between incoming flow and jet becoming smaller the vortex sys-

tem gets more irregular and might indicate some unsteadiness which can not be cap-

tured by this steady calculation performed here. Some adjacent jets cluster, leaving

between them larger areas in spanwise direction where separated flow regions can

be found. This reduces the possible side force coefficient created there. The areas of

separated flow increase for the even smaller sweep angles of 10◦ and 0◦.

The more evenly distributed vortices for the higher sweep angle configurations are

therefore preferable. Here the 30◦ configuration is the most effective one because the

vortices are larger than those for the higher sweep angles covering a larger extent of

the span.
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Fig. 7 Top view of the VTP

section: Surface stream

traces and areas marked with

C
fx
< 0 for different leading

edge sweep angle 𝜙

LE
,

vj = 207m∕s

(a) (c)(b)

(d) (f)(e)

5.3 Variation of Rudder Shoulder Curvature

Two different approaches to construct the rudder were used. The first results pre-

sented in Sect. 5.1 were obtained with a larger radius of the rudder nose. Figure 8

shows a slice through the VTP section in direction of the incoming flow with 44◦
sweep. The results for the sweep angle variation were obtained using the second

geometry with a smaller radius of the rudder shoulder and thus a higher curvature.

In Fig. 9 the effect on CY is shown. The values are all related to the result of

the configuration without blowing for the initial airfoil. The smaller radius with the

Fig. 8 Comparison of two

airfoils with varying

curvature of the rudder

shoulder
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Fig. 9 CY increment versus C
𝜇

for two different rudder nose curvature geometries incl. a pressure

coefficient (cp) distribution for vj = 207m∕s (top)

higher curvature leads to an increase of the side force coefficient already without

blowing. For the smallest blowing velocity the largest increment is obtained between

the two geometries. For higher jet velocities the geometry with the higher curva-

ture used for the sweep angle variation still leads to a higher CY of about 4% for

C
𝜇

= 0.5%. Due to the increased curvature the flow is more accelerated at the rudder

shoulder, leading to a higher rudder suction peak there (cf. Fig. 9 top). This in turn

also has an upstream effect on the fin where a small additional decrease in the pres-

sure on the suction side is obtained. So in summary the radius of the rudder shoulder

can have an observable influence on the gain in CY . When trying to adapt this kind

of AFC technology to an aircraft it is, however, most probably that this radius is

prescribed by other demands like mechanical functionality issues when rotating the

rudder or by cruise shape requirements.

6 Summary

A numerical study is conducted where tangential blowing over the rudder shoulder

of a 2.5D vertical tailplane with deflected rudder is investigated. Without blowing the

flow over the rudder is separated. Blowing from a continuous slot extending over the
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whole span is able to attach the flow on the rudder if a sufficiently high mass flow rate

is applied. Using four discrete slots instead of a continuous one shows that a similar

side force coefficient CY can be reached even with a reduction of the momentum

coefficient by 50%. This large effect is based on the creation of a vortex pair at each

finite jet which has a beneficial effect on the flow field over the rudder.

The development of this vortex pair is dependent on the angle of the incoming

flow to the jet. First, the sweep angle of the leading edge of a VTP is used which is

about 44◦. This sweep angle is then gradually reduced. A sweep angle of 30◦ leads

to the largest increase in the side force coefficient for the jet velocities considered.

Since the hinge-line sweep angle of a 3D VTP is usually smaller than that of the

leading edge this result seems to confirm that blowing perpendicular to the hinge-

line is a quite good approach. In addition, the radius of the rudder shoulder has an

influence on the obtainable side force coefficient. The geometry with the smaller

radius leads here to an increase in CY . However, it is most likely that this parame-

ter will be dictated by other constraints such as cruise shape or rudder deflection

mechanical functionality requirements.
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Steady and Unsteady Numerical Simulation
of a Bent Intake Geometry

Thomas Kächele, Tim Schneider and Reinhard Niehuis

Abstract A broad range of numerical flow simulations are carried out during the

design phase of a highly bent intake geometry. The main aim is to evaluate the

aerodynamic characteristics of a projected wind tunnel model and an estimation of

mechanical loads for the structural dimensioning. The numerical setup using the

TRACE code is validated first against comprehensive experimental data of a NASA

s-duct test case. Three different turbulence models are found to be capable of repro-

ducing the main flow features that occur in bent intake ducts with an acceptable

accuracy. The following steady simulations of the symmetric wind tunnel model

show asymmetric flow solutions and convergence problems for two of the three tur-

bulence models. URANS computations are therefore carried out including a sensi-

tivity study towards time-step size and domain volume. The unsteady results using

the three different turbulence models still exhibit significant deviations concerning

mechanical loads and duct performance. A safety margin is thus estimated from the

unsteady data to be used for the construction and testing of the wind tunnel model.

1 Introduction

Modern aircraft concepts feature complex engine intake configurations for vari-

ous reasons. The reduction of aircraft drag through boundary layer ingestion moti-

vates the development of such civil configurations, a low observability by means

of hiding the highly reflective fan plane of the jet engine lies in the focus of mili-

tary applications. These unconventional intake geometries result in a disturbed flow

regime towards the compression system of the jet engine. The consequences are
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performance deficits and a reduced stability margin. The generated flow distortion

within the aerodynamic interface plane (AIP) between intake and engine is both

dependent on the duct geometry as well as the upstream influence of the compres-

sor. In order to improve the knowledge about this interaction and to validate dif-

ferent simulation approaches, a highly bent intake geometry was developed for an

experimental investigation in cooperation with MTU Aero Engines AG [1]. Exper-

iments will take place in the engine test facility of the Institute of Jet Propulsion at

the University of the German Federal Armed Forces in Munich featuring the Mex-

JET test engine [2]. During the iterative design process, numerical flow simulations

were carried out for two reasons. The first is the prediction and evaluation of the

resulting distortion pattern to achieve a significant AIP flow distortion without the

risk of compressor surge. The second reason is an estimation of the expected wall

pressure distribution to simulate the mechanical loads on the duct as well as on the

support structure. As the simulation of highly contoured intake geometries by means

of RANS calculations is very challenging, an estimation of numerical uncertainness

and thus an additional safety margin for the load cases was necessary.

2 Intake Aerodynamics

During the design phase of the duct, no best practice setup for the simulation of

intake ducts with the flow solver TRACE was available. The numerical settings were

therefore calibrated using comprehensive experimental data generated by a NASA

test campaign of a comparable single s-bent duct by Wellborn and Okiishi [3]. This

geometry is compared to the MexJET duct in Fig. 1. The NASA duct on the left side

Fig. 1 Comparison of NASA duct (left) and MexJET duct (right) with pressure values in the

symmetry plane and total pressure values in different cross sections in the same scale


