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Chapter 1
Introduction

Abstract Huge amount of carbon dioxide emission poses a serious threat to our
environmental and biological systems. Development of sustainable energy system
based on CO2 is highly desired. This chapter briefly introduces the approaches of
CO2 activation and transformation, and emphasizes CO2 reduction to formic acid
and methanol, which are currently considered as promising energy carriers and
alternative fuels.

Keywords CO2 emission � CO2 activation � CO2 reduction � Alternative fuels
Hydrogen economy � Methanol economy

In nature, plants use carbon dioxide (CO2) to produce hydrocarbon and oxygen via
photosynthesis, whereas the respiration consumes oxygen and releases CO2. The
levels of CO2 concentration were almost constant and fluctuated minutely before
the beginning of the industrial revolution. However, the balance in nature was
broken since the start of the industrial revolution. Human activities, including
deforestation, cement manufacture, and consumption of fossil fuels, caused the
dramatic increase of CO2 atmospheric concentration. This concentration has
exceeded 400 ppm milestone in 2015 and will no longer decrease [1]. CO2 is
known as one of the important greenhouse gases. Global warming is the direct
effect of increased atmospheric CO2 concentration. The average global surface
temperature has increased by 1 °C than in the 1960s [1]. The period from 2011 to
2015 has been the hottest 5-year period on record. Global warming leads to severe
decline of Arctic sea ice and land ice, thus resulting in the sea level rise of 200 mm
from 1870 to 2000. Another consequence of anthropogenic CO2 emission is ocean
acidification. This phenomenon causes major damage to the ocean ecosystems [2].
These combined effects have a strong influence on the biological and ecological
systems worldwide.

Another major concern of our society is the depletion of fossil fuels, a nonre-
newable energy resource. Since the modern society mainly relies on fossil resources
to provide either energy or basic chemical resource, building a sustainable energy or
chemical industry system before the depletion of fossil resources is of much

© The Author(s) 2018
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importance. Therefore, capture and utilization of CO2 as fuels and chemicals is
becoming an important scientific project. The use of CO2 as an economical and
abundant C1 building block to construct various chemicals and fuels has attracted
increasing attention [3–8]. However, CO2 is a thermodynamic stable molecule.
Converting CO2 into value-added chemicals and fuels is a challenging task. In the
industry, CO2 is only used to produce limited products including urea, organic
carbonates, and salicylic acid (Fig. 1.1). A total of 150 million tons of urea is
produced annually. This process utilizes 109.5 million tons of CO2, which accounts
for 94% of CO2 consumption [9]. However, urea production makes no contribution
to carbon sequestration because urea emits equal amounts of CO2 when applied to
the soil as a fertilizer. Moreover, the production of the co-reactant, ammonia, from
fossil resources releases more CO2.

The great challenge of CO2 transformation is ascribed to the thermodynamic
stability and kinetic inertness of CO2 molecule. The length of the C=O double bond
in CO2 is 116 pm, which is shorter than that of C=O in carbonyl compounds
(123 pm); therefore, the C=O double bond of CO2 is extremely stable.

To overcome the high energy barrier of CO2 activation, catalysts are required. In
the linear CO2 molecule, the carbon atom is electron deficient and thus acts a Lewis
acid, whereas the oxygen atom is a Lewis base. Transition metal as a Lewis base is
demonstrated to be efficient in activating the weak electrophilic CO2 molecule. The
three possible coordination modes are illustrated in Fig. 1.2a. η1 C-bound structure
is the most common mode. Besides metals in a low oxidation state, other
electron-rich species, such as base and hydride, are prone to attack C by forming a
r bond. Transfer of electron to the C atom results in a bent CO2

− anion. This
process can be facilitated by the interaction of the O atom with the electrophilic
atoms through the outer coordination sphere. p coordination of one C=O bond to
the metal center leads to a η2-CO bonding mode. In this mode, the electron transfers
from CO2 to the metal center and weakens the C=O bonds. Transition metals such
as electron-poor species with a high oxidation state attack the O atom. η1 O-bound
mode is observed, but difficult to form. η2-OO mode is usually found in interaction
with alkali metals. In addition, organocatalysts, such as frustrated Lewis pairs
(FLPs), have recently achieved great progress in CO2 activation [10, 11]. FLPs are a
combination of bulky Lewis acid and Lewis base that do not form classical adducts
because of the steric or geometric constraints. FLPs are ambiphilic and thus can
activate CO2 by adduct formation (Fig. 1.2b).
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Fig. 1.1 Industrial production of salicylic acid and urea with CO2
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Besides using catalysts to decrease the energy barrier, using reactants of high
intrinsic energy can render CO2 transformation thermodynamically feasible.
Three-membered heterocycles, especially epoxides, is typically used to incorporate
the entire CO2 molecule into products. The production of cyclic carbonate ethylene,
propylene carbonate, and polycarbonate has been industrialized [7]. Nevertheless,
no formal reduction is involved in this process. CO2 is the end product of hydro-
carbon combustion with the highest oxidation state. To fulfill the energy storage and
convert CO2 to fuels, CO2 reduction is a prerequisite. CO2 is reduced by photo-
chemical, electrochemical, and thermal hydrogenation methods [12–14]. Photo- and
electrochemical CO2 reduction are of great interest, but this topic is beyond the scope
of this book. As shown in Fig. 1.3, CO2 can be reduced to various compounds,
including aldehydes, acids, amides, alcohols, amines, and hydrocarbon.

Among these products, formic acid (FA) is recently recognized as a promising
hydrogen storage material [15, 16]. Moreover, it can be directly used in the formic
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Fig. 1.2 a Coordination modes of CO2 with transition metal complex. b Ambiphilic activation of
CO2 with FLPs
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acid fuel cell to produce electricity. Production of FA from CO2 contributes greatly
to the proposed “hydrogen economy” [17]. The hydrogenation of CO2 into formic
acid (Eq. 1.1) in the gas phase is endergonic (DG°298 = +33 kJ mol−1). When the
reaction is carried out in the aqueous phase (DG°298 = −4 kJ mol−1) or with the
addition of a base such as ammonia (Eq. 1.2, DG°298 = −9.5 kJ mol−1 in the gas
phase), the CO2 hydrogenation becomes exergonic and feasible. If base is added to
the aqueous solution, the reaction is more favorable (Eq. 1.2,
DG°298 = −35 kJ mol−1 in the aqueous phase) [18]. The solvent effects of water
and deprotonation of FA with base are important for CO2 hydrogenation. The
acid/base equilibrium of CO2 in water (Eq. 1.3) makes the reaction quite compli-
cated. Although “hydrogenation of CO2” is frequently used in this book and
elsewhere, in basic aqueous solutions, the substrates used are HCO3

− and CO3
2−

besides CO2, depending on the pH of the solution. The hydrogenation of bicar-
bonate into formate in water (Eq. 1.4) is also known to be exergonic on the basis of
the theoretical calculations (DG°298 = −9.6 kJ mol−1) [19].

CO2 þH2 � HCO2H ð1:1Þ

CO2 þH2 þNH3 � HCO�
2 þNHþ

4 ð1:2Þ

CO2 þH2O � H2CO3 �
pK1¼ 6:35

HCO�
3 þHþ �

pK2 ¼ 10:33
CO2�

3 þ 2Hþ ð1:3Þ

HCO�
3 þH2 � HCO�

2 þH2O ð1:4Þ

Another product methanol is applied as liquid fuel, as well as in MeOH fuel cell.
The generation of water makes the CO2 hydrogenation to MeOH thermodynami-
cally favorable (Eq. 1.5, DG°298 = −9.5 kJ mol−1) in the gas phase [20]. The
thermodynamics is more favorable for this reaction in an aqueous solution (Eq. 1.5,
DG°298 = −79 kJ mol−1) [18]. The concept of “methanol economy” has recently
been put forward by Olah and co-workers [21–24].

CO2 þH2 � CH3OH + H2O ð1:5Þ

Both in hydrogen economy and methanol economy, fossil fuels are replaced
with hydrogen or methanol as a means of energy storage. In methanol economy,
methanol can be regenerated from chemical recycling of CO2. Therefore, carbon
neutral process is achieved. In hydrogen economy, if H2 is totally produced from
photocatalytic water splitting, CO2 emission is completely avoided. Both economy
forms have specific advantages and disadvantages; they provide promising alter-
natives to the current economy based on fossil fuels. A number of previous books
and reviews described the CO2 transformation [9, 18, 25–31]. Whereas our main
focus is the development of an alternative and sustainable economy involving CO2

conversion [32]. This book discusses the transformation of CO2 to FA and MeOH
utilizing either homogenous or heterogeneous catalysts. This book covers the most
recent advances in both transformations, including the design of catalysts and
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catalytic mechanism. Hence, this book will help and serve as motivation for
studying mechanism of CO2 transformation and developing renewable energy
sources.
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